aigroup-econ-mcp 0.3.8__tar.gz → 0.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aigroup-econ-mcp might be problematic. Click here for more details.

Files changed (32) hide show
  1. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/.gitignore +3 -1
  2. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/PKG-INFO +287 -22
  3. aigroup_econ_mcp-0.4.0/README.md +680 -0
  4. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/pyproject.toml +2 -2
  5. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/__init__.py +18 -18
  6. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/server.py +452 -0
  7. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/server_v1_backup.py +1250 -0
  8. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/server_v1_old.py +1250 -0
  9. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/server_with_file_support.py +259 -0
  10. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/__init__.py +3 -2
  11. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/tools/data_loader.py +171 -0
  12. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/tools/decorators.py +178 -0
  13. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/tools/file_input_handler.py +268 -0
  14. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/tools/file_parser.py +560 -0
  15. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/machine_learning.py +14 -14
  16. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/panel_data.py +10 -6
  17. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/time_series.py +54 -127
  18. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/tools/tool_handlers.py +378 -0
  19. aigroup_econ_mcp-0.4.0/src/aigroup_econ_mcp/tools/tool_registry.py +170 -0
  20. aigroup_econ_mcp-0.3.8/README.md +0 -415
  21. aigroup_econ_mcp-0.3.8/src/aigroup_econ_mcp/server.py +0 -3459
  22. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/LICENSE +0 -0
  23. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/cli.py +0 -0
  24. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/config.py +0 -0
  25. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/base.py +0 -0
  26. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/cache.py +0 -0
  27. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/monitoring.py +0 -0
  28. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/optimized_example.py +0 -0
  29. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/regression.py +0 -0
  30. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/statistics.py +0 -0
  31. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/timeout.py +0 -0
  32. {aigroup_econ_mcp-0.3.8 → aigroup_econ_mcp-0.4.0}/src/aigroup_econ_mcp/tools/validation.py +0 -0
@@ -248,4 +248,6 @@ exports/
248
248
  *.xlsx
249
249
  *.json
250
250
  !pyproject.toml
251
- !README.md
251
+ !README.md
252
+ # PyPI configuration with API tokens
253
+ .pypirc
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aigroup-econ-mcp
3
- Version: 0.3.8
3
+ Version: 0.4.0
4
4
  Summary: 专业计量经济学MCP工具 - 让大模型直接进行数据分析
5
5
  Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
6
6
  Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
@@ -52,6 +52,9 @@ Description-Content-Type: text/markdown
52
52
  - ⏰ **时间序列分析** - 平稳性检验、ARIMA模型、预测
53
53
  - 🔄 **结构化输出** - 完整的Pydantic模型支持
54
54
  - 🎯 **上下文管理** - 进度报告、日志记录、错误处理
55
+ - 📁 **文件输入支持** - 支持CSV/JSON文件自动解析
56
+ - 📊 **面板数据分析** - 固定效应、随机效应模型等
57
+ - 🤖 **机器学习集成** - 随机森林、梯度提升等算法
55
58
 
56
59
  ## 🚀 快速开始(Roo-Code用户)
57
60
 
@@ -67,7 +70,7 @@ uvx aigroup-econ-mcp
67
70
  ✅ 下载最新版本
68
71
  ✅ 配置轻量级依赖(仅~50MB)
69
72
  ✅ 启动并连接到Roo-Code
70
- ✅ 提供5个专业计量经济学工具
73
+ ✅ 提供21个专业计量经济学工具
71
74
 
72
75
  ### 配置Roo-Code
73
76
 
@@ -87,7 +90,22 @@ uvx aigroup-econ-mcp
87
90
  "ols_regression",
88
91
  "hypothesis_testing",
89
92
  "time_series_analysis",
90
- "correlation_analysis"
93
+ "correlation_analysis",
94
+ "panel_fixed_effects",
95
+ "panel_random_effects",
96
+ "panel_hausman_test",
97
+ "panel_unit_root_test",
98
+ "var_model_analysis",
99
+ "vecm_model_analysis",
100
+ "garch_model_analysis",
101
+ "state_space_model_analysis",
102
+ "variance_decomposition_analysis",
103
+ "random_forest_regression_analysis",
104
+ "gradient_boosting_regression_analysis",
105
+ "lasso_regression_analysis",
106
+ "ridge_regression_analysis",
107
+ "cross_validation_analysis",
108
+ "feature_importance_analysis_tool"
91
109
  ]
92
110
  }
93
111
  }
@@ -103,13 +121,28 @@ uvx aigroup-econ-mcp
103
121
 
