aigroup-econ-mcp 0.5.0__tar.gz → 0.6.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aigroup-econ-mcp might be problematic. Click here for more details.

Files changed (31) hide show
  1. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/PKG-INFO +2 -2
  2. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/pyproject.toml +2 -2
  3. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/server.py +2 -2
  4. aigroup_econ_mcp-0.6.0/src/aigroup_econ_mcp/tools/tool_descriptions.py +750 -0
  5. aigroup_econ_mcp-0.5.0/src/aigroup_econ_mcp/tools/tool_descriptions.py +0 -416
  6. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/.gitignore +0 -0
  7. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/LICENSE +0 -0
  8. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/README.md +0 -0
  9. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/__init__.py +0 -0
  10. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/cli.py +0 -0
  11. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/config.py +0 -0
  12. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/__init__.py +0 -0
  13. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/base.py +0 -0
  14. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/cache.py +0 -0
  15. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/data_loader.py +0 -0
  16. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/file_parser.py +0 -0
  17. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/machine_learning.py +0 -0
  18. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/ml_ensemble.py +0 -0
  19. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/ml_evaluation.py +0 -0
  20. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/ml_models.py +0 -0
  21. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/ml_regularization.py +0 -0
  22. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/monitoring.py +0 -0
  23. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/optimized_example.py +0 -0
  24. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/panel_data.py +0 -0
  25. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/regression.py +0 -0
  26. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/statistics.py +0 -0
  27. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/time_series.py +0 -0
  28. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/timeout.py +0 -0
  29. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/tool_handlers.py +0 -0
  30. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/tool_registry.py +0 -0
  31. {aigroup_econ_mcp-0.5.0 → aigroup_econ_mcp-0.6.0}/src/aigroup_econ_mcp/tools/validation.py +0 -0
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aigroup-econ-mcp
3
- Version: 0.5.0
4
- Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析(重构版:工具描述模块化)
3
+ Version: 0.6.0
4
+ Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析(优化版:增强工具描述,提升大模型调用体验)
5
5
  Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
6
6
  Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
7
7
  Project-URL: Issues, https://github.com/aigroup/aigroup-econ-mcp/issues
@@ -4,8 +4,8 @@ build-backend = "hatchling.build"
4
4
 
5
5
  [project]
6
6
  name = "aigroup-econ-mcp"
7
- version = "0.5.0"
8
- description = "专业计量经济学MCP工具 - 让大模型直接进行数据分析(重构版:工具描述模块化)"
7
+ version = "0.6.0"
8
+ description = "专业计量经济学MCP工具 - 让大模型直接进行数据分析(优化版:增强工具描述,提升大模型调用体验)"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.10"
11
11
  authors = [
@@ -70,7 +70,7 @@ from .tools.tool_descriptions import (
70
70
  class AppContext:
71
71
  """应用上下文,包含共享资源"""
72
72
  config: Dict[str, Any]
73
- version: str = "0.2.0"
73
+ version: str = "0.6.0"
74
74
 
75
75
 
76
76
  @asynccontextmanager
@@ -83,7 +83,7 @@ async def lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
83
83
  "data_types": ["cross_section", "time_series", "panel"]
84
84
  }
85
85
  try:
86
- yield AppContext(config=config, version="0.2.0")
86
+ yield AppContext(config=config, version="0.6.0")
87
87
  finally:
88
88
  pass
89
89
 
@@ -0,0 +1,750 @@
1
+ """
2
+ 工具描述模块 - 优化版
3
+ 统一管理所有MCP工具的描述信息,为大模型提供详细、结构化的工具说明
4
+ 包含使用示例、参数说明、适用场景等信息,提升大模型调用体验
5
+ """
6
+
7
+ from typing import Dict, Any, List, Optional
8
+ from pydantic import Field
9
+
10
+
11
+ class ToolDescription:
12
+ """工具描述类 - 优化版"""
13
+
14
+ def __init__(self, name: str, description: str, field_descriptions: Dict[str, str] = None,
15
