aigroup-econ-mcp 0.6.0__tar.gz → 0.8.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aigroup-econ-mcp might be problematic. Click here for more details.
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/PKG-INFO +2 -2
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/pyproject.toml +2 -2
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/__init__.py +1 -1
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/ml_regularization.py +22 -8
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/panel_data.py +70 -4
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/tool_descriptions.py +176 -30
- aigroup_econ_mcp-0.8.0/src/aigroup_econ_mcp/tools/tool_handlers.py +813 -0
- aigroup_econ_mcp-0.6.0/src/aigroup_econ_mcp/tools/tool_handlers.py +0 -378
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/.gitignore +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/LICENSE +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/README.md +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/cli.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/config.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/server.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/__init__.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/base.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/cache.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/data_loader.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/file_parser.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/machine_learning.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/ml_ensemble.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/ml_evaluation.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/ml_models.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/monitoring.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/optimized_example.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/regression.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/statistics.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/time_series.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/timeout.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/tool_registry.py +0 -0
- {aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/validation.py +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: aigroup-econ-mcp
|
|
3
|
-
Version: 0.
|
|
4
|
-
Summary: 专业计量经济学MCP工具 -
|
|
3
|
+
Version: 0.8.0
|
|
4
|
+
Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析(优化版:统一输出格式,增强模型说明)
|
|
5
5
|
Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
|
|
6
6
|
Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
|
|
7
7
|
Project-URL: Issues, https://github.com/aigroup/aigroup-econ-mcp/issues
