aigroup-econ-mcp 0.4.2__tar.gz → 0.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aigroup-econ-mcp might be problematic. Click here for more details.
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/PKG-INFO +2 -2
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/pyproject.toml +2 -2
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/__init__.py +2 -2
- aigroup_econ_mcp-0.5.0/src/aigroup_econ_mcp/server.py +452 -0
- aigroup_econ_mcp-0.5.0/src/aigroup_econ_mcp/tools/__init__.py +19 -0
- aigroup_econ_mcp-0.5.0/src/aigroup_econ_mcp/tools/tool_descriptions.py +416 -0
- aigroup_econ_mcp-0.4.2/src/aigroup_econ_mcp/server.py +0 -452
- aigroup_econ_mcp-0.4.2/src/aigroup_econ_mcp/tools/__init__.py +0 -18
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/.gitignore +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/LICENSE +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/README.md +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/cli.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/config.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/base.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/cache.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/data_loader.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/file_parser.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/machine_learning.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/ml_ensemble.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/ml_evaluation.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/ml_models.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/ml_regularization.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/monitoring.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/optimized_example.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/panel_data.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/regression.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/statistics.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/time_series.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/timeout.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/tool_handlers.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/tool_registry.py +0 -0
- {aigroup_econ_mcp-0.4.2 → aigroup_econ_mcp-0.5.0}/src/aigroup_econ_mcp/tools/validation.py +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: aigroup-econ-mcp
|
|
3
|
-
Version: 0.
|
|
4
|
-
Summary: 专业计量经济学MCP工具 -
|
|
3
|
+
Version: 0.5.0
|
|
4
|
+
Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析(重构版:工具描述模块化)
|
|
5
5
|
Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
|
|
6
6
|
Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
|
|
7
7
|
Project-URL: Issues, https://github.com/aigroup/aigroup-econ-mcp/issues
|
|
@@ -4,8 +4,8 @@ build-backend = "hatchling.build"
|
|
|
4
4
|
|
|
5
5
|
[project]
|
|
6
6
|
name = "aigroup-econ-mcp"
|
|
7
|
-
version = "0.
|
|
8
|
-
description = "专业计量经济学MCP工具 -
|
|
7
|
+
version = "0.5.0"
|
|
8
|
+
description = "专业计量经济学MCP工具 - 让大模型直接进行数据分析(重构版:工具描述模块化)"
|
|
9
9
|
readme = "README.md"
|
|
10
10
|
requires-python = ">=3.10"
|
|
11
11
|
authors = [
|
|
@@ -10,9 +10,9 @@ AIGroup 计量经济学 MCP 服务
|
|
|
10
10
|
- 模型诊断
|
|
11
11
|
"""
|
|
12
12
|
|
|
13
|
-
__version__ = "0.
|
|
13
|
+
__version__ = "0.5.0"
|
|
14
14
|
__author__ = "AIGroup"
|
|
15
|
-
__description__ = "专业计量经济学MCP工具 -
|
|
15
|
+
__description__ = "专业计量经济学MCP工具 - 让大模型直接进行数据分析(重构版:工具描述模块化)"
|
|
16
16
|
|
|
17
17
|
from .server import create_mcp_server
|
|
18
18
|
|
|
@@ -0,0 +1,452 @@
|
|
|
1
|
+
"""
|
|
2
|
+
AIGroup 计量经济学 MCP 服务器 - 优化版
|
|
3
|
+
使用组件化架构,代码量减少80%,同时自动支持文件输入
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
from typing import Dict, Any, Optional, List, Annotated
|
|
7
|
+
from collections.abc import AsyncIterator
|
|
8
|
+
from contextlib import asynccontextmanager
|
|
9
|
+
from dataclasses import dataclass
|
|
10
|
+
|
|
11
|
+
from pydantic import BaseModel, Field
|
|
12
|
+
from mcp.server.fastmcp import FastMCP, Context
|
|
13
|
+
from mcp.server.session import ServerSession
|
|
14
|
+
from mcp.types import CallToolResult, TextContent
|
|
15
|
+
|
|
16
|
+
# 导入工具处理器
|
|
17
|
+
from .tools.tool_handlers import (
|
|
18
|
+
handle_descriptive_statistics,
|
|
19
|
+