104
122
  配置完成后,RooCode将自动连接到aigroup-econ-mcp服务,您可以直接使用以下工具:
105
123
 
106
- | 工具 | 功能 | 用途 |
107
- |------|------|------|
108
- | descriptive_statistics | 描述性统计分析 | 加载数据并自动计算统计量 |
109
- | ols_regression | OLS回归分析 | 回归建模和模型诊断 |
110
- | hypothesis_testing | 假设检验 | t检验、F检验、卡方检验、ADF检验 |
111
- | time_series_analysis | 时间序列分析 | 平稳性检验、ARIMA模型、预测 |
112
- | correlation_analysis | 相关性分析 | 变量间相关性分析和可视化 |
124
+ | 工具类别 | 工具 | 功能 |
125
+ |---------|------|------|
126
+ | **基础统计** | descriptive_statistics | 描述性统计分析 |
127
+ | | ols_regression | OLS回归分析 |
128
+ | | hypothesis_testing | 假设检验 |
129
+ | | time_series_analysis | 时间序列分析 |
130
+ | | correlation_analysis | 相关性分析 |
131
+ | **面板数据** | panel_fixed_effects | 固定效应模型 |
132
+ | | panel_random_effects | 随机效应模型 |
133
+ | | panel_hausman_test | Hausman检验 |
134
+ | | panel_unit_root_test | 面板单位根检验 |
135
+ | **时间序列** | var_model_analysis | VAR模型分析 |
136
+ | | vecm_model_analysis | VECM模型分析 |
137
+ | | garch_model_analysis | GARCH模型分析 |
138
+ | | state_space_model_analysis | 状态空间模型分析 |
139
+ | | variance_decomposition_analysis | 方差分解分析 |
140
+ | **机器学习** | random_forest_regression_analysis | 随机森林回归 |
141
+ | | gradient_boosting_regression_analysis | 梯度提升树回归 |
142
+ | | lasso_regression_analysis | Lasso回归 |
143
+ | | ridge_regression_analysis | Ridge回归 |
144
+ | | cross_validation_analysis | 交叉验证 |
145
+ | | feature_importance_analysis_tool | 特征重要性分析 |
113
146
 
114
147
  ## 📦 安装方式
115
148
 
@@ -143,6 +176,7 @@ aigroup-econ-mcp
143
176
  依赖说明:
144
177
 
145
178
  - **核心依赖**(默认):pandas, numpy, scipy, mcp, statsmodels, matplotlib
179
+ - **扩展依赖**:linearmodels(面板数据), scikit-learn(机器学习), arch(GARCH模型)
146
180
  - **轻量级**:无需torch或其他重型依赖
147
181
  - **推荐**:直接使用基础安装,包含所有计量经济学功能!
148
182
 
@@ -168,7 +202,25 @@ aigroup-econ-mcp
168
202
  📈 ARIMA建模:自动定阶和参数估计
169
203
  🔮 预测功能:点预测和区间预测
170
204
 
171
- 5️⃣ 结构化输出
205
+ 5️⃣ 面板数据分析
206
+ 🏢 固定效应模型:控制个体/时间固定效应
207
+ 📊 随机效应模型:处理随机效应
208
+ 🔍 Hausman检验:模型选择
209
+ 📉 面板单位根检验:面板数据平稳性分析
210
+
211
+ 6️⃣ 机器学习集成
212
+ 🌳 随机森林:非线性关系建模
213
+ 🚀 梯度提升:高精度预测
214
+ 🔗 正则化回归:Lasso/Ridge防止过拟合
215
+ 🔍 交叉验证:模型性能评估
216
+ 🎯 特征重要性:变量选择
217
+
218
+ 7️⃣ 文件输入支持
219
+ 📁 自动解析:支持CSV/JSON文件自动解析
220
+ 🔄 向后兼容:保持原有直接数据输入方式
221
+ ⚙️ 灵活输入:可混合使用文件和直接数据
222
+
223
+ 8️⃣ 结构化输出
172
224
  📋 Pydantic模型:类型安全的数据结构
173
225
  📊 丰富格式:表格、JSON、Markdown报告
174
226
  🎯 错误处理:详细的错误信息和建议
@@ -238,7 +290,6 @@ uv run aigroup-econ-mcp --port 8000 --debug
238
290
  uvx -p . aigroup-econ-mcp
239
291
  ```
240
292
 
241
-
242
293
  ## 与RooCode集成
243
294
 
244
295
  在RooCode的MCP配置文件中添加:
@@ -254,16 +305,31 @@ uvx -p . aigroup-econ-mcp
254
305
  "ols_regression",
255
306
  "hypothesis_testing",
256
307
  "time_series_analysis",
257
- "correlation_analysis"
308
+ "correlation_analysis",
309
+ "panel_fixed_effects",
310
+ "panel_random_effects",
311
+ "panel_hausman_test",
312
+ "panel_unit_root_test",
313
+ "var_model_analysis",
314
+ "vecm_model_analysis",
315
+ "garch_model_analysis",
316
+ "state_space_model_analysis",
317
+ "variance_decomposition_analysis",
318
+ "random_forest_regression_analysis",
319
+ "gradient_boosting_regression_analysis",
320
+ "lasso_regression_analysis",
321
+ "ridge_regression_analysis",
322
+ "cross_validation_analysis",
323
+ "feature_importance_analysis_tool"
258
324
  ],
259
325
  "disabled": true
260
326
  }
261
327
  ```
262
328
 