+ examples: Optional[List[str]] = None, use_cases: Optional[List[str]] = None):
16
+ self.name = name
17
+ self.description = description
18
+ self.field_descriptions = field_descriptions or {}
19
+ self.examples = examples or []
20
+ self.use_cases = use_cases or []
21
+
22
+ def get_field_description(self, field_name: str, default: str = "") -> str:
23
+ """获取字段描述"""
24
+ return self.field_descriptions.get(field_name, default)
25
+
26
+ def get_full_description(self) -> str:
27
+ """获取完整描述,包含示例和用例"""
28
+ full_desc = self.description
29
+ if self.examples:
30
+ full_desc += "\n\n使用示例:\n" + "\n".join(f"- {example}" for example in self.examples)
31
+ if self.use_cases:
32
+ full_desc += "\n\n适用场景:\n" + "\n".join(f"- {use_case}" for use_case in self.use_cases)
33
+ return full_desc
34
+
35
+
36
+ # ============================================================================
37
+ # 基础统计工具描述 (5个) - 优化版
38
+ # ============================================================================
39
+
40
+ DESCRIPTIVE_STATISTICS = ToolDescription(
41
+ name="descriptive_statistics",
42
+ description="""计算描述性统计量
43
+
44
+ 功能说明:
45
+ - 计算数据的均值、标准差、最小值、最大值、中位数、四分位数等
46
+ - 支持数值型数据的全面统计分析
47
+ - 自动识别异常值和数据分布特征
48
+
49
+ 输入方式优先级:
50
+ 1. file_path: 文件路径 (推荐使用,支持CSV/JSON格式)
51
+ 2. file_content: 文件内容字符串 (适合小文件)
52
+ 3. data: 直接传入数据字典 (适合内存数据)
53
+
54
+ 输出包含:
55
+ - 基本统计量: 均值、标准差、最小值、最大值
56
+ - 分布统计: 中位数、四分位数、偏度、峰度
57
+ - 数据质量: 缺失值统计、异常值检测""",
58
+ field_descriptions={
59
+ "file_path": "CSV/JSON文件路径。支持相对路径和绝对路径,文件应包含数值型数据列",
60
+ "file_content": "CSV/JSON文件内容字符串。适合小文件直接传输,避免路径依赖",
61
+ "file_format": "文件格式: csv/json/auto。auto模式自动检测文件格式",
62
+ "data": "数据字典格式: {'变量名1': [值1, 值2, ...], '变量名2': [值1, 值2, ...]}"
63
+ },
64
+ examples=[
65
+ "分析GDP数据的分布特征",
66
+ "计算股票收益率的描述性统计",
67
+ "评估消费者收入数据的集中趋势和离散程度"
68
+ ],
69
+ use_cases=[
70
+ "数据探索性分析(EDA)",
71
+ "数据质量评估",
72
+ "变量分布特征分析",
73
+ "异常值检测"
74
+ ]
75
+ )
76
+
77
+ OLS_REGRESSION = ToolDescription(
78
+ name="ols_regression",
79
+ description="""OLS回归分析
80
+
81
+ 功能说明:
82
+ - 执行普通最小二乘法(OLS)回归分析
83
+ - 估计回归系数、标准误、t统计量、p值
84
+ - 计算模型拟合优度(R²、调整R²)
85
+ - 进行模型显著性检验(F检验)
86
+
87
+ 数据格式要求:
88
+ - 文件输入: CSV文件最后一列为因变量,其余列为自变量
89
+ - 直接输入: 提供y_data(因变量)和x_data(自变量矩阵)
90
+ - 支持特征名称自定义
91
+
92
+ 模型输出:
93
+ - 回归系数估计值和统计显著性
94
+ - 模型拟合优度指标
95
+ - 残差分析和诊断统计量
96
+ - 置信区间和预测区间""",
97
+ field_descriptions={
98
+ "file_path": "CSV/JSON文件路径。CSV格式: 最后一列为因变量,其余列为自变量",
99
+ "file_content": "CSV/JSON文件内容字符串。JSON格式: {'y': [因变量], 'x1': [自变量1], ...}",
100
+ "file_format": "文件格式: csv/json/auto。推荐使用CSV格式",
101
+ "y_data": "因变量数据列表,如 [1.2, 3.4, 5.6, ...]",
102
+ "x_data": "自变量数据矩阵,如 [[1, 2], [3, 4], [5, 6], ...]",
103
+ "feature_names": "自变量名称列表,如 ['GDP', 'Population', 'Investment']"
104
+ },
105
+ examples=[
106
+ "分析GDP增长与投资、消费的关系",
107
+ "预测房价与面积、位置、房龄的关系",
108
+ "研究教育水平对收入的影响"
109
+ ],
110
+ use_cases=[
111
+ "经济变量关系分析",
112
+ "商业预测建模",
113
+ "政策效果评估",
114
+ "影响因素识别"
115
+ ]
116
+ )
117
+
118
+ HYPOTHESIS_TESTING = ToolDescription(
119
+ name="hypothesis_testing",
120
+ description="""假设检验分析
121
+
122
+ 功能说明:
123
+ - t检验: 比较两组数据的均值差异
124
+ - ADF检验: 时间序列平稳性检验
125
+ - 支持单样本、双样本检验
126
+ - 自动计算检验统计量和p值
127
+
128
+ 检验类型说明:
129
+ - t_test: 学生t检验,用于均值比较
130
+ - adf: Augmented Dickey-Fuller检验,用于时间序列平稳性
131
+
132
+ 数据要求:
133
+ - 单样本检验: 只需提供data参数
134
+ - 双样本检验: 提供data和data2参数
135
+ - 时间序列检验: 使用adf检验类型""",
136
+ field_descriptions={
137
+ "file_path": "数据文件路径。支持单变量或多变量数据",
138
+ "file_content": "文件内容字符串。适合小数据集",
139
+ "file_format": "文件格式: csv/json/auto",
140
+ "data": "第一组数据或单样本数据,数值列表格式",
141
+ "data2": "第二组数据(双样本检验时使用),数值列表格式",
142
+ "test_type": "检验类型: t_test(均值检验)/adf(平稳性检验)"
143
+ },
144
+ examples=[
145
+ "检验两组学生的考试成绩是否有显著差异",
146
+ "检验GDP时间序列是否平稳",
147
+ "比较新旧营销策略的效果差异"
148
+ ],
149
+ use_cases=[
150
+ "A/B测试结果验证",
151
+ "时间序列平稳性分析",
152
+ "均值差异显著性检验",
153
+ "实验效果评估"
154
+ ]
155
+ )
156
+
157
+ TIME_SERIES_ANALYSIS = ToolDescription(
158
+ name="time_series_analysis",
159
+ description="""时间序列分析
160
+
161
+ 功能说明:
162
+ - 时间序列趋势分析和季节性分解
163
+ - 自相关函数(ACF)和偏自相关函数(PACF)分析
164
+ - 平稳性检验和单位根检验
165
+ - 时间序列模型诊断
166
+
167
+ 分析内容:
168
+ - 趋势成分: 长期变化趋势
169
+ - 季节成分: 周期性波动
170
+ - 残差成分: 随机波动
171
+ - 自相关性: 时间依赖性分析""",
172
+ field_descriptions={
173
+ "file_path": "时间序列数据文件路径。支持单变量时间序列",
174
+ "file_content": "文件内容字符串。数据应按时间顺序排列",
175
+ "file_format": "文件格式: csv/json/auto",
176
+ "data": "时间序列数据,数值列表格式,如 [100, 105, 110, 115, ...]"