handle_ols_regression,
|
|
20
|
+
handle_hypothesis_testing,
|
|
21
|
+
handle_time_series_analysis,
|
|
22
|
+
handle_correlation_analysis,
|
|
23
|
+
handle_panel_fixed_effects,
|
|
24
|
+
handle_panel_random_effects,
|
|
25
|
+
handle_panel_hausman_test,
|
|
26
|
+
handle_panel_unit_root_test,
|
|
27
|
+
handle_var_model,
|
|
28
|
+
handle_vecm_model,
|
|
29
|
+
handle_garch_model,
|
|
30
|
+
handle_state_space_model,
|
|
31
|
+
handle_variance_decomposition,
|
|
32
|
+
handle_random_forest,
|
|
33
|
+
handle_gradient_boosting,
|
|
34
|
+
handle_lasso_regression,
|
|
35
|
+
handle_ridge_regression,
|
|
36
|
+
handle_cross_validation,
|
|
37
|
+
handle_feature_importance
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
# 导入装饰器和工具描述
|
|
41
|
+
from .tools.base import with_file_support_decorator as econometric_tool
|
|
42
|
+
from .tools.tool_descriptions import (
|
|
43
|
+
get_tool_description,
|
|
44
|
+
get_field_description,
|
|
45
|
+
DESCRIPTIVE_STATISTICS,
|
|
46
|
+
OLS_REGRESSION,
|
|
47
|
+
HYPOTHESIS_TESTING,
|
|
48
|
+
TIME_SERIES_ANALYSIS,
|
|
49
|
+
CORRELATION_ANALYSIS,
|
|
50
|
+
PANEL_FIXED_EFFECTS,
|
|
51
|
+
PANEL_RANDOM_EFFECTS,
|
|
52
|
+
PANEL_HAUSMAN_TEST,
|
|
53
|
+
PANEL_UNIT_ROOT_TEST,
|
|
54
|
+
VAR_MODEL_ANALYSIS,
|
|
55
|
+
VECM_MODEL_ANALYSIS,
|
|
56
|
+
GARCH_MODEL_ANALYSIS,
|
|
57
|
+
STATE_SPACE_MODEL_ANALYSIS,
|
|
58
|
+
VARIANCE_DECOMPOSITION_ANALYSIS,
|
|
59
|
+
RANDOM_FOREST_REGRESSION_ANALYSIS,
|
|
60
|
+
GRADIENT_BOOSTING_REGRESSION_ANALYSIS,
|
|
61
|
+
LASSO_REGRESSION_ANALYSIS,
|
|
62
|
+
RIDGE_REGRESSION_ANALYSIS,
|
|
63
|
+
CROSS_VALIDATION_ANALYSIS,
|
|
64
|
+
FEATURE_IMPORTANCE_ANALYSIS_TOOL
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
# 应用上下文
|
|
69
|
+
@dataclass
|
|
70
|
+
class AppContext:
|
|
71
|
+
"""应用上下文,包含共享资源"""
|
|
72
|
+
config: Dict[str, Any]
|
|
73
|
+
version: str = "0.2.0"
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
@asynccontextmanager
|
|
77
|
+
async def lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
|
|
78
|
+
"""服务器生命周期管理"""
|
|
79
|
+
config = {
|
|
80
|
+
"max_sample_size": 10000,
|
|
81
|
+
"default_significance_level": 0.05,
|
|
82
|
+
"supported_tests": ["t_test", "f_test", "chi_square", "adf"],
|
|
83
|
+
"data_types": ["cross_section", "time_series", "panel"]
|
|
84
|
+
}
|
|
85
|
+
try:
|
|
86
|
+
yield AppContext(config=config, version="0.2.0")
|
|
87
|
+
finally:
|
|
88
|
+
pass
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# 创建MCP服务器实例
|
|
92
|
+
mcp = FastMCP(
|
|
93
|
+
name="aigroup-econ-mcp",
|
|
94
|
+
instructions="Econometrics MCP Server - Provides data analysis with automatic file input support",
|
|
95
|
+
lifespan=lifespan
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
# ============================================================================
|
|
100
|
+
# 基础统计工具 (5个) - 自动支持文件输入
|
|
101
|
+
# ============================================================================
|
|
102
|
+
|
|
103
|
+
@mcp.tool()
|
|
104
|
+
@econometric_tool('multi_var_dict')
|
|
105
|
+
async def descriptive_statistics(
|
|
106
|
+
ctx: Context[ServerSession, AppContext],
|
|
107
|
+
file_path: Annotated[Optional[str], Field(default=None, description=DESCRIPTIVE_STATISTICS.get_field_description("file_path"))] = None,
|
|
108
|
+
file_content: Annotated[Optional[str], Field(default=None, description=DESCRIPTIVE_STATISTICS.get_field_description("file_content"))] = None,
|
|
109
|
+
file_format: Annotated[str, Field(default="auto", description=DESCRIPTIVE_STATISTICS.get_field_description("file_format"))] = "auto",
|
|
110
|
+
data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=DESCRIPTIVE_STATISTICS.get_field_description("data"))] = None
|
|
111
|
+
) -> CallToolResult:
|
|
112
|
+
"""计算描述性统计量"""
|
|
113
|
+
return await handle_descriptive_statistics(ctx, data=data)
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
@mcp.tool()
|
|
117
|
+
@econometric_tool('regression')
|
|
118
|
+
async def ols_regression(
|
|
119
|
+
ctx: Context[ServerSession, AppContext],
|
|
120
|
+
file_path: Annotated[Optional[str], Field(default=None, description=OLS_REGRESSION.get_field_description("file_path"))] = None,
|
|
121
|
+
file_content: Annotated[Optional[str], Field(default=None, description=OLS_REGRESSION.get_field_description("file_content"))] = None,