|
|
@@ -4,8 +4,8 @@ build-backend = "hatchling.build"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "aigroup-econ-mcp"
|
|
7
|
-
version = "0.
|
|
8
|
-
description = "专业计量经济学MCP工具 -
|
|
7
|
+
version = "0.8.0"
|
|
8
|
+
description = "专业计量经济学MCP工具 - 让大模型直接进行数据分析(优化版:统一输出格式,增强模型说明)"
|
|
9
9
|
readme = "README.md"
|
|
10
10
|
requires-python = ">=3.10"
|
|
11
11
|
authors = [
|
{aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/ml_regularization.py
RENAMED
|
@@ -130,36 +130,50 @@ def _regularized_regression(
|
|
|
130
130
|
elif len(feature_names) != X.shape[1]:
|
|
131
131
|
raise ValueError(f"特征名称数量({len(feature_names)})与自变量数量({X.shape[1]})不匹配")
|
|
132
132
|
|
|
133
|
-
#
|
|
133
|
+
# 检查数据质量
|
|
134
|
+
if len(y) < 5:
|
|
135
|
+
warnings.warn(f"⚠️ 警告:样本数量较少({len(y)}个),正则化回归可能不稳定")
|
|
136
|
+
|
|
137
|
+
# 数据标准化 - 只标准化自变量,不标准化因变量
|
|
134
138
|
scaler = StandardScaler()
|
|
135
139
|
X_scaled = scaler.fit_transform(X)
|
|
136
|
-
y_scaled = (y - np.mean(y)) / np.std(y) # 标准化因变量
|
|
137
140
|
|
|
138
141
|
# 选择模型
|
|
139
142
|
if model_type == "lasso":
|
|
140
|
-
model = Lasso(alpha=alpha, random_state=random_state, max_iter=10000)
|
|
143
|
+
model = Lasso(alpha=alpha, random_state=random_state, max_iter=10000, tol=1e-4)
|
|
144
|
+
# 对于Lasso,如果alpha过大,建议使用更小的值
|
|
145
|
+
if alpha > 10:
|
|
146
|
+
warnings.warn(f"⚠️ 警告:Lasso正则化参数alpha={alpha}可能过大,建议尝试更小的值(如0.1-1.0)")
|
|
141
147
|
elif model_type == "ridge":
|
|
142
148
|
model = Ridge(alpha=alpha, random_state=random_state)
|
|
143
149
|
else:
|
|
144
150
|
raise ValueError(f"不支持的模型类型: {model_type}")
|
|
145
151
|
|
|
146
152
|
# 训练模型
|
|
147
|
-
|
|
153
|
+
try:
|
|
154
|
+
model.fit(X_scaled, y)
|
|
155
|
+
except Exception as e:
|
|
156
|
+
raise ValueError(f"{model_type}模型拟合失败: {str(e)}。建议:1) 检查数据质量 2) 尝试不同的alpha值 3) 增加样本数量")
|
|
148
157
|
|
|
149
158
|
# 预测
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
# 将预测值转换回原始尺度
|
|
153
|
-
y_pred = y_pred_scaled * np.std(y) + np.mean(y)
|
|
159
|
+
y_pred = model.predict(X_scaled)
|
|
154
160
|
|
|
155
161
|
# 计算评估指标
|
|
156
162
|
r2 = r2_score(y, y_pred)
|
|
157
163
|
mse = mean_squared_error(y, y_pred)
|
|
158
164
|
mae = mean_absolute_error(y, y_pred)
|
|
159
165
|
|
|
166
|
+
# 检查R²是否为负值
|
|
167
|
+
if r2 < 0:
|
|
168
|
+
warnings.warn(f"⚠️ 警告:{model_type}模型的R²为负值({r2:.4f}),表明模型性能比简单均值预测更差。可能原因:1) 数据噪声过大 2) 特征与目标变量无关 3) 正则化参数过大 4) 样本量过小")
|
|
169
|
+
|
|
160
170
|
# 系数(注意:由于标准化,系数需要适当解释)
|
|
161
171
|
coefficients = dict(zip(feature_names, model.coef_))
|
|
162
172
|
|
|
173
|
+
# 检查系数是否全为0(Lasso过度压缩)
|
|
174
|
+
if model_type == "lasso" and all(abs(coef) < 1e-10 for coef in model.coef_):
|
|
175
|
+
warnings.warn(f"⚠️ 警告:Lasso模型所有系数都被压缩为0,表明正则化参数alpha={alpha}可能过大,建议减小alpha值")