177
+ },
178
+ examples=[
179
+ "分析GDP季度数据的趋势和季节性",
180
+ "分解股票价格的趋势和波动成分",
181
+ "检验销售数据的自相关性"
182
+ ],
183
+ use_cases=[
184
+ "经济周期分析",
185
+ "销售预测建模",
186
+ "金融市场分析",
187
+ "季节性调整"
188
+ ]
189
+ )
190
+
191
+ CORRELATION_ANALYSIS = ToolDescription(
192
+ name="correlation_analysis",
193
+ description="""相关性分析
194
+
195
+ 功能说明:
196
+ - 计算变量间的相关系数矩阵
197
+ - 支持Pearson、Spearman、Kendall相关系数
198
+ - 可视化相关矩阵(可选)
199
+ - 显著性检验和置信区间
200
+
201
+ 相关系数类型:
202
+ - pearson: 皮尔逊相关系数,衡量线性关系
203
+ - spearman: 斯皮尔曼等级相关系数,衡量单调关系
204
+ - kendall: 肯德尔等级相关系数,稳健性更好
205
+
206
+ 应用场景:
207
+ - 变量关系探索
208
+ - 多重共线性检测
209
+ - 特征选择辅助""",
210
+ field_descriptions={
211
+ "file_path": "多变量数据文件路径。每列代表一个变量",
212
+ "file_content": "文件内容字符串。支持多变量数据",
213
+ "file_format": "文件格式: csv/json/auto",
214
+ "data": "多变量数据字典,如 {'GDP': [值], 'Population': [值], ...}",
215
+ "method": "相关系数类型: pearson(默认)/spearman/kendall"
216
+ },
217
+ examples=[
218
+ "分析经济指标间的相关性",
219
+ "研究股票收益率的相关性结构",
220
+ "探索消费者行为变量间的关系"
221
+ ],
222
+ use_cases=[
223
+ "变量关系探索",
224
+ "多重共线性检测",
225
+ "投资组合相关性分析",
226
+ "市场联动性研究"
227
+ ]
228
+ )
229
+
230
+
231
+ # ============================================================================
232
+ # 面板数据工具描述 (4个) - 优化版
233
+ # ============================================================================
234
+
235
+ PANEL_FIXED_EFFECTS = ToolDescription(
236
+ name="panel_fixed_effects",
237
+ description="""固定效应模型
238
+
239
+ 功能说明:
240
+ - 处理面板数据的固定效应模型
241
+ - 控制个体固定效应和/或时间固定效应
242
+ - 消除不随时间变化的个体异质性
243
+ - 提供稳健的标准误估计
244
+
245
+ 模型特点:
246
+ - 实体效应: 控制个体间不可观测的固定差异
247
+ - 时间效应: 控制时间趋势和宏观冲击
248
+ - 双向固定效应: 同时控制实体和时间效应
249
+
250
+ 数据格式要求:
251
+ - 必须包含实体ID列和时间列
252
+ - 实体ID列名识别: entity_id, id, entity, firm, company, country, region
253
+ - 时间列名识别: time_period, time, date, year, month, period, quarter
254
+
255
+ 适用场景:
256
+ - 个体间存在不可观测的固定差异
257
+ - 需要控制个体特异性因素
258
+ - 数据存在明显的个体效应""",
259
+ field_descriptions={
260
+ "file_path": "CSV文件路径。必须包含实体ID列和时间列,支持自动识别列名",
261
+ "file_content": "文件内容字符串。CSV格式,包含实体ID、时间和变量列",
262
+ "file_format": "文件格式: csv/auto。面板数据推荐使用CSV格式",
263
+ "y_data": "因变量数据列表,数值格式",
264
+ "x_data": "自变量数据矩阵,二维列表格式",
265
+ "entity_ids": "实体ID列表,字符串格式,如 ['A', 'B', 'C', ...]",
266
+ "time_periods": "时间周期列表,字符串格式,如 ['2020', '2021', '2022', ...]",
267
+ "feature_names": "自变量名称列表,如 ['Investment', 'Employment', 'R&D']",
268
+ "entity_effects": "是否包含实体固定效应,默认True",
269
+ "time_effects": "是否包含时间固定效应,默认False"
270
+ },
271
+ examples=[
272
+ "分析不同公司的研发投入对利润的影响(控制公司固定效应)",
273
+ "研究各国教育支出对经济增长的影响(控制国家固定效应)",
274
+ "评估政策改革效果(控制个体和时间双向效应)"
275
+ ],
276
+ use_cases=[
277
+ "公司财务面板数据分析",
278
+ "国家宏观经济面板研究",
279
+ "政策评估和效果分析",
280
+ "个体异质性控制"
281
+ ]
282
+ )
283
+
284
+ PANEL_RANDOM_EFFECTS = ToolDescription(
285
+ name="panel_random_effects",
286
+ description="""随机效应模型
287
+
288
+ 功能说明:
289
+ - 处理面板数据的随机效应模型
290
+ - 假设个体效应与解释变量不相关
291
+ - 更有效地利用数据信息
292
+ - 适用于大样本面板数据
293
+
294
+ 模型特点:
295
+ - 个体效应被视为随机变量
296
+ - 允许个体间存在相关性
297
+ - 比固定效应模型更高效
298
+ - 可以估计不随时间变化的变量
299
+
300
+ 与固定效应比较:
301
+ - 随机效应假设更强(个体效应与解释变量不相关)
302
+ - 固定效应更稳健但损失信息
303
+ - 可通过Hausman检验选择合适模型
304
+
305
+ 数据要求:
306
+ - 与固定效应模型相同的数据格式
307
+ - 需要实体ID和时间信息""",
308
+ field_descriptions={
309
+ "file_path": "CSV文件路径。必须包含实体ID列和时间列,支持自动识别",
310
+ "file_content": "文件内容字符串。CSV格式的面板数据",
311
+ "file_format": "文件格式: csv/auto",
312
+ "y_data": "因变量数据列表,数值格式",
313
+ "x_data": "自变量数据矩阵,二维列表格式",
314
+ "entity_ids": "实体ID列表,字符串格式",
315
+ "time_periods": "时间周期列表,字符串格式",
316
+ "feature_names": "自变量名称列表",
317
+ "entity_effects": "是否包含实体随机效应,默认True",
318
+ "time_effects": "是否包含时间随机效应,默认False"
319
+ },
320
+ examples=[
321
+ "分析企业特征对绩效的影响(假设企业效应随机)",
322
+ "研究家庭特征对消费行为的影响",
323
+ "评估地区特征对经济发展的影响"
324
+ ],
325
+ use_cases=[
326
+ "大样本面板数据分析",
327
+ "个体效应与解释变量相关性较弱的情况",
328
+ "需要估计不随时间变化变量的影响",
329
+ "效率优先的分析场景"
330
+ ]
331
+ )
332
+
333
+ PANEL_HAUSMAN_TEST = ToolDescription(
334
+ name="panel_hausman_test",
335
+ description="""Hausman检验
336
+
337
+ 功能说明:
338
+ - 检验固定效应模型与随机效应模型的选择
339
+ - 基于模型估计差异的统计检验
340
+ - 帮助选择合适的面板数据模型
341
+ - 提供检验统计量和p值
342
+
343
+ 检验原理:
344
+ - 零假设: 随机效应模型是合适的
345
+ - 备择假设: 固定效应模型更合适
346
+ - 检验统计量服从卡方分布
347
+
348
+ 决策规则:
349
+ - p值 < 0.05: 拒绝零假设,选择固定效应模型
350
+ - p值 >= 0.05: 不拒绝零假设,选择随机效应模型
351
+
352
+ 数据要求:
353
+ - 与固定效应和随机效应模型相同的数据格式""",
354
+ field_descriptions={
355
+ "file_path": "CSV文件路径。必须包含实体ID列和时间列",
356
+ "file_content": "文件内容字符串。面板数据格式",
357
+ "file_format": "文件格式: csv/auto",
358
+ "y_data": "因变量数据列表",
359
+ "x_data": "自变量数据矩阵",
360
+ "entity_ids": "实体ID列表",
361
+ "time_periods": "时间周期列表",
362
+ "feature_names": "自变量名称列表"
363
+ },
364
+ examples=[
365
+ "检验企业面板数据应该使用固定效应还是随机效应模型",