|
|
122
|
+
file_format: Annotated[str, Field(default="auto", description=OLS_REGRESSION.get_field_description("file_format"))] = "auto",
|
|
123
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=OLS_REGRESSION.get_field_description("y_data"))] = None,
|
|
124
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=OLS_REGRESSION.get_field_description("x_data"))] = None,
|
|
125
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=OLS_REGRESSION.get_field_description("feature_names"))] = None
|
|
126
|
+
) -> CallToolResult:
|
|
127
|
+
"""OLS回归分析"""
|
|
128
|
+
return await handle_ols_regression(ctx, y_data=y_data, x_data=x_data, feature_names=feature_names)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
@mcp.tool()
|
|
132
|
+
@econometric_tool('single_var')
|
|
133
|
+
async def hypothesis_testing(
|
|
134
|
+
ctx: Context[ServerSession, AppContext],
|
|
135
|
+
file_path: Annotated[Optional[str], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("file_path"))] = None,
|
|
136
|
+
file_content: Annotated[Optional[str], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("file_content"))] = None,
|
|
137
|
+
file_format: Annotated[str, Field(default="auto", description=HYPOTHESIS_TESTING.get_field_description("file_format"))] = "auto",
|
|
138
|
+
data: Annotated[Optional[List[float]], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("data"))] = None,
|
|
139
|
+
data2: Annotated[Optional[List[float]], Field(default=None, description=HYPOTHESIS_TESTING.get_field_description("data2"))] = None,
|
|
140
|
+
test_type: Annotated[str, Field(default="t_test", description=HYPOTHESIS_TESTING.get_field_description("test_type"))] = "t_test"
|
|
141
|
+
) -> CallToolResult:
|
|
142
|
+
"""假设检验 - 支持文件或直接数据输入"""
|
|
143
|
+
return await handle_hypothesis_testing(ctx, data1=data, data2=data2, test_type=test_type)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
@mcp.tool()
|
|
147
|
+
@econometric_tool('single_var')
|
|
148
|
+
async def time_series_analysis(
|
|
149
|
+
ctx: Context[ServerSession, AppContext],
|
|
150
|
+
file_path: Annotated[Optional[str], Field(default=None, description=TIME_SERIES_ANALYSIS.get_field_description("file_path"))] = None,
|
|
151
|
+
file_content: Annotated[Optional[str], Field(default=None, description=TIME_SERIES_ANALYSIS.get_field_description("file_content"))] = None,
|
|
152
|
+
file_format: Annotated[str, Field(default="auto", description=TIME_SERIES_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
153
|
+
data: Annotated[Optional[List[float]], Field(default=None, description=TIME_SERIES_ANALYSIS.get_field_description("data"))] = None
|
|
154
|
+
) -> CallToolResult:
|
|
155
|
+
"""时间序列分析 - 支持文件或直接数据输入"""
|
|
156
|
+
return await handle_time_series_analysis(ctx, data=data)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
@mcp.tool()
|
|
160
|
+
@econometric_tool('multi_var_dict')
|
|
161
|
+
async def correlation_analysis(
|
|
162
|
+
ctx: Context[ServerSession, AppContext],
|
|
163
|
+
file_path: Annotated[Optional[str], Field(default=None, description=CORRELATION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
164
|
+
file_content: Annotated[Optional[str], Field(default=None, description=CORRELATION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
165
|
+
file_format: Annotated[str, Field(default="auto", description=CORRELATION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
166
|
+
data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=CORRELATION_ANALYSIS.get_field_description("data"))] = None,
|
|
167
|
+
method: Annotated[str, Field(default="pearson", description=CORRELATION_ANALYSIS.get_field_description("method"))] = "pearson"
|
|
168
|
+
) -> CallToolResult:
|
|
169
|
+
"""相关性分析 - 支持文件或直接数据输入"""
|
|
170
|
+
return await handle_correlation_analysis(ctx, data=data, method=method)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
# ============================================================================
|
|
174
|
+
# 面板数据工具 (4个) - 自动支持文件输入
|
|
175
|
+
# ============================================================================
|
|
176
|
+
|
|
177
|
+
@mcp.tool()
|
|
178
|
+
@econometric_tool('panel')
|
|
179
|
+
async def panel_fixed_effects(
|
|
180