263
-
264
-
265
329
  ## 📋 工具详细说明
266
330
 
331
+ ### 基础统计工具
332
+
267
333
  #### descriptive_statistics
268
334
  描述性统计分析工具
269
335
 
@@ -271,6 +337,8 @@ uvx -p . aigroup-econ-mcp
271
337
  - `data`: 数值数据列表或字典
272
338
  - `variables`: 变量名列表(可选)
273
339
  - `output_format`: 输出格式(table/json)
340
+ - `file_path`: CSV/JSON文件路径(可选)
341
+ - `file_content`: CSV/JSON文件内容(可选)
274
342
 
275
343
  **返回:**
276
344
  - 基础统计量(均值、方差、偏度、峰度)
@@ -286,6 +354,8 @@ OLS回归分析工具
286
354
  - `feature_names`: 变量名称(可选)
287
355
  - `add_constant`: 是否添加常数项(默认true)
288
356
  - `output_detail`: 输出详细程度(可选)
357
+ - `file_path`: CSV/JSON文件路径(可选)
358
+ - `file_content`: CSV/JSON文件内容(可选)
289
359
 
290
360
  **返回:**
291
361
  - 回归系数和统计显著性
@@ -301,6 +371,8 @@ OLS回归分析工具
301
371
  - `data2`: 第二组数据(可选)
302
372
  - `test_type`: 检验类型(t_test/f_test/chi2_test/adf_test)
303
373
  - `alpha`: 显著性水平(默认0.05)
374
+ - `file_path`: 文件路径(可选)
375
+ - `file_content`: 文件内容(可选)
304
376
 
305
377
  **返回:**
306
378
  - 检验统计量和p值
@@ -315,6 +387,8 @@ OLS回归分析工具
315
387
  - `analysis_type`: 分析类型(stationarity/arima/forecast)
316
388
  - `lags`: 滞后期数(默认12)
317
389
  - `forecast_steps`: 预测步数(可选)
390
+ - `file_path`: 文件路径(可选)
391
+ - `file_content`: 文件内容(可选)
318
392
 
319
393
  **返回:**
320
394
  - 平稳性检验结果
@@ -329,12 +403,198 @@ OLS回归分析工具
329
403
  - `data`: 变量数据字典
330
404
  - `method`: 相关系数类型(pearson/spearman/kendall)
331
405
  - `plot`: 是否生成可视化图表(默认true)
406
+ - `file_path`: 文件路径(可选)
407
+ - `file_content`: 文件内容(可选)
332
408
 
333
409
  **返回:**
334
410
  - 相关系数矩阵
335
411
  - 显著性检验结果
336
412
  - 相关性热力图
337
413
 