366
+ "选择国家面板数据的合适模型形式",
367
+ "确定个体效应是否与解释变量相关"
368
+ ],
369
+ use_cases=[
370
+ "面板数据模型选择",
371
+ "固定效应与随机效应比较",
372
+ "模型设定检验",
373
+ "实证研究模型验证"
374
+ ]
375
+ )
376
+
377
+ PANEL_UNIT_ROOT_TEST = ToolDescription(
378
+ name="panel_unit_root_test",
379
+ description="""面板单位根检验
380
+
381
+ 功能说明:
382
+ - 检验面板数据中变量的平稳性
383
+ - 支持多种面板单位根检验方法
384
+ - 检测面板数据的非平稳性
385
+ - 为面板协整分析提供基础
386
+
387
+ 检验类型:
388
+ - levinlin: Levin-Lin-Chu检验,假设共同单位根过程
389
+ - 其他方法: 支持多种面板单位根检验
390
+
391
+ 数据要求:
392
+ - 至少3个实体,每个实体至少5个时间点
393
+ - 平衡或不平衡面板数据
394
+ - 包含实体ID和时间信息
395
+
396
+ 应用意义:
397
+ - 平稳性是面板数据建模的前提
398
+ - 非平稳数据可能导致伪回归
399
+ - 为面板协整分析做准备""",
400
+ field_descriptions={
401
+ "file_path": "CSV文件路径。必须包含实体ID列和时间列,数据量要求: 至少3个实体,每个实体至少5个时间点",
402
+ "file_content": "文件内容字符串。面板数据格式,满足最小数据量要求",
403
+ "file_format": "文件格式: csv/auto",
404
+ "data": "时间序列数据,单变量格式",
405
+ "y_data": "因变量数据(从面板数据转换)",
406
+ "x_data": "自变量数据(从面板数据转换,通常忽略)",
407
+ "entity_ids": "实体ID列表,用于识别不同个体",
408
+ "time_periods": "时间周期列表,用于时间维度识别",
409
+ "feature_names": "特征名称(从面板数据转换,通常忽略)",
410
+ "test_type": "检验类型: levinlin(默认)/其他面板单位根检验方法"
411
+ },
412
+ examples=[
413
+ "检验各国GDP面板数据是否平稳",
414
+ "检测公司股价面板数据的单位根",
415
+ "验证宏观经济面板变量的平稳性"
416
+ ],
417
+ use_cases=[
418
+ "面板数据平稳性检验",
419
+ "面板协整分析前提检验",
420
+ "面板数据建模前的诊断",
421
+ "非平稳面板数据处理"
422
+ ]
423
+ )
424
+
425
+
426
+ # ============================================================================
427
+ # 高级时间序列工具描述 (5个)
428
+ # ============================================================================
429
+
430
+ VAR_MODEL_ANALYSIS = ToolDescription(
431
+ name="var_model_analysis",
432
+ description="""VAR模型分析
433
+
434
+ 功能说明:
435
+ - 向量自回归(VAR)模型分析
436
+ - 分析多个时间序列变量间的动态关系
437
+ - 估计变量间的相互影响和滞后效应
438
+ - 进行脉冲响应分析和预测
439
+
440
+ 模型特点:
441
+ - 多变量时间序列建模
442
+ - 变量间相互影响分析
443
+ - 滞后效应估计
444
+ - 动态系统建模
445
+
446
+ 信息准则类型:
447
+ - aic: Akaike信息准则
448
+ - bic: Bayesian信息准则
449
+ - hqic: Hannan-Quinn信息准则
450
+
451
+ 应用场景:
452
+ - 宏观经济变量联动分析
453
+ - 金融市场波动传导
454
+ - 多变量预测建模""",
455
+ field_descriptions={
456
+ "file_path": "多变量时间序列文件路径。支持CSV/JSON格式",
457
+ "file_content": "文件内容字符串。多变量时间序列数据",
458
+ "file_format": "文件格式: csv/json/auto",
459
+ "data": "多变量时间序列数据字典,如 {'GDP': [值], 'CPI': [值], ...}",
460
+ "max_lags": "最大滞后阶数,用于模型阶数选择,默认5",
461
+ "ic": "信息准则类型: aic(默认)/bic/hqic,用于最优滞后阶数选择"
462
+ },
463
+ examples=[
464
+ "分析GDP、CPI、利率等宏观经济变量的动态关系",
465
+ "研究股票市场、债券市场、外汇市场的联动效应",
466
+ "预测多变量经济系统的未来走势"
467
+ ],
468
+ use_cases=[
469
+ "宏观经济政策分析",
470
+ "金融市场联动研究",
471
+ "多变量预测建模",
472
+ "动态系统分析"
473
+ ]
474
+ )
475
+
476
+ VECM_MODEL_ANALYSIS = ToolDescription(
477
+ name="vecm_model_analysis",
478
+ description="""VECM模型分析
479
+
480
+ 功能说明:
481
+ - 向量误差修正模型(VECM)分析
482
+ - 处理非平稳时间序列的协整关系
483
+ - 估计长期均衡关系和短期调整机制
484
+ - 分析变量间的长期和短期动态
485
+
486
+ 模型特点:
487
+ - 基于VAR模型的协整扩展
488
+ - 长期均衡关系建模
489
+ - 短期调整机制分析
490
+ - 误差修正项估计
491
+
492
+ 确定性项类型:
493
+ - co: 常数项在协整关系中
494
+ - c: 常数项在VAR中
495
+ - ct: 常数项和趋势项
496
+ - none: 无确定性项
497
+
498
+ 应用场景:
499
+ - 非平稳时间序列的长期关系分析
500
+ - 经济变量的均衡关系研究
501
+ - 协整系统的动态调整分析""",
502
+ field_descriptions={
503
+ "file_path": "多变量时间序列文件路径。支持非平稳时间序列",
504
+ "file_content": "文件内容字符串。多变量非平稳时间序列",
505
+ "file_format": "文件格式: csv/json/auto",
506
+ "data": "多变量时间序列数据字典",
507
+ "coint_rank": "协整秩,表示协整关系数量,默认1",
508
+ "deterministic": "确定性项类型: co(默认)/c/ct/none",
509
+ "max_lags": "最大滞后阶数,用于模型估计,默认5"
510
+ },
511
+ examples=[
512
+ "分析GDP和消费的长期均衡关系",
513
+ "研究汇率和利率的协整关系",
514
+ "估计股票价格和交易量的误差修正机制"
515
+ ],
516
+ use_cases=[
517
+ "非平稳时间序列建模",
518
+ "长期均衡关系分析",
519
+ "协整系统动态研究",
520
+ "经济变量均衡分析"
521
+ ]
522
+ )
523
+
524
+ GARCH_MODEL_ANALYSIS = ToolDescription(
525
+ name="garch_model_analysis",
526
+ description="GARCH模型分析 - 支持文件输入",
527
+ field_descriptions={
528
+ "file_path": "文件路径",
529
+ "file_content": "文件内容",
530
+ "file_format": "文件格式",
531
+ "data": "时间序列数据",
532
+ "order": "GARCH模型阶数",
533
+ "dist": "误差分布类型"
534
+ }
535
+ )
536
+
537
+ STATE_SPACE_MODEL_ANALYSIS = ToolDescription(
538
+ name="state_space_model_analysis",
539
+ description="状态空间模型分析 - 支持文件输入",
540
+ field_descriptions={
541
+ "file_path": "文件路径",
542
+ "file_content": "文件内容",
543
+ "file_format": "文件格式",
544
+ "data": "时间序列数据",
545
+ "state_dim": "状态维度",
546
+ "observation_dim": "观测维度",
547
+ "trend": "是否包含趋势项",
548
+ "seasonal": "是否包含季节项",
549
+ "period": "季节周期"
550
+ }
551
+ )
552
+
553
+ VARIANCE_DECOMPOSITION_ANALYSIS = ToolDescription(
554
+ name="variance_decomposition_analysis",
555
+ description="方差分解分析 - 支持文件输入",
556
+ field_descriptions={
557
+ "file_path": "文件路径",
558
+ "file_content": "文件内容",
559
+ "file_format": "文件格式",