|
+
ctx: Context[ServerSession, AppContext],
|
|
181
|
+
file_path: Annotated[Optional[str], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("file_path"))] = None,
|
|
182
|
+
file_content: Annotated[Optional[str], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("file_content"))] = None,
|
|
183
|
+
file_format: Annotated[str, Field(default="auto", description=PANEL_FIXED_EFFECTS.get_field_description("file_format"))] = "auto",
|
|
184
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("y_data"))] = None,
|
|
185
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("x_data"))] = None,
|
|
186
|
+
entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("entity_ids"))] = None,
|
|
187
|
+
time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("time_periods"))] = None,
|
|
188
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_FIXED_EFFECTS.get_field_description("feature_names"))] = None,
|
|
189
|
+
entity_effects: Annotated[bool, Field(default=True, description=PANEL_FIXED_EFFECTS.get_field_description("entity_effects"))] = True,
|
|
190
|
+
time_effects: Annotated[bool, Field(default=False, description=PANEL_FIXED_EFFECTS.get_field_description("time_effects"))] = False
|
|
191
|
+
) -> CallToolResult:
|
|
192
|
+
"""固定效应模型 - 支持文件输入"""
|
|
193
|
+
return await handle_panel_fixed_effects(ctx, y_data, x_data, entity_ids, time_periods,
|
|
194
|
+
feature_names, entity_effects, time_effects)
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+
@mcp.tool()
|
|
198
|
+
@econometric_tool('panel')
|
|
199
|
+
async def panel_random_effects(
|
|
200
|
+
ctx: Context[ServerSession, AppContext],
|
|
201
|
+
file_path: Annotated[Optional[str], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("file_path"))] = None,
|
|
202
|
+
file_content: Annotated[Optional[str], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("file_content"))] = None,
|
|
203
|
+
file_format: Annotated[str, Field(default="auto", description=PANEL_RANDOM_EFFECTS.get_field_description("file_format"))] = "auto",
|
|
204
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("y_data"))] = None,
|
|
205
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("x_data"))] = None,
|
|
206
|
+
entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("entity_ids"))] = None,
|
|
207
|
+
time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("time_periods"))] = None,
|
|
208
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_RANDOM_EFFECTS.get_field_description("feature_names"))] = None,
|
|
209
|
+
entity_effects: Annotated[bool, Field(default=True, description=PANEL_RANDOM_EFFECTS.get_field_description("entity_effects"))] = True,
|
|
210
|
+
time_effects: Annotated[bool, Field(default=False, description=PANEL_RANDOM_EFFECTS.get_field_description("time_effects"))] = False
|
|
211
|
+
) -> CallToolResult:
|
|
212
|
+
"""随机效应模型 - 支持文件输入"""
|
|
213
|
+
return await handle_panel_random_effects(ctx, y_data, x_data, entity_ids, time_periods,
|
|
214
|
+
feature_names, entity_effects, time_effects)
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
@mcp.tool()
|
|
218
|
+
@econometric_tool('panel')
|
|
219
|
+
async def panel_hausman_test(
|
|
220
|
+
ctx: Context[ServerSession, AppContext],
|
|
221
|
+
file_path: Annotated[Optional[str], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("file_path"))] = None,
|
|
222
|
+
file_content: Annotated[Optional[str], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("file_content"))] = None,
|
|
223
|
+
file_format: Annotated[str, Field(default="auto", description=PANEL_HAUSMAN_TEST.get_field_description("file_format"))] = "auto",
|
|
224
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("y_data"))] = None,
|
|
225
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("x_data"))] = None,
|
|
226
|
+
entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("entity_ids"))] = None,
|
|
227
|
+
time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("time_periods"))] = None,
|
|
228
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_HAUSMAN_TEST.get_field_description("feature_names"))] = None
|
|
229
|
+
) -> CallToolResult:
|
|
230
|
+
"""Hausman检验 - 支持文件输入"""
|
|
231
|
+
return await handle_panel_hausman_test(ctx, y_data, x_data, entity_ids, time_periods, feature_names)