414
+ ### 面板数据分析工具
415
+
416
+ #### panel_fixed_effects
417
+ 固定效应模型分析工具
418
+
419
+ **参数:**
420
+ - `y_data`: 因变量数据
421
+ - `x_data`: 自变量数据
422
+ - `entity_ids`: 实体标识符
423
+ - `time_periods`: 时间标识符
424
+ - `feature_names`: 特征名称(可选)
425
+ - `entity_effects`: 是否包含实体效应(默认true)
426
+ - `time_effects`: 是否包含时间效应(默认false)
427
+ - `file_path`: CSV文件路径(可选)
428
+ - `file_content`: CSV文件内容(可选)
429
+
430
+ #### panel_random_effects
431
+ 随机效应模型分析工具
432
+
433
+ **参数:**
434
+ - `y_data`: 因变量数据
435
+ - `x_data`: 自变量数据
436
+ - `entity_ids`: 实体标识符
437
+ - `time_periods`: 时间标识符
438
+ - `feature_names`: 特征名称(可选)
439
+ - `entity_effects`: 是否包含实体效应(默认true)
440
+ - `time_effects`: 是否包含时间效应(默认false)
441
+ - `file_path`: CSV文件路径(可选)
442
+ - `file_content`: CSV文件内容(可选)
443
+
444
+ #### panel_hausman_test
445
+ Hausman检验工具
446
+
447
+ **参数:**
448
+ - `y_data`: 因变量数据
449
+ - `x_data`: 自变量数据
450
+ - `entity_ids`: 实体标识符
451
+ - `time_periods`: 时间标识符
452
+ - `feature_names`: 特征名称(可选)
453
+ - `file_path`: CSV文件路径(可选)
454
+ - `file_content`: CSV文件内容(可选)
455
+
456
+ #### panel_unit_root_test
457
+ 面板单位根检验工具
458
+
459
+ **参数:**
460
+ - `data`: 时间序列数据
461
+ - `y_data`: 因变量数据(可选)
462
+ - `entity_ids`: 实体标识符
463
+ - `time_periods`: 时间标识符
464
+ - `feature_names`: 特征名称(可选)
465
+ - `test_type`: 检验类型(默认levinlin)
466
+ - `file_path`: CSV文件路径(可选)
467
+ - `file_content`: CSV文件内容(可选)
468
+
469
+ ### 高级时间序列工具
470
+
471
+ #### var_model_analysis
472
+ VAR模型分析工具
473
+
474
+ **参数:**
475
+ - `data`: 多变量时间序列数据
476
+ - `max_lags`: 最大滞后阶数(默认5)
477
+ - `ic`: 信息准则(默认aic)
478
+ - `file_path`: 文件路径(可选)
479
+ - `file_content`: 文件内容(可选)
480
+
481
+ #### vecm_model_analysis
482
+ VECM模型分析工具
483
+
484
+ **参数:**
485
+ - `data`: 多变量时间序列数据
486
+ - `coint_rank`: 协整秩(默认1)
487
+ - `deterministic`: 确定性项(默认co)
488
+ - `max_lags`: 最大滞后阶数(默认5)
489
+ - `file_path`: 文件路径(可选)
490
+ - `file_content`: 文件内容(可选)
491
+
492
+ #### garch_model_analysis
493
+ GARCH模型分析工具
494
+
495
+ **参数:**
496
+ - `data`: 时间序列数据
497
+ - `order`: GARCH模型阶数(默认(1, 1))
498
+ - `dist`: 分布类型(默认normal)
499
+ - `file_path`: 文件路径(可选)
500
+ - `file_content`: 文件内容(可选)
501
+
502
+ #### state_space_model_analysis
503
+ 状态空间模型分析工具
504
+
505
+ **参数:**
506
+ - `data`: 时间序列数据
507
+ - `state_dim`: 状态维度(默认1)
508
+ - `observation_dim`: 观测维度(默认1)
509
+ - `trend`: 是否包含趋势(默认true)
510
+ - `seasonal`: 是否包含季节性(默认false)
511
+ - `period`: 季节周期(默认12)
512
+ - `file_path`: 文件路径(可选)
513
+ - `file_content`: 文件内容(可选)
514
+
515
+ #### variance_decomposition_analysis
516
+ 方差分解分析工具
517
+
518
+ **参数:**
519
+ - `data`: 多变量时间序列数据
520
+ - `periods`: 分解期数(默认10)
521
+ - `max_lags`: 最大滞后阶数(默认5)
522
+ - `file_path`: 文件路径(可选)
523
+ - `file_content`: 文件内容(可选)
524
+
525
+ ### 机器学习工具
526
+
527
+ #### random_forest_regression_analysis
528
+ 随机森林回归分析工具
529
+
530
+ **参数:**
531
+ - `y_data`: 因变量数据
532
+ - `x_data`: 自变量数据
533
+ - `feature_names`: 特征名称(可选)
534
+ - `n_estimators`: 树的数量(默认100)
535
+ - `max_depth`: 最大深度(可选)
536
+ - `file_path`: 文件路径(可选)
537
+ - `file_content`: 文件内容(可选)
538
+
539
+ #### gradient_boosting_regression_analysis
540
+ 梯度提升回归分析工具
541
+
542
+ **参数:**
543
+ - `y_data`: 因变量数据
544
+ - `x_data`: 自变量数据
545
+ - `feature_names`: 特征名称(可选)
546
+ - `n_estimators`: 树的数量(默认100)
547
+ - `learning_rate`: 学习率(默认0.1)
548
+ - `max_depth`: 最大深度(默认3)
549
+ - `file_path`: 文件路径(可选)
550
+ - `file_content`: 文件内容(可选)
551
+
552
+ #### lasso_regression_analysis
553
+ Lasso回归分析工具
554
+
555
+ **参数:**
556
+ - `y_data`: 因变量数据
557
+ - `x_data`: 自变量数据
558
+ - `feature_names`: 特征名称(可选)
559
+ - `alpha`: 正则化强度(默认1.0)
560
+ - `file_path`: 文件路径(可选)
561
+ - `file_content`: 文件内容(可选)
562
+
563
+ #### ridge_regression_analysis
564
+ Ridge回归分析工具
565
+
566
+ **参数:**
567
+ - `y_data`: 因变量数据
568
+ - `x_data`: 自变量数据
569
+ - `feature_names`: 特征名称(可选)
570
+ - `alpha`: 正则化强度(默认1.0)
571
+ - `file_path`: 文件路径(可选)
572
+ - `file_content`: 文件内容(可选)
573
+
574
+ #### cross_validation_analysis
575
+ 交叉验证分析工具
576
+
577
+ **参数:**
578
+ - `y_data`: 因变量数据
579
+ - `x_data`: 自变量数据
580
+ - `feature_names`: 特征名称(可选)
581
+ - `model_type`: 模型类型(默认random_forest)
582
+ - `cv_folds`: 交叉验证折数(默认5)
583
+ - `scoring`: 评分标准(默认r2)
584
+ - `file_path`: 文件路径(可选)
585
+ - `file_content`: 文件内容(可选)
586
+
587
+ #### feature_importance_analysis_tool
588
+ 特征重要性分析工具
589
+
590
+ **参数:**
591
+ - `y_data`: 因变量数据
592
+ - `x_data`: 自变量数据
593
+ - `feature_names`: 特征名称(可选)
594
+ - `method`: 分析方法(默认random_forest)
595
+ - `top_k`: 返回前k个重要特征(默认5)
596
+ - `file_path`: 文件路径(可选)
597
+ - `file_content`: 文件内容(可选)
338
598
 