560
+ "data": "多变量时间序列数据",
561
+ "periods": "分解期数",
562
+ "max_lags": "最大滞后阶数"
563
+ }
564
+ )
565
+
566
+
567
+ # ============================================================================
568
+ # 机器学习工具描述 (6个)
569
+ # ============================================================================
570
+
571
+ RANDOM_FOREST_REGRESSION_ANALYSIS = ToolDescription(
572
+ name="random_forest_regression_analysis",
573
+ description="随机森林回归 - 支持文件输入",
574
+ field_descriptions={
575
+ "file_path": "文件路径",
576
+ "file_content": "文件内容",
577
+ "file_format": "文件格式",
578
+ "y_data": "因变量数据",
579
+ "x_data": "自变量数据",
580
+ "feature_names": "特征名称",
581
+ "n_estimators": "树的数量",
582
+ "max_depth": "最大深度"
583
+ }
584
+ )
585
+
586
+ GRADIENT_BOOSTING_REGRESSION_ANALYSIS = ToolDescription(
587
+ name="gradient_boosting_regression_analysis",
588
+ description="梯度提升树回归 - 支持文件输入",
589
+ field_descriptions={
590
+ "file_path": "文件路径",
591
+ "file_content": "文件内容",
592
+ "file_format": "文件格式",
593
+ "y_data": "因变量数据",
594
+ "x_data": "自变量数据",
595
+ "feature_names": "特征名称",
596
+ "n_estimators": "树的数量",
597
+ "learning_rate": "学习率",
598
+ "max_depth": "最大深度"
599
+ }
600
+ )
601
+
602
+ LASSO_REGRESSION_ANALYSIS = ToolDescription(
603
+ name="lasso_regression_analysis",
604
+ description="Lasso回归 - 支持文件输入",
605
+ field_descriptions={
606
+ "file_path": "文件路径",
607
+ "file_content": "文件内容",
608
+ "file_format": "文件格式",
609
+ "y_data": "因变量数据",
610
+ "x_data": "自变量数据",
611
+ "feature_names": "特征名称",
612
+ "alpha": "正则化参数"
613
+ }
614
+ )
615
+
616
+ RIDGE_REGRESSION_ANALYSIS = ToolDescription(
617
+ name="ridge_regression_analysis",
618
+ description="Ridge回归 - 支持文件输入",
619
+ field_descriptions={
620
+ "file_path": "文件路径",
621
+ "file_content": "文件内容",
622
+ "file_format": "文件格式",
623
+ "y_data": "因变量数据",
624
+ "x_data": "自变量数据",
625
+ "feature_names": "特征名称",
626
+ "alpha": "正则化参数"
627
+ }
628
+ )
629
+
630
+ CROSS_VALIDATION_ANALYSIS = ToolDescription(
631
+ name="cross_validation_analysis",
632
+ description="交叉验证 - 支持文件输入",
633
+ field_descriptions={
634
+ "file_path": "文件路径",
635
+ "file_content": "文件内容",
636
+ "file_format": "文件格式",
637
+ "y_data": "因变量数据",
638
+ "x_data": "自变量数据",
639
+ "feature_names": "特征名称",
640
+ "model_type": "模型类型",
641
+ "cv_folds": "交叉验证折数",
642
+ "scoring": "评分指标"
643
+ }
644
+ )
645
+
646
+ FEATURE_IMPORTANCE_ANALYSIS_TOOL = ToolDescription(
647
+ name="feature_importance_analysis_tool",
648
+ description="特征重要性分析 - 支持文件输入",
649
+ field_descriptions={
650
+ "file_path": "文件路径",
651
+ "file_content": "文件内容",
652
+ "file_format": "文件格式",
653
+ "y_data": "因变量数据",
654
+ "x_data": "自变量数据",
655
+ "feature_names": "特征名称",
656
+ "method": "分析方法",
657
+ "top_k": "显示前K个重要特征"
658
+ }
659
+ )
660
+
661
+
662
+ # ============================================================================
663
+ # 工具描述映射
664
+ # ============================================================================
665
+
666
+ TOOL_DESCRIPTIONS: Dict[str, ToolDescription] = {
667
+ # 基础统计工具
668
+ "descriptive_statistics": DESCRIPTIVE_STATISTICS,
669
+ "ols_regression": OLS_REGRESSION,
670
+ "hypothesis_testing": HYPOTHESIS_TESTING,
671
+ "time_series_analysis": TIME_SERIES_ANALYSIS,
672
+ "correlation_analysis": CORRELATION_ANALYSIS,
673
+
674
+ # 面板数据工具
675
+ "panel_fixed_effects": PANEL_FIXED_EFFECTS,
676
+ "panel_random_effects": PANEL_RANDOM_EFFECTS,
677
+ "panel_hausman_test": PANEL_HAUSMAN_TEST,
678
+ "panel_unit_root_test": PANEL_UNIT_ROOT_TEST,
679
+
680
+ # 高级时间序列工具
681
+ "var_model_analysis": VAR_MODEL_ANALYSIS,
682
+ "vecm_model_analysis": VECM_MODEL_ANALYSIS,
683
+ "garch_model_analysis": GARCH_MODEL_ANALYSIS,
684
+ "state_space_model_analysis": STATE_SPACE_MODEL_ANALYSIS,
685
+ "variance_decomposition_analysis": VARIANCE_DECOMPOSITION_ANALYSIS,
686
+
687
+ # 机器学习工具
688
+ "random_forest_regression_analysis": RANDOM_FOREST_REGRESSION_ANALYSIS,
689
+ "gradient_boosting_regression_analysis": GRADIENT_BOOSTING_REGRESSION_ANALYSIS,
690
+ "lasso_regression_analysis": LASSO_REGRESSION_ANALYSIS,
691
+ "ridge_regression_analysis": RIDGE_REGRESSION_ANALYSIS,
692
+ "cross_validation_analysis": CROSS_VALIDATION_ANALYSIS,
693
+ "feature_importance_analysis_tool": FEATURE_IMPORTANCE_ANALYSIS_TOOL,
694
+ }
695
+
696
+
697
+ def get_tool_description(tool_name: str) -> ToolDescription:
698
+ """获取工具描述"""
699
+ if tool_name not in TOOL_DESCRIPTIONS:
700
+ raise ValueError(f"未知的工具名称: {tool_name}")
701
+ return TOOL_DESCRIPTIONS[tool_name]
702
+
703
+
704
+ def get_all_tool_names() -> List[str]:
705
+ """获取所有工具名称"""
706
+ return list(TOOL_DESCRIPTIONS.keys())
707
+
708