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
@mcp.tool()
|
|
235
|
+
@econometric_tool('panel') # 保持panel类型以获取entity_ids和time_periods
|
|
236
|
+
async def panel_unit_root_test(
|
|
237
|
+
ctx: Context[ServerSession, AppContext],
|
|
238
|
+
file_path: Annotated[Optional[str], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("file_path"))] = None,
|
|
239
|
+
file_content: Annotated[Optional[str], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("file_content"))] = None,
|
|
240
|
+
file_format: Annotated[str, Field(default="auto", description=PANEL_UNIT_ROOT_TEST.get_field_description("file_format"))] = "auto",
|
|
241
|
+
data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("data"))] = None,
|
|
242
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("y_data"))] = None, # 从panel转换来的
|
|
243
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("x_data"))] = None, # 从panel转换来的,忽略
|
|
244
|
+
entity_ids: Annotated[Optional[List[str]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("entity_ids"))] = None,
|
|
245
|
+
time_periods: Annotated[Optional[List[str]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("time_periods"))] = None,
|
|
246
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=PANEL_UNIT_ROOT_TEST.get_field_description("feature_names"))] = None, # 从panel转换来的,忽略
|
|
247
|
+
test_type: Annotated[str, Field(default="levinlin", description=PANEL_UNIT_ROOT_TEST.get_field_description("test_type"))] = "levinlin"
|
|
248
|
+
) -> CallToolResult:
|
|
249
|
+
"""面板单位根检验 - 支持文件输入"""
|
|
250
|
+
# 传递所有参数给handler
|
|
251
|
+
return await handle_panel_unit_root_test(
|
|
252
|
+
ctx,
|
|
253
|
+
data=data,
|
|
254
|
+
y_data=y_data,
|
|
255
|
+
entity_ids=entity_ids,
|
|
256
|
+
time_periods=time_periods,
|
|
257
|
+
test_type=test_type
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
# ============================================================================
|
|
262
|
+
# 高级时间序列工具 (5个) - 自动支持文件输入
|
|
263
|
+
# ============================================================================
|
|
264
|
+
|
|
265
|
+
@mcp.tool()
|
|
266
|
+
@econometric_tool('time_series')
|
|
267
|
+
async def var_model_analysis(
|
|
268
|
+
ctx: Context[ServerSession, AppContext],
|
|
269
|
+
file_path: Annotated[Optional[str], Field(default=None, description=VAR_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
|
|
270
|
+
file_content: Annotated[Optional[str], Field(default=None, description=VAR_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
|
|
271
|
+
file_format: Annotated[str, Field(default="auto", description=VAR_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
272
|
+
data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=VAR_MODEL_ANALYSIS.get_field_description("data"))] = None,
|
|
273
|
+
max_lags: Annotated[int, Field(default=5, description=VAR_MODEL_ANALYSIS.get_field_description("max_lags"))] = 5,
|
|
274
|
+
ic: Annotated[str, Field(default="aic", description=VAR_MODEL_ANALYSIS.get_field_description("ic"))] = "aic"
|
|
275
|
+
) -> CallToolResult:
|
|
276
|
+
"""VAR模型分析 - 支持文件输入"""
|
|
277
|
+
return await handle_var_model(ctx, data, max_lags, ic)
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
@mcp.tool()
|
|
281
|
+
@econometric_tool('time_series')
|
|
282
|
+
async def vecm_model_analysis(
|
|
283
|
+
ctx: Context[ServerSession, AppContext],
|
|
284
|
+
file_path: Annotated[Optional[str], Field(default=None, description=VECM_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
|
|
285
|
+
file_content: Annotated[Optional[str], Field(default=None, description=VECM_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
|
|
286
|
+
file_format: Annotated[str, Field(default="auto", description=VECM_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
287
|
+
data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=VECM_MODEL_ANALYSIS.get_field_description("data"))] = None,
|
|
288
|
+
coint_rank: Annotated[int, Field(default=1, description=VECM_MODEL_ANALYSIS.get_field_description("coint_rank"))] = 1,
|
|
289
|
+
deterministic: Annotated[str, Field(default="co", description=VECM_MODEL_ANALYSIS.get_field_description("deterministic"))] = "co",
|
|
290
|
+
max_lags: Annotated[int, Field(default=5, description=VECM_MODEL_ANALYSIS.get_field_description("max_lags"))] = 5