339
599
  ## 可用资源
340
600
 
@@ -363,8 +623,11 @@ aigroup-econ-mcp/
363
623
  │ └── tools/
364
624
  │ ├── __init__.py
365
625
  │ ├── statistics.py # 统计分析工具
366
- │ ├── regression.py # 回归分析工具
367
- └── time_series.py # 时间序列工具
626
+ │ ├── regression.py # 回归分析工具
627
+ ├── time_series.py # 时间序列工具
628
+ │ ├── panel_data.py # 面板数据工具
629
+ │ ├── machine_learning.py # 机器学习工具
630
+ │ └── file_parser.py # 文件解析工具
368
631
  ├── pyproject.toml # 项目配置
369
632
  ├── README.md
370
633
  └── examples/
@@ -379,6 +642,10 @@ aigroup-econ-mcp/
379
642
  - scipy >= 1.7.0
380
643
  - matplotlib >= 3.5.0
381
644
  - mcp >= 1.0.0
645
+ - pydantic >= 2.0.0
646
+ - linearmodels >= 7.0
647
+ - scikit-learn >= 1.0.0
648
+ - arch >= 6.0.0
382
649
 
383
650
  ## 开发
384
651
 
@@ -420,8 +687,6 @@ MIT License
420
687
 
421
688
  欢迎贡献代码!请查看[贡献指南](CONTRIBUTING.md)了解详情。
422
689
 
423
-
424
-
425
690
  ## 🤝 贡献
426
691
 
427
692
  欢迎提交Issue和Pull Request!
@@ -441,6 +706,8 @@ MIT License - 查看 LICENSE 了解详情
441
706
  - Roo-Code - AI编程助手
442
707
  - statsmodels - 统计分析库
443
708
  - pandas - 数据处理库
709
+ - scikit-learn - 机器学习库
710
+ - linearmodels - 面板数据分析库
444
711
 
445
712
  ## 📞 支持
446
713
 
@@ -448,6 +715,4 @@ MIT License - 查看 LICENSE 了解详情
448
715
  📧 邮件:jackdark425@gmail.com
449
716
  📚 文档:查看项目文档和示例
450
717
 
451
- **立即开始**: `uvx aigroup-econ-mcp` 🚀
452
-
453
- ---
718
+ **立即开始**: `uvx aigroup-econ-mcp` 🚀