|
|
176
|
+
|
|
163
177
|
return RegularizedRegressionResult(
|
|
164
178
|
model_type=model_type,
|
|
165
179
|
r2_score=r2,
|
|
@@ -63,6 +63,23 @@ def prepare_panel_data(
|
|
|
63
63
|
"""
|
|
64
64
|
准备面板数据格式
|
|
65
65
|
|
|
66
|
+
📊 数据格式要求:
|
|
67
|
+
- 因变量(y_data): 数值列表,如 [1.2, 3.4, 5.6, ...]
|
|
68
|
+
- 自变量(X_data): 二维数值列表,如 [[1, 2], [3, 4], [5, 6], ...]
|
|
69
|
+
- 实体ID(entity_ids): 字符串列表,标识不同个体,如 ['A', 'A', 'B', 'B', ...]
|
|
70
|
+
- 时间标识符(time_periods): 字符串或数值列表,标识时间点,如 ['2020', '2020', '2021', '2021', ...]
|
|
71
|
+
|
|
72
|
+
💡 使用示例:
|
|
73
|
+
y_data = [10, 12, 8, 9] # 4个观测值
|
|
74
|
+
X_data = [[1, 2], [2, 3], [1, 1], [2, 2]] # 2个自变量,4个观测值
|
|
75
|
+
entity_ids = ['A', 'A', 'B', 'B'] # 2个实体,每个实体2个时间点
|
|
76
|
+
time_periods = ['2020', '2021', '2020', '2021'] # 2个时间点
|
|
77
|
+
|
|
78
|
+
⚠️ 注意事项:
|
|
79
|
+
- 确保每个实体有相同的时间点数量(平衡面板)
|
|
80
|
+
- 实体ID和时间标识符的组合必须唯一
|
|
81
|
+
- 建议至少3个实体,每个实体至少2个时间点
|
|
82
|
+
|
|
66
83
|
Args:
|
|
67
84
|
y_data: 因变量数据
|
|
68
85
|
X_data: 自变量数据,二维列表
|
|
@@ -73,13 +90,62 @@ def prepare_panel_data(
|
|
|
73
90
|
Returns:
|
|
74
91
|
pd.DataFrame: 面板数据格式的DataFrame
|
|
75
92
|
"""
|
|
76
|
-
# 数据验证
|
|
93
|
+
# 数据验证 - 提供更详细的错误信息
|
|
94
|
+
if not y_data or not X_data or not entity_ids or not time_periods:
|
|
95
|
+
raise ValueError("所有输入数据都不能为空。请提供:因变量(y_data)、自变量(X_data)、实体ID(entity_ids)、时间标识符(time_periods)")
|
|
96
|
+
|
|
77
97
|
if len(y_data) != len(X_data):
|
|
78
|
-
raise ValueError("
|
|
98
|
+
raise ValueError(f"因变量和自变量的观测数量不一致:因变量有{len(y_data)}个观测值,自变量有{len(X_data)}个观测值")
|
|
99
|
+
|
|
79
100
|
if len(y_data) != len(entity_ids):
|
|
80
|
-
raise ValueError("
|
|
101
|
+
raise ValueError(f"因变量和个体标识符数量不一致:因变量有{len(y_data)}个观测值,实体ID有{len(entity_ids)}个")
|
|
102
|
+
|
|
81
103
|
if len(y_data) != len(time_periods):
|
|
82
|
-
raise ValueError("
|
|
104
|
+
raise ValueError(f"因变量和时间标识符数量不一致:因变量有{len(y_data)}个观测值,时间标识符有{len(time_periods)}个")
|
|
105
|
+
|
|
106
|
+
# 检查自变量维度一致性
|
|
107
|
+
if len(X_data) > 0:
|
|
108
|
+
first_dim = len(X_data[0])
|
|
109
|
+
for i, x_row in enumerate(X_data):
|
|
110
|
+
if len(x_row) != first_dim:
|
|
111
|
+
raise ValueError(f"自变量维度不一致:第{i}行有{len(x_row)}个变量,但第一行有{first_dim}个变量")
|
|
112
|
+
|
|
113
|
+
# 检查面板数据平衡性
|
|
114
|
+
entity_time_counts = {}
|
|
115
|
+
for entity, time_period in zip(entity_ids, time_periods):
|
|
116
|
+
key = (entity, time_period)
|
|
117
|
+
if key in entity_time_counts:
|
|
118
|
+
raise ValueError(f"重复的实体-时间组合:实体 '{entity}' 在时间 '{time_period}' 有多个观测值")
|
|
119
|
+
entity_time_counts[key] = True
|
|
120
|
+
|
|
121
|
+
# 检查每个实体的时间点数量
|
|
122
|
+
entity_counts = {}
|
|
123
|
+
for entity in entity_ids:
|
|
124
|
+