+
709
+ def get_field_description(tool_name: str, field_name: str, default: str = "") -> str:
710
+ """获取指定工具的字段描述"""
711
+ tool_desc = get_tool_description(tool_name)
712
+ return tool_desc.get_field_description(field_name, default)
713
+
714
+
715
+ # 导出主要类和函数
716
+ __all__ = [
717
+ "ToolDescription",
718
+ "TOOL_DESCRIPTIONS",
719
+ "get_tool_description",
720
+ "get_all_tool_names",
721
+ "get_field_description",
722
+
723
+ # 基础统计工具
724
+ "DESCRIPTIVE_STATISTICS",
725
+ "OLS_REGRESSION",
726
+ "HYPOTHESIS_TESTING",
727
+ "TIME_SERIES_ANALYSIS",
728
+ "CORRELATION_ANALYSIS",
729
+
730
+ # 面板数据工具
731
+ "PANEL_FIXED_EFFECTS",
732
+ "PANEL_RANDOM_EFFECTS",
733
+ "PANEL_HAUSMAN_TEST",
734
+ "PANEL_UNIT_ROOT_TEST",
735
+
736
+ # 高级时间序列工具
737
+ "VAR_MODEL_ANALYSIS",
738
+ "VECM_MODEL_ANALYSIS",
739
+ "GARCH_MODEL_ANALYSIS",
740
+ "STATE_SPACE_MODEL_ANALYSIS",
741
+ "VARIANCE_DECOMPOSITION_ANALYSIS",
742
+
743
+ # 机器学习工具
744
+ "RANDOM_FOREST_REGRESSION_ANALYSIS",
745
+ "GRADIENT_BOOSTING_REGRESSION_ANALYSIS",
746
+ "LASSO_REGRESSION_ANALYSIS",
747
+ "RIDGE_REGRESSION_ANALYSIS",
748
+ "CROSS_VALIDATION_ANALYSIS",
749
+ "FEATURE_IMPORTANCE_ANALYSIS_TOOL",
750
+ ]
@@ -1,416 +0,0 @@
1
- """
2
- 工具描述模块
3
- 统一管理所有MCP工具的描述信息,便于维护和复用
4
- """
5
-
6
- from typing import Dict, Any, List
7
- from pydantic import Field
8
-
9
-
10
- class ToolDescription:
11
- """工具描述类"""
12
-
13
- def __init__(self, name: str, description: str, field_descriptions: Dict[str, str] = None):
14
- self.name = name
15
- self.description = description
16
- self.field_descriptions = field_descriptions or {}
17
-
18
- def get_field_description(self, field_name: str, default: str = "") -> str:
19
- """获取字段描述"""
20
- return self.field_descriptions.get(field_name, default)
21
-
22
-
23
- # ============================================================================
24
- # 基础统计工具描述 (5个)
25
- # ============================================================================
26
-
27
- DESCRIPTIVE_STATISTICS = ToolDescription(
28
- name="descriptive_statistics",
29
- description="计算描述性统计量\n\n支持三种输入方式(按优先级):\n1. file_path: 文件路径 (如 \"data.csv\")\n2. file_content: 文件内容字符串\n3. data: 直接传入数据字典",
30
- field_descriptions={
31
- "file_path": "CSV/JSON文件路径",
32
- "file_content": "CSV/JSON文件内容",
33
- "file_format": "文件格式(csv/json/auto)",
34
- "data": "数据字典(直接数据输入)"
35
- }
36
- )
37
-
38
- OLS_REGRESSION = ToolDescription(
39
- name="ols_regression",
40
- description="OLS回归分析\n\n支持文件输入或直接数据输入。文件格式示例:\nCSV: 最后一列为因变量,其余列为自变量",
41
- field_descriptions={
42
- "file_path": "CSV/JSON文件路径",
43
- "file_content": "CSV/JSON文件内容",
44
- "file_format": "文件格式",
45
- "y_data": "因变量(直接输入)",
46
- "x_data": "自变量(直接输入)",
47
- "feature_names": "特征名称"
48
- }
49
- )
50
-
51
- HYPOTHESIS_TESTING = ToolDescription(
52
- name="hypothesis_testing",
53
- description="假设检验 - 支持文件或直接数据输入",
54
- field_descriptions={
55
- "file_path": "文件路径",
56
- "file_content": "文件内容",
57
- "file_format": "文件格式",
58
- "data": "第一组数据",
59
- "data2": "第二组数据",
60
- "test_type": "检验类型(t_test/adf)"
61
- }
62
- )
63
-
64
- TIME_SERIES_ANALYSIS = ToolDescription(
65
- name="time_series_analysis",
66
- description="时间序列分析 - 支持文件或直接数据输入",
67
- field_descriptions={
68
- "file_path": "文件路径",
69
- "file_content": "文件内容",
70
- "file_format": "文件格式",
71
- "data": "时间序列数据"
72
- }
73
- )
74
-
75
- CORRELATION_ANALYSIS = ToolDescription(
76
- name="correlation_analysis",
77
- description="相关性分析 - 支持文件或直接数据输入",
78
- field_descriptions={
79
- "file_path": "文件路径",
80
- "file_content": "文件内容",
81
- "file_format": "文件格式",
82
- "data": "多变量数据",
83
- "method": "相关系数类型"
84
- }
85
- )
86
-
87
-
88
- # ============================================================================
89
- # 面板数据工具描述 (4个)
90
- # ============================================================================
91
-
92
- PANEL_FIXED_EFFECTS = ToolDescription(
93
- name="panel_fixed_effects",
94
- description="固定效应模型 - 支持文件输入",
95
- field_descriptions={
96
- "file_path": "CSV文件路径。CSV格式要求:必须包含实体ID列(列名含entity_id/id/entity/firm/company/country/region之一)和时间列(列名含time_period/time/date/year/month/period/quarter之一)",
97
- "file_content": "文件内容",
98
- "file_format": "文件格式",
99
- "y_data": "因变量数据",
100
- "x_data": "自变量数据",
101
- "entity_ids": "实体ID列表",
102
- "time_periods": "时间周期列表",
103
- "feature_names": "特征名称",
104
- "entity_effects": "是否包含实体效应",
105
- "time_effects": "是否包含时间效应"
106
- }
107
- )
108
-
109
- PANEL_RANDOM_EFFECTS = ToolDescription(
110
- name="panel_random_effects",
111
- description="随机效应模型 - 支持文件输入",
112
- field_descriptions={
113
