aiauto-client 0.1.5__tar.gz → 0.1.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (23) hide show
  1. aiauto_client-0.1.7/MANIFEST.in +1 -0
  2. aiauto_client-0.1.7/PKG-INFO +472 -0
  3. aiauto_client-0.1.7/README.md +445 -0
  4. aiauto_client-0.1.7/examples/example_torch_multiple_objective.py +468 -0
  5. aiauto_client-0.1.7/examples/example_torch_single_objective.py +471 -0
  6. aiauto_client-0.1.7/examples/simple_example.py +78 -0
  7. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/pyproject.toml +4 -4
  8. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto/constants.py +5 -10
  9. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto/core.py +20 -15
  10. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto/serializer.py +20 -10
  11. aiauto_client-0.1.7/src/aiauto_client.egg-info/PKG-INFO +472 -0
  12. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto_client.egg-info/SOURCES.txt +4 -0
  13. aiauto_client-0.1.5/PKG-INFO +0 -102
  14. aiauto_client-0.1.5/README.md +0 -75
  15. aiauto_client-0.1.5/src/aiauto_client.egg-info/PKG-INFO +0 -102
  16. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/setup.cfg +0 -0
  17. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto/__init__.py +0 -0
  18. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto/_config.py +0 -0
  19. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto/http_client.py +0 -0
  20. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto_client.egg-info/dependency_links.txt +0 -0
  21. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto_client.egg-info/requires.txt +0 -0
  22. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/src/aiauto_client.egg-info/top_level.txt +0 -0
  23. {aiauto_client-0.1.5 → aiauto_client-0.1.7}/tests/test_local_storage.py +0 -0
@@ -0,0 +1 @@
1
+ recursive-include examples *.py
@@ -0,0 +1,472 @@
1
+ Metadata-Version: 2.1
2
+ Name: aiauto-client
3
+ Version: 0.1.7
4
+ Summary: AI Auto HPO (Hyperparameter Optimization) Client Library
5
+ Author-email: AIAuto Team <ainode@zeroone.ai>
6
+ Project-URL: Homepage, https://dashboard.aiauto.pangyo.ainode.ai
7
+ Project-URL: Repository, https://dashboard.aiauto.pangyo.ainode.ai
8
+ Project-URL: Documentation, https://dashboard.aiauto.pangyo.ainode.ai
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Classifier: Programming Language :: Python :: 3.13
19
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
20
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
21
+ Requires-Python: >=3.8
22
+ Description-Content-Type: text/markdown
23
+ Requires-Dist: optuna>=3.0.0
24
+ Requires-Dist: requests>=2.25.0
25
+ Requires-Dist: grpcio>=1.48.0
26
+ Requires-Dist: grpcio-status>=1.48.0
27
+
28
+ # AIAuto - Hyperparameter Optimization Client Library
29
+
30
+ AIAuto는 Kubernetes 기반의 분산 HPO(Hyperparameter Optimization) 시스템을 위한 클라이언트 라이브러리입니다.
31
+ 사용자 python lib <-> Next.js 서버 사이 Connect RPC (HTTP/1.1) 통신 담당
32
+
33
+ ## 설치
34
+ - `pip install aiauto-client optuna`
35
+
36
+ ## API 레퍼런스
37
+
38
+ ### create_study 파라미터
39
+ - `study_name` (str): Study 이름
40
+ - `direction` (str): 단일 목적 최적화 방향 ("minimize" 또는 "maximize")
41
+ - `directions` (List[str]): 다중 목적 최적화 방향 리스트 (direction과 상호 배타적)
42
+ - `sampler` (object/dict): Optuna sampler 객체 또는 dict (선택적)
43
+ - `pruner` (object/dict): Optuna pruner 객체 또는 dict (선택적)
44
+
45
+ **주의**: `direction`과 `directions`는 둘 중 하나만 지정해야 합니다.
46
+
47
+ ### optimize 파라미터
48
+ - `objective` (Callable): Trial을 인자로 받는 목적 함수
49
+ - `n_trials` (int): 총 trial 수
50
+ - `parallelism` (int): 동시 실행 Pod 수 (기본값: 2)
51
+ - `requirements_file` (str): requirements.txt 파일 경로 (requirements_list와 상호 배타적)
52
+ - `requirements_list` (List[str]): 패키지 리스트 (requirements_file과 상호 배타적)
53
+ - `resources_requests` (Dict[str, str]): 리소스 요청 (기본값: {"cpu": "256m", "memory": "256Mi"})
54
+ - `resources_limits` (Dict[str, str]): 리소스 제한 (기본값: {"cpu": "256m", "memory": "256Mi"})
55
+ - `runtime_image` (str): 커스텀 런타임 이미지 (None이면 자동 선택)
56
+ - `use_gpu` (bool): GPU 사용 여부 (기본값: False)
57
+
58
+ **주의**: `requirements_file`과 `requirements_list`는 둘 중 하나만 지정해야 합니다.