entity_counts[entity] = entity_counts.get(entity, 0) + 1
|
|
125
|
+
|
|
126
|
+
unique_entities = len(entity_counts)
|
|
127
|
+
if unique_entities < 2:
|
|
128
|
+
raise ValueError(f"面板数据需要至少2个不同的实体,当前只有{unique_entities}个")
|
|
129
|
+
|
|
130
|
+
# 检查时间点数量
|
|
131
|
+
time_counts = {}
|
|
132
|
+
for time_period in time_periods:
|
|
133
|
+
time_counts[time_period] = time_counts.get(time_period, 0) + 1
|
|
134
|
+
|
|
135
|
+
unique_times = len(time_counts)
|
|
136
|
+
if unique_times < 2:
|
|
137
|
+
raise ValueError(f"面板数据需要至少2个不同的时间点,当前只有{unique_times}个")
|
|
138
|
+
|
|
139
|
+
# 检查是否为平衡面板
|
|
140
|
+
time_counts_per_entity = {}
|
|
141
|
+
for entity in set(entity_ids):
|
|
142
|
+
entity_times = [time for e, time in zip(entity_ids, time_periods) if e == entity]
|
|
143
|
+
time_counts_per_entity[entity] = len(set(entity_times))
|
|
144
|
+
|
|
145
|
+
min_times = min(time_counts_per_entity.values())
|
|
146
|
+
max_times = max(time_counts_per_entity.values())
|
|
147
|
+
if min_times != max_times:
|
|
148
|
+
warnings.warn(f"⚠️ 警告:面板数据不平衡。不同实体的时间点数量不同(最少{min_times}个,最多{max_times}个)。建议使用平衡面板数据以获得更可靠的结果。")
|
|
83
149
|
|
|
84
150
|
# 处理时间标识符格式兼容性
|
|
85
151
|
processed_time_periods = []
|
{aigroup_econ_mcp-0.6.0 → aigroup_econ_mcp-0.8.0}/src/aigroup_econ_mcp/tools/tool_descriptions.py
RENAMED
|
@@ -570,47 +570,193 @@ VARIANCE_DECOMPOSITION_ANALYSIS = ToolDescription(
|
|
|
570
570
|
|
|
571
571
|
RANDOM_FOREST_REGRESSION_ANALYSIS = ToolDescription(
|
|
572
572
|
name="random_forest_regression_analysis",
|
|
573
|
-
description="
|
|
573
|
+
description="""随机森林回归分析
|
|
574
|
+
|
|
575
|
+
📊 功能说明:
|
|
576
|
+
随机森林通过构建多个决策树并集成结果,能够处理复杂的非线性关系和特征交互。
|
|
577
|
+
|
|
578
|
+
📈 算法特点:
|
|
579
|
+
- 集成学习:多个决策树投票或平均结果
|
|
580
|
+
- 稳健性:对异常值和噪声数据稳健
|
|
581
|
+
- 特征重要性:自动计算特征重要性分数
|
|
582
|
+
- 袋外评估:使用袋外样本进行模型评估
|
|
583
|
+
- 并行训练:支持并行化训练加速
|
|
584
|
+
|
|
585
|
+
💡 适用场景:
|
|
586
|
+
- 复杂非线性关系建模
|
|
587
|
+
- 特征交互分析
|
|
588
|
+
- 稳健预测需求
|
|
589
|
+
- 特征重要性评估
|
|
590
|
+
- 大数据集处理
|
|
591
|
+
|
|
592
|
+
⚠️ 注意事项:
|
|
593
|
+
- 黑盒模型,可解释性较差
|
|
594
|
+
- 内存消耗较大(树的数量多时)
|
|
595
|
+
- 训练时间随树数量增加
|
|
596
|
+
- 可能过度拟合噪声数据
|
|
597
|
+
|
|
598
|
+
🔧 参数建议:
|
|
599
|
+
- n_estimators: 树的数量,默认100
|
|
600
|
+
- 小数据集: 50-100
|
|
601
|
+
- 大数据集: 100-500
|
|
602
|
+
- max_depth: 最大深度,默认None(无限制)
|
|
603
|
+
- 控制过拟合: 5-15
|
|
604
|
+
- 复杂关系: None(无限制)
|
|
605
|
+
|
|
606
|
+
📋 数据要求:
|
|
607
|
+
- 至少10个样本
|
|
608
|
+
- 数值型和类别型数据
|
|
609
|
+
- 支持缺失值处理""",
|
|
574
610
|
field_descriptions={
|
|
575
|
-
"file_path": "
|
|
576
|
-
"file_content": "
|
|
577
|
-
"file_format": "
|
|
578
|
-
"y_data": "
|
|
579
|
-
"x_data": "
|
|
580
|
-
"feature_names": "
|
|
581
|
-
"n_estimators": "
|
|
582
|
-
"max_depth": "