|
|
291
|
+
) -> CallToolResult:
|
|
292
|
+
"""VECM模型分析 - 支持文件输入"""
|
|
293
|
+
return await handle_vecm_model(ctx, data, coint_rank, deterministic, max_lags)
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
@mcp.tool()
|
|
297
|
+
@econometric_tool('single_var')
|
|
298
|
+
async def garch_model_analysis(
|
|
299
|
+
ctx: Context[ServerSession, AppContext],
|
|
300
|
+
file_path: Annotated[Optional[str], Field(default=None, description=GARCH_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
|
|
301
|
+
file_content: Annotated[Optional[str], Field(default=None, description=GARCH_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
|
|
302
|
+
file_format: Annotated[str, Field(default="auto", description=GARCH_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
303
|
+
data: Annotated[Optional[List[float]], Field(default=None, description=GARCH_MODEL_ANALYSIS.get_field_description("data"))] = None,
|
|
304
|
+
order: Annotated[tuple, Field(default=(1, 1), description=GARCH_MODEL_ANALYSIS.get_field_description("order"))] = (1, 1),
|
|
305
|
+
dist: Annotated[str, Field(default="normal", description=GARCH_MODEL_ANALYSIS.get_field_description("dist"))] = "normal"
|
|
306
|
+
) -> CallToolResult:
|
|
307
|
+
"""GARCH模型分析 - 支持文件输入"""
|
|
308
|
+
return await handle_garch_model(ctx, data, order, dist)
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
@mcp.tool()
|
|
312
|
+
@econometric_tool('single_var')
|
|
313
|
+
async def state_space_model_analysis(
|
|
314
|
+
ctx: Context[ServerSession, AppContext],
|
|
315
|
+
file_path: Annotated[Optional[str], Field(default=None, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("file_path"))] = None,
|
|
316
|
+
file_content: Annotated[Optional[str], Field(default=None, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("file_content"))] = None,
|
|
317
|
+
file_format: Annotated[str, Field(default="auto", description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
318
|
+
data: Annotated[Optional[List[float]], Field(default=None, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("data"))] = None,
|
|
319
|
+
state_dim: Annotated[int, Field(default=1, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("state_dim"))] = 1,
|
|
320
|
+
observation_dim: Annotated[int, Field(default=1, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("observation_dim"))] = 1,
|
|
321
|
+
trend: Annotated[bool, Field(default=True, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("trend"))] = True,
|
|
322
|
+
seasonal: Annotated[bool, Field(default=False, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("seasonal"))] = False,
|
|
323
|
+
period: Annotated[int, Field(default=12, description=STATE_SPACE_MODEL_ANALYSIS.get_field_description("period"))] = 12
|
|
324
|
+
) -> CallToolResult:
|
|
325
|
+
"""状态空间模型分析 - 支持文件输入"""
|
|
326
|
+
return await handle_state_space_model(ctx, data, state_dim, observation_dim, trend, seasonal, period)
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
@mcp.tool()
|
|
330
|
+
@econometric_tool('time_series')
|
|
331
|
+
async def variance_decomposition_analysis(
|
|
332
|
+
ctx: Context[ServerSession, AppContext],
|
|
333
|
+
file_path: Annotated[Optional[str], Field(default=None, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
334
|
+
file_content: Annotated[Optional[str], Field(default=None, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
335
|
+
file_format: Annotated[str, Field(default="auto", description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
336
|
+
data: Annotated[Optional[Dict[str, List[float]]], Field(default=None, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("data"))] = None,
|
|
337
|
+
periods: Annotated[int, Field(default=10, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("periods"))] = 10,
|
|
338
|
+
max_lags: Annotated[int, Field(default=5, description=VARIANCE_DECOMPOSITION_ANALYSIS.get_field_description("max_lags"))] = 5
|
|
339
|
+
) -> CallToolResult:
|
|
340
|
+
"""方差分解分析 - 支持文件输入"""
|
|
341
|
+
return await handle_variance_decomposition(ctx, data, periods, max_lags)
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
# ============================================================================
|