- "file_path": "CSV文件路径。CSV格式要求:必须包含实体ID列(列名含entity_id/id/entity/firm/company/country/region之一)和时间列(列名含time_period/time/date/year/month/period/quarter之一)",
114
- "file_content": "文件内容",
115
- "file_format": "文件格式",
116
- "y_data": "因变量数据",
117
- "x_data": "自变量数据",
118
- "entity_ids": "实体ID列表",
119
- "time_periods": "时间周期列表",
120
- "feature_names": "特征名称",
121
- "entity_effects": "是否包含实体效应",
122
- "time_effects": "是否包含时间效应"
123
- }
124
- )
125
-
126
- PANEL_HAUSMAN_TEST = ToolDescription(
127
- name="panel_hausman_test",
128
- description="Hausman检验 - 支持文件输入",
129
- field_descriptions={
130
- "file_path": "CSV文件路径。CSV格式要求:必须包含实体ID列(列名含entity_id/id/entity/firm/company/country/region之一)和时间列(列名含time_period/time/date/year/month/period/quarter之一)",
131
- "file_content": "文件内容",
132
- "file_format": "文件格式",
133
- "y_data": "因变量数据",
134
- "x_data": "自变量数据",
135
- "entity_ids": "实体ID列表",
136
- "time_periods": "时间周期列表",
137
- "feature_names": "特征名称"
138
- }
139
- )
140
-
141
- PANEL_UNIT_ROOT_TEST = ToolDescription(
142
- name="panel_unit_root_test",
143
- description="面板单位根检验 - 支持文件输入",
144
- field_descriptions={
145
- "file_path": "CSV文件路径。CSV格式要求:必须包含实体ID列(列名含entity_id/id/entity/firm/company/country/region之一)和时间列(列名含time_period/time/date/year/month/period/quarter之一)。数据量要求:至少3个实体,每个实体至少5个时间点",
146
- "file_content": "文件内容",
147
- "file_format": "文件格式",
148
- "data": "时间序列数据",
149
- "y_data": "因变量数据",
150
- "x_data": "自变量数据",
151
- "entity_ids": "实体ID列表",
152
- "time_periods": "时间周期列表",
153
- "feature_names": "特征名称",
154
- "test_type": "检验类型"
155
- }
156
- )
157
-
158
-
159
- # ============================================================================
160
- # 高级时间序列工具描述 (5个)
161
- # ============================================================================
162
-
163
- VAR_MODEL_ANALYSIS = ToolDescription(
164
- name="var_model_analysis",
165
- description="VAR模型分析 - 支持文件输入",
166
- field_descriptions={
167
- "file_path": "文件路径",
168
- "file_content": "文件内容",
169
- "file_format": "文件格式",
170
- "data": "多变量时间序列数据",
171
- "max_lags": "最大滞后阶数",
172
- "ic": "信息准则类型"
173
- }
174
- )
175
-
176
- VECM_MODEL_ANALYSIS = ToolDescription(
177
- name="vecm_model_analysis",
178
- description="VECM模型分析 - 支持文件输入",
179
- field_descriptions={
180
- "file_path": "文件路径",
181
- "file_content": "文件内容",
182
- "file_format": "文件格式",
183
- "data": "多变量时间序列数据",
184
- "coint_rank": "协整秩",
185
- "deterministic": "确定性项类型",
186
- "max_lags": "最大滞后阶数"
187
- }
188
- )
189
-
190
- GARCH_MODEL_ANALYSIS = ToolDescription(
191
- name="garch_model_analysis",
192
- description="GARCH模型分析 - 支持文件输入",
193
- field_descriptions={
194
- "file_path": "文件路径",
195
- "file_content": "文件内容",
196
- "file_format": "文件格式",
197
- "data": "时间序列数据",
198
- "order": "GARCH模型阶数",
199
- "dist": "误差分布类型"
200
- }
201
- )
202
-
203
- STATE_SPACE_MODEL_ANALYSIS = ToolDescription(
204
- name="state_space_model_analysis",
205
- description="状态空间模型分析 - 支持文件输入",
206
- field_descriptions={
207
- "file_path": "文件路径",
208
- "file_content": "文件内容",
209
- "file_format": "文件格式",
210
- "data": "时间序列数据",
211
- "state_dim": "状态维度",
212
- "observation_dim": "观测维度",
213
- "trend": "是否包含趋势项",
214
- "seasonal": "是否包含季节项",
215
- "period": "季节周期"
216
- }
217
- )
218
-
219
- VARIANCE_DECOMPOSITION_ANALYSIS = ToolDescription(
220
- name="variance_decomposition_analysis",
221
- description="方差分解分析 - 支持文件输入",
222
- field_descriptions={
223
- "file_path": "文件路径",
224
- "file_content": "文件内容",
225
- "file_format": "文件格式",
226
- "data": "多变量时间序列数据",
227
- "periods": "分解期数",
228
- "max_lags": "最大滞后阶数"
229
- }
230
- )
231
-
232
-
233
- # ============================================================================
234
- # 机器学习工具描述 (6个)
235
- # ============================================================================
236
-
237
- RANDOM_FOREST_REGRESSION_ANALYSIS = ToolDescription(
238
- name="random_forest_regression_analysis",
239
- description="随机森林回归 - 支持文件输入",
240
- field_descriptions={
241
- "file_path": "文件路径",
242
- "file_content": "文件内容",
243
- "file_format": "文件格式",
244
- "y_data": "因变量数据",
245
- "x_data": "自变量数据",
246
- "feature_names": "特征名称",
247
- "n_estimators": "树的数量",
248
- "max_depth": "最大深度"
249
- }
250
- )
251
-
252
- GRADIENT_BOOSTING_REGRESSION_ANALYSIS = ToolDescription(
253
- name="gradient_boosting_regression_analysis",
254
- description="梯度提升树回归 - 支持文件输入",
255
- field_descriptions={
256
- "file_path": "文件路径",
257
- "file_content": "文件内容",
258
- "file_format": "文件格式",
259
- "y_data": "因变量数据",
260
- "x_data": "自变量数据",
261
- "feature_names": "特征名称",
262
- "n_estimators": "树的数量",
263
- "learning_rate": "学习率",
264
- "max_depth": "最大深度"
265
- }
266
- )
267
-