|
|
583
|
-
}
|
|
611
|
+
"file_path": "CSV/JSON文件路径。CSV格式: 最后一列为因变量,其余列为自变量",
|
|
612
|
+
"file_content": "文件内容字符串。JSON格式: {'y': [因变量], 'x1': [自变量1], ...}",
|
|
613
|
+
"file_format": "文件格式: csv/json/auto",
|
|
614
|
+
"y_data": "因变量数据列表,数值格式,如 [1.2, 3.4, 5.6, ...]",
|
|
615
|
+
"x_data": "自变量数据矩阵,二维列表格式,如 [[1, 2], [3, 4], [5, 6], ...]",
|
|
616
|
+
"feature_names": "自变量名称列表,如 ['GDP', 'Population', 'Investment']",
|
|
617
|
+
"n_estimators": "决策树数量,控制模型复杂度和稳定性,默认100",
|
|
618
|
+
"max_depth": "决策树最大深度,控制过拟合,默认None(无限制)"
|
|
619
|
+
},
|
|
620
|
+
examples=[
|
|
621
|
+
"预测房价与房屋特征的非线性关系",
|
|
622
|
+
"分析消费者行为与营销变量的复杂交互",
|
|
623
|
+
"评估经济指标对股票收益的影响"
|
|
624
|
+
],
|
|
625
|
+
use_cases=[
|
|
626
|
+
"复杂非线性关系建模",
|
|
627
|
+
"特征重要性分析",
|
|
628
|
+
"稳健预测建模",
|
|
629
|
+
"大数据集处理",
|
|
630
|
+
"集成学习应用"
|
|
631
|
+
]
|
|
584
632
|
)
|
|
585
633
|
|
|
586
634
|
GRADIENT_BOOSTING_REGRESSION_ANALYSIS = ToolDescription(
|
|
587
635
|
name="gradient_boosting_regression_analysis",
|
|
588
|
-
description="
|
|
636
|
+
description="""梯度提升树回归分析
|
|
637
|
+
|
|
638
|
+
📊 功能说明:
|
|
639
|
+
梯度提升树通过顺序构建决策树,每棵树修正前一棵树的错误,能够处理复杂的非线性关系。
|
|
640
|
+
|
|
641
|
+
📈 算法特点:
|
|
642
|
+
- 顺序学习:每棵树学习前一棵树的残差
|
|
643
|
+
- 高精度:通常具有很高的预测精度
|
|
644
|
+
- 特征重要性:自动计算特征重要性
|
|
645
|
+
- 灵活性强:可处理各种类型的数据
|
|
646
|
+
- 正则化:内置正则化防止过拟合
|
|
647
|
+
|
|
648
|
+
💡 适用场景:
|
|
649
|
+
- 高精度预测需求
|
|
650
|
+
- 复杂非线性关系
|
|
651
|
+
- 小样本高维数据
|
|
652
|
+
- 竞赛和性能要求高的场景
|
|
653
|
+
- 特征重要性分析
|
|
654
|
+
|
|
655
|
+
⚠️ 注意事项:
|
|
656
|
+
- 对参数敏感,需要仔细调优
|
|
657
|
+
- 训练时间较长
|
|
658
|
+
- 可能过度拟合噪声数据
|
|
659
|
+
- 内存消耗较大
|
|
660
|
+
|
|
661
|
+
🔧 参数建议:
|
|
662
|
+
- n_estimators: 树的数量,默认100
|
|
663
|
+
- 小数据集: 50-200
|
|
664
|
+
- 大数据集: 200-1000
|
|
665
|
+
- learning_rate: 学习率,默认0.1
|
|
666
|
+
- 保守学习: 0.01-0.1
|
|
667
|
+
- 快速收敛: 0.1-0.3
|
|
668
|
+
- max_depth: 最大深度,默认3
|
|
669
|
+
- 简单关系: 2-4
|
|
670
|
+
- 复杂关系: 5-8
|
|
671
|
+
|
|
672
|
+
📋 数据要求:
|
|
673
|
+
- 至少10个样本
|
|
674
|
+
- 数值型和类别型数据
|
|
675
|
+
- 建议进行数据标准化""",
|
|
589
676
|
field_descriptions={
|
|
590
|
-
"file_path": "
|
|
591
|
-
"file_content": "
|
|
592
|
-
"file_format": "
|
|
593
|
-
"y_data": "
|
|
594
|
-
"x_data": "
|
|
595
|
-
"feature_names": "
|
|
596
|
-
"n_estimators": "
|
|
597
|
-
"learning_rate": "
|
|
598
|
-
"max_depth": "
|
|
599
|
-
}
|
|
677
|
+
"file_path": "CSV/JSON文件路径。CSV格式: 最后一列为因变量,其余列为自变量",
|
|
678
|
+
"file_content": "文件内容字符串。JSON格式: {'y': [因变量], 'x1': [自变量1], ...}",
|
|
679
|
+
"file_format": "文件格式: csv/json/auto",
|
|
680
|
+
"y_data": "因变量数据列表,数值格式,如 [1.2, 3.4, 5.6, ...]",
|
|
681
|
+
"x_data": "自变量数据矩阵,二维列表格式,如 [[1, 2], [3, 4], [5, 6], ...]",
|
|
682
|
+
"feature_names": "自变量名称列表,如 ['GDP', 'Population', 'Investment']",
|
|
683
|
+