|
345
|
+
# 机器学习工具 (6个) - 自动支持文件输入
|
|
346
|
+
# ============================================================================
|
|
347
|
+
|
|
348
|
+
@mcp.tool()
|
|
349
|
+
@econometric_tool('regression')
|
|
350
|
+
async def random_forest_regression_analysis(
|
|
351
|
+
ctx: Context[ServerSession, AppContext],
|
|
352
|
+
file_path: Annotated[Optional[str], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
353
|
+
file_content: Annotated[Optional[str], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
354
|
+
file_format: Annotated[str, Field(default="auto", description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
355
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
|
|
356
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
|
|
357
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
|
|
358
|
+
n_estimators: Annotated[int, Field(default=100, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("n_estimators"))] = 100,
|
|
359
|
+
max_depth: Annotated[Optional[int], Field(default=None, description=RANDOM_FOREST_REGRESSION_ANALYSIS.get_field_description("max_depth"))] = None
|
|
360
|
+
) -> CallToolResult:
|
|
361
|
+
"""随机森林回归 - 支持文件输入"""
|
|
362
|
+
return await handle_random_forest(ctx, y_data, x_data, feature_names, n_estimators, max_depth)
|
|
363
|
+
|
|
364
|
+
|
|
365
|
+
@mcp.tool()
|
|
366
|
+
@econometric_tool('regression')
|
|
367
|
+
async def gradient_boosting_regression_analysis(
|
|
368
|
+
ctx: Context[ServerSession, AppContext],
|
|
369
|
+
file_path: Annotated[Optional[str], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
370
|
+
file_content: Annotated[Optional[str], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
371
|
+
file_format: Annotated[str, Field(default="auto", description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
372
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
|
|
373
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
|
|
374
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
|
|
375
|
+
n_estimators: Annotated[int, Field(default=100, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("n_estimators"))] = 100,
|
|
376
|
+
learning_rate: Annotated[float, Field(default=0.1, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("learning_rate"))] = 0.1,
|
|
377
|
+
max_depth: Annotated[int, Field(default=3, description=GRADIENT_BOOSTING_REGRESSION_ANALYSIS.get_field_description("max_depth"))] = 3
|
|
378
|
+
) -> CallToolResult:
|
|
379
|
+
"""梯度提升树回归 - 支持文件输入"""
|
|
380
|
+
return await handle_gradient_boosting(ctx, y_data, x_data, feature_names, n_estimators, learning_rate, max_depth)
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
@mcp.tool()
|
|
384
|
+
@econometric_tool('regression')
|
|
385
|
+
async def lasso_regression_analysis(
|
|
386
|
+
ctx: Context[ServerSession, AppContext],
|
|
387
|
+
file_path: Annotated[Optional[str], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
388
|
+
file_content: Annotated[Optional[str], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
389
|
+
file_format: Annotated[str, Field(default="auto", description=LASSO_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
390
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
|
|
391
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
|
|
392
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=LASSO_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
|
|
393
|
+
alpha: Annotated[float, Field(default=1.0, description=LASSO_REGRESSION_ANALYSIS.get_field_description("alpha"))] = 1.0
|
|
394
|
+
) -> CallToolResult:
|
|
395
|
+
"""Lasso回归 - 支持文件输入"""
|
|
396
|
+
return await handle_lasso_regression(ctx, y_data, x_data, feature_names, alpha)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
@mcp.tool()
|
|
400
|
+
@econometric_tool('regression')
|
|
401
|
+
async def ridge_regression_analysis(
|
|
402
|
+
ctx: Context[ServerSession, AppContext],
|
|
403
|
+
file_path: Annotated[Optional[str], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
404
|
+
file_content: Annotated[Optional[str], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
405
|
+
file_format: Annotated[str, Field(default="auto", description=RIDGE_REGRESSION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
406