268
- LASSO_REGRESSION_ANALYSIS = ToolDescription(
269
- name="lasso_regression_analysis",
270
- description="Lasso回归 - 支持文件输入",
271
- field_descriptions={
272
- "file_path": "文件路径",
273
- "file_content": "文件内容",
274
- "file_format": "文件格式",
275
- "y_data": "因变量数据",
276
- "x_data": "自变量数据",
277
- "feature_names": "特征名称",
278
- "alpha": "正则化参数"
279
- }
280
- )
281
-
282
- RIDGE_REGRESSION_ANALYSIS = ToolDescription(
283
- name="ridge_regression_analysis",
284
- description="Ridge回归 - 支持文件输入",
285
- field_descriptions={
286
- "file_path": "文件路径",
287
- "file_content": "文件内容",
288
- "file_format": "文件格式",
289
- "y_data": "因变量数据",
290
- "x_data": "自变量数据",
291
- "feature_names": "特征名称",
292
- "alpha": "正则化参数"
293
- }
294
- )
295
-
296
- CROSS_VALIDATION_ANALYSIS = ToolDescription(
297
- name="cross_validation_analysis",
298
- description="交叉验证 - 支持文件输入",
299
- field_descriptions={
300
- "file_path": "文件路径",
301
- "file_content": "文件内容",
302
- "file_format": "文件格式",
303
- "y_data": "因变量数据",
304
- "x_data": "自变量数据",
305
- "feature_names": "特征名称",
306
- "model_type": "模型类型",
307
- "cv_folds": "交叉验证折数",
308
- "scoring": "评分指标"
309
- }
310
- )
311
-
312
- FEATURE_IMPORTANCE_ANALYSIS_TOOL = ToolDescription(
313
- name="feature_importance_analysis_tool",
314
- description="特征重要性分析 - 支持文件输入",
315
- field_descriptions={
316
- "file_path": "文件路径",
317
- "file_content": "文件内容",
318
- "file_format": "文件格式",
319
- "y_data": "因变量数据",
320
- "x_data": "自变量数据",
321
- "feature_names": "特征名称",
322
- "method": "分析方法",
323
- "top_k": "显示前K个重要特征"
324
- }
325
- )
326
-
327
-
328
- # ============================================================================
329
- # 工具描述映射
330
- # ============================================================================
331
-
332
- TOOL_DESCRIPTIONS: Dict[str, ToolDescription] = {
333
- # 基础统计工具
334
- "descriptive_statistics": DESCRIPTIVE_STATISTICS,
335
- "ols_regression": OLS_REGRESSION,
336
- "hypothesis_testing": HYPOTHESIS_TESTING,
337
- "time_series_analysis": TIME_SERIES_ANALYSIS,
338
- "correlation_analysis": CORRELATION_ANALYSIS,
339
-
340
- # 面板数据工具
341
- "panel_fixed_effects": PANEL_FIXED_EFFECTS,
342
- "panel_random_effects": PANEL_RANDOM_EFFECTS,
343
- "panel_hausman_test": PANEL_HAUSMAN_TEST,
344
- "panel_unit_root_test": PANEL_UNIT_ROOT_TEST,
345
-
346
- # 高级时间序列工具
347
- "var_model_analysis": VAR_MODEL_ANALYSIS,
348
- "vecm_model_analysis": VECM_MODEL_ANALYSIS,
349
- "garch_model_analysis": GARCH_MODEL_ANALYSIS,
350
- "state_space_model_analysis": STATE_SPACE_MODEL_ANALYSIS,
351
- "variance_decomposition_analysis": VARIANCE_DECOMPOSITION_ANALYSIS,
352
-
353
- # 机器学习工具
354
- "random_forest_regression_analysis": RANDOM_FOREST_REGRESSION_ANALYSIS,
355
- "gradient_boosting_regression_analysis": GRADIENT_BOOSTING_REGRESSION_ANALYSIS,
356
- "lasso_regression_analysis": LASSO_REGRESSION_ANALYSIS,
357
- "ridge_regression_analysis": RIDGE_REGRESSION_ANALYSIS,
358
- "cross_validation_analysis": CROSS_VALIDATION_ANALYSIS,
359
- "feature_importance_analysis_tool": FEATURE_IMPORTANCE_ANALYSIS_TOOL,
360
- }
361
-
362
-
363
- def get_tool_description(tool_name: str) -> ToolDescription:
364
- """获取工具描述"""
365
- if tool_name not in TOOL_DESCRIPTIONS:
366
- raise ValueError(f"未知的工具名称: {tool_name}")
367
- return TOOL_DESCRIPTIONS[tool_name]
368
-
369
-
370
- def get_all_tool_names() -> List[str]:
371
- """获取所有工具名称"""
372
- return list(TOOL_DESCRIPTIONS.keys())
373
-
374
-
375
- def get_field_description(tool_name: str, field_name: str, default: str = "") -> str:
376
- """获取指定工具的字段描述"""
377
- tool_desc = get_tool_description(tool_name)
378
- return tool_desc.get_field_description(field_name, default)
379
-
380
-
381
- # 导出主要类和函数
382
- __all__ = [
383
- "ToolDescription",
384
- "TOOL_DESCRIPTIONS",
385
- "get_tool_description",
386
- "get_all_tool_names",
387
- "get_field_description",
388
-
389
- # 基础统计工具
390
- "DESCRIPTIVE_STATISTICS",
391
- "OLS_REGRESSION",
392
- "HYPOTHESIS_TESTING",
393
- "TIME_SERIES_ANALYSIS",
394
- "CORRELATION_ANALYSIS",
395
-
396
- # 面板数据工具
397
- "PANEL_FIXED_EFFECTS",
398
- "PANEL_RANDOM_EFFECTS",
399
- "PANEL_HAUSMAN_TEST",
400
- "PANEL_UNIT_ROOT_TEST",
401
-
402
- # 高级时间序列工具
403
- "VAR_MODEL_ANALYSIS",
404
- "VECM_MODEL_ANALYSIS",
405
- "GARCH_MODEL_ANALYSIS",
406
- "STATE_SPACE_MODEL_ANALYSIS",
407
- "VARIANCE_DECOMPOSITION_ANALYSIS",
408
-
409
- # 机器学习工具
410
- "RANDOM_FOREST_REGRESSION_ANALYSIS",
411
- "GRADIENT_BOOSTING_REGRESSION_ANALYSIS",
412
- "LASSO_REGRESSION_ANALYSIS",
413
- "RIDGE_REGRESSION_ANALYSIS",
414
- "CROSS_VALIDATION_ANALYSIS",
415
- "FEATURE_IMPORTANCE_ANALYSIS_TOOL",
416
- ]