"n_estimators": "提升阶段执行的树数量,控制模型复杂度,默认100",
|
|
684
|
+
"learning_rate": "学习率,控制每棵树的贡献程度,默认0.1",
|
|
685
|
+
"max_depth": "单个回归估计器的最大深度,控制过拟合,默认3"
|
|
686
|
+
},
|
|
687
|
+
examples=[
|
|
688
|
+
"高精度预测股票价格走势",
|
|
689
|
+
"分析复杂的经济指标关系",
|
|
690
|
+
"预测消费者购买行为的精确概率",
|
|
691
|
+
"竞赛级别的预测建模"
|
|
692
|
+
],
|
|
693
|
+
use_cases=[
|
|
694
|
+
"高精度预测建模",
|
|
695
|
+
"复杂非线性关系分析",
|
|
696
|
+
"特征重要性评估",
|
|
697
|
+
"小样本高维数据处理",
|
|
698
|
+
"竞赛级别模型构建"
|
|
699
|
+
]
|
|
600
700
|
)
|
|
601
701
|
|
|
602
702
|
LASSO_REGRESSION_ANALYSIS = ToolDescription(
|
|
603
703
|
name="lasso_regression_analysis",
|
|
604
|
-
description="Lasso
|
|
704
|
+
description="""Lasso回归分析
|
|
705
|
+
|
|
706
|
+
📊 功能说明:
|
|
707
|
+
Lasso回归使用L1正则化进行特征选择和稀疏建模,能够自动将不重要的特征系数压缩为0。
|
|
708
|
+
|
|
709
|
+
📈 算法特点:
|
|
710
|
+
- 特征选择:自动识别重要特征,压缩冗余特征系数为0
|
|
711
|
+
- 稀疏解:产生稀疏的系数向量,提高模型可解释性
|
|
712
|
+
- 处理多重共线性:对高度相关的特征进行选择
|
|
713
|
+
- 正则化强度控制:通过alpha参数控制特征选择的严格程度
|
|
714
|
+
|
|
715
|
+
💡 适用场景:
|
|
716
|
+
- 高维数据特征选择(特征数量 > 样本数量)
|
|
717
|
+
- 多重共线性问题
|
|
718
|
+
- 稀疏建模需求
|
|
719
|
+
- 可解释性要求高的场景
|
|
720
|
+
- 变量筛选和降维
|
|
721
|
+
|
|
722
|
+
⚠️ 注意事项:
|
|
723
|
+
- 对alpha参数敏感,建议尝试多个值(如0.01, 0.1, 1.0, 10.0)
|
|
724
|
+
- 可能过度压缩重要特征,导致信息损失
|
|
725
|
+
- 需要数据标准化
|
|
726
|
+
- R²为负值时表明模型性能比简单均值预测更差
|
|
727
|
+
- 样本量过小时可能不稳定
|
|
728
|
+
|
|
729
|
+
🔧 参数建议:
|
|
730
|
+
- alpha: 正则化强度,默认1.0
|
|
731
|
+
- 小alpha(0.01-0.1): 轻微正则化,保留更多特征
|
|
732
|
+
- 中等alpha(0.1-1.0): 平衡特征选择和模型拟合
|
|
733
|
+
- 大alpha(>1.0): 强正则化,压缩更多特征
|
|
734
|
+
|
|
735
|
+
📋 数据要求:
|
|
736
|
+
- 至少5个样本
|
|
737
|
+
- 数值型数据
|
|
738
|
+
- 建议特征数量不超过样本数量的80%""",
|
|
605
739
|
field_descriptions={
|
|
606
|
-
"file_path": "
|
|
607
|
-
"file_content": "
|
|
608
|
-
"file_format": "
|
|
609
|
-
"y_data": "
|
|
610
|
-
"x_data": "
|
|
611
|
-
"feature_names": "
|
|
612
|
-
"alpha": "
|
|
613
|
-
}
|
|
740
|
+
"file_path": "CSV/JSON文件路径。CSV格式: 最后一列为因变量,其余列为自变量",
|
|
741
|
+
"file_content": "文件内容字符串。JSON格式: {'y': [因变量], 'x1': [自变量1], ...}",
|
|
742
|
+
"file_format": "文件格式: csv/json/auto",
|
|
743
|
+
"y_data": "因变量数据列表,数值格式,如 [1.2, 3.4, 5.6, ...]",
|
|
744
|
+
"x_data": "自变量数据矩阵,二维列表格式,如 [[1, 2], [3, 4], [5, 6], ...]",
|
|
745
|
+
"feature_names": "自变量名称列表,如 ['GDP', 'Population', 'Investment']",
|
|
746
|
+
"alpha": "正则化强度参数,控制特征选择的严格程度,默认1.0。建议尝试多个值进行调优"
|
|
747
|
+
},
|
|
748
|
+
examples=[
|
|
749
|
+
"从100个经济指标中选择影响GDP增长的关键因素",
|
|
750
|
+
"在消费者行为数据中识别最重要的预测变量",
|
|
751
|
+
"处理高度相关的宏观经济变量进行预测建模"
|
|
752
|
+
],
|
|
753
|
+
use_cases=[
|
|
754
|
+
"高维数据特征选择",
|
|
755
|
+
"变量重要性排序",
|
|
756
|
+
"多重共线性处理",
|
|
757
|
+
"稀疏线性建模",
|
|
758
|
+
"可解释机器学习"
|
|
759
|
+
]
|
|
614
760
|
)
|
|
615
761
|
|
|
616
762
|
RIDGE_REGRESSION_ANALYSIS = ToolDescription(
|