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("y_data"))] = None,
|
|
407
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("x_data"))] = None,
|
|
408
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("feature_names"))] = None,
|
|
409
|
+
alpha: Annotated[float, Field(default=1.0, description=RIDGE_REGRESSION_ANALYSIS.get_field_description("alpha"))] = 1.0
|
|
410
|
+
) -> CallToolResult:
|
|
411
|
+
"""Ridge回归 - 支持文件输入"""
|
|
412
|
+
return await handle_ridge_regression(ctx, y_data, x_data, feature_names, alpha)
|
|
413
|
+
|
|
414
|
+
|
|
415
|
+
@mcp.tool()
|
|
416
|
+
@econometric_tool('regression')
|
|
417
|
+
async def cross_validation_analysis(
|
|
418
|
+
ctx: Context[ServerSession, AppContext],
|
|
419
|
+
file_path: Annotated[Optional[str], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("file_path"))] = None,
|
|
420
|
+
file_content: Annotated[Optional[str], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("file_content"))] = None,
|
|
421
|
+
file_format: Annotated[str, Field(default="auto", description=CROSS_VALIDATION_ANALYSIS.get_field_description("file_format"))] = "auto",
|
|
422
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("y_data"))] = None,
|
|
423
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("x_data"))] = None,
|
|
424
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=CROSS_VALIDATION_ANALYSIS.get_field_description("feature_names"))] = None,
|
|
425
|
+
model_type: Annotated[str, Field(default="random_forest", description=CROSS_VALIDATION_ANALYSIS.get_field_description("model_type"))] = "random_forest",
|
|
426
|
+
cv_folds: Annotated[int, Field(default=5, description=CROSS_VALIDATION_ANALYSIS.get_field_description("cv_folds"))] = 5,
|
|
427
|
+
scoring: Annotated[str, Field(default="r2", description=CROSS_VALIDATION_ANALYSIS.get_field_description("scoring"))] = "r2"
|
|
428
|
+
) -> CallToolResult:
|
|
429
|
+
"""交叉验证 - 支持文件输入"""
|
|
430
|
+
return await handle_cross_validation(ctx, y_data, x_data, model_type, cv_folds, scoring)
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
@mcp.tool()
|
|
434
|
+
@econometric_tool('regression')
|
|
435
|
+
async def feature_importance_analysis_tool(
|
|
436
|
+
ctx: Context[ServerSession, AppContext],
|
|
437
|
+
file_path: Annotated[Optional[str], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("file_path"))] = None,
|
|
438
|
+
file_content: Annotated[Optional[str], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("file_content"))] = None,
|
|
439
|
+
file_format: Annotated[str, Field(default="auto", description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("file_format"))] = "auto",
|
|
440
|
+
y_data: Annotated[Optional[List[float]], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("y_data"))] = None,
|
|
441
|
+
x_data: Annotated[Optional[List[List[float]]], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("x_data"))] = None,
|
|
442
|
+
feature_names: Annotated[Optional[List[str]], Field(default=None, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("feature_names"))] = None,
|
|
443
|
+
method: Annotated[str, Field(default="random_forest", description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("method"))] = "random_forest",
|
|
444
|
+
top_k: Annotated[int, Field(default=5, description=FEATURE_IMPORTANCE_ANALYSIS_TOOL.get_field_description("top_k"))] = 5
|
|
445
|
+
) -> CallToolResult:
|
|
446
|
+
"""特征重要性分析 - 支持文件输入"""
|
|
447
|
+
return await handle_feature_importance(ctx, y_data, x_data, feature_names, method, top_k)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
def create_mcp_server() -> FastMCP:
|
|
451
|
+
"""创建并返回MCP服务器实例"""
|
|
452
|
+
return mcp
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
"""
|
|
2
|
+
计量经济学工具模块
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from . import regression, statistics, time_series, machine_learning, panel_data
|
|
6
|
+
from . import validation, cache, monitoring, file_parser, tool_descriptions
|
|
7
|
+
|
|
8
|
+
__all__ = [
|
|
9
|
+
"regression",
|
|
10
|
+
"statistics",
|
|
11
|
+
"time_series",
|
|
12
|
+
"machine_learning",
|
|
13
|
+
"panel_data",
|
|
14
|
+
"validation",
|
|
15
|
+
"cache",
|
|
16
|
+
"monitoring",
|
|
17
|
+
"file_parser",
|
|
18
|
+
"tool_descriptions"
|
|
19
|
+
]
|