59
+
60
+ ## 지원 런타임 이미지 확인
61
+ ```python
62
+ import aiauto
63
+
64
+ # 사용 가능한 이미지 확인
65
+ for image in aiauto.RUNTIME_IMAGES:
66
+ print(image)
67
+ ```
68
+
69
+ ## 실행 흐름
70
+ ### token 발급 # TODO
71
+ - `https://dashboard.aiauto.pangyo.ainode.ai` 에 접속하여 ainode 에 로그인 한 후
72
+ - `https://dashboard.aiauto.pangyo.ainode.ai/token` 으로 이동하여 aiauto 의 token 을 발급
73
+ - 아래 코드 처럼 발급한 token 을 넣어 AIAutoController singleton 객체를 초기화, OptunaWorkspace 를 활성화 시킨다
74
+ ```python
75
+ import aiauto
76
+
77
+ ac = aiauto.AIAutoController('<token>')
78
+ ```
79
+ - `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 OptunaWorkspace 와 optuna-dashboard 링크를 확인할 수 있음
80
+ - 아래 코드 처럼 study 를 생성하면 `https://dashboard.aiauto.pangyo.ainode.ai/study` 에서 확인할 수 있고 optuna-dashboard 링크에서도 확인 가능
81
+ ```python
82
+ study_wrapper = ac.create_study(
83
+ study_name='test',
84
+ direction='maximize', # or 'minimize'
85
+ )
86
+ ```
87
+ - 아래 코드 처럼 생성한 study 애서 objective 함수를 작성하여 넘겨주면 optimize 를 호출하면 `https://dashboard.aiauto.pangyo.ainode.ai/trialbatch` 에서 확인할 수 있고 optuna-dashboard 링크에서도 확인 가능
88
+ ```python
89
+ study_wrapper.optimize(
90
+ objective=func_with_parameter_trial,
91
+ n_trials=4,
92
+ parallelism=2,
93
+ use_gpu=False,
94
+ runtime_image=aiauto.RUNTIME_IMAGES[0],
95
+ )
96
+ ```
97
+
98
+ ## Jupyter Notebook 사용 시 주의사항
99
+
100
+ Jupyter Notebook이나 Python REPL에서 정의한 함수는 Serialize 할 수 없습니다
101
+ 대신 `%%writefile` magic 울 사용하여 파일로 저장한 후 import 하세요.
102
+
103
+ ### Jupyter에서 objective 함수 작성 방법
104
+ - objective 함수를 파일로 저장
105
+ ```python
106
+ %%writefile my_objective.py
107
+ import aiauto
108
+ import optuna
109
+
110
+ def objective(trial: optuna.trial.Trial):
111
+ """
112
+ 이 함수는 외부 서버에서 실행됩니다.
113
+ 모든 import는 함수 내부에 작성하세요.
114
+ """
115
+ import torch # 함수 내부에서 import
116
+
117
+ x = trial.suggest_float('x', -10, 10)
118
+ y = trial.suggest_float('y', -10, 10)
119
+ return (x - 2) ** 2 + (y - 3) ** 2
120
+ ```
121
+ - 저장한 함수를 import해서 사용
122
+ ```python
123
+ import aiauto
124
+ from my_objective import objective
125
+
126
+ ac = aiauto.AIAutoController('<token>')
127
+ study = ac.create_study('test', 'minimize')
128
+ study.optimize(objective, n_trials=10, parallelism=2)
129
+ ```
130
+
131
+ ## 빠른 시작
132
+
133
+ ### 1. 간단한 예제 (수학 함수 최적화)
134
+
135
+ ```python
136
+ import optuna
137
+ import aiauto
138
+
139
+
140
+ # `https://dashboard.aiauto.pangyo.ainode.ai` 에 접속하여 ainode 에 로그인 한 후 aiauto 의 token 을 발급
141
+ # AIAutoController singleton 객체를 초기화 하여, OptunaWorkspace 를 활성화 시킨다 (토큰은 한 번만 설정)
142
+ ac = aiauto.AIAutoController('<token>')
143
+ # `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 OptunaWorkspace 와 optuna-dashboard 링크를 확인할 수 있음
144
+
145
+ # StudyWrapper 생성
146
+ study_wrapper = ac.create_study(
147
+ study_name="simple_optimization",
148
+ direction="minimize"
149
+ # sampler=optuna.samplers.TPESampler(), # optuna 에서 제공하는 sampler 그대로 사용 가능, 참고 https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
150
+ )
151
+ # `https://dashboard.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
152
+
153
+ # objective 함수 정의
154
+ def objective(trial: optuna.trial.Trial):
155
+ """실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수"""
156
+ x = trial.suggest_float('x', -10, 10)
157
+ y = trial.suggest_float('y', -10, 10)
158
+ return (x - 2) ** 2 + (y - 3) ** 2
159
+
160
+ # 사용자 모델 학습 or 최적화 실행 (서버에서 병렬 실행)
161
+ study_wrapper.optimize(
162
+ objective,
163
+ n_trials=100,
164
+ parallelism=4 # 동시 실행 Pod 수
165
+ )
166
+ # `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 optuna-dashboard 링크에서 결과 확인 가능
167
+ ```
168
+
169
+ ### 2. PyTorch 모델 최적화 (Single Objective)
170
+
171
+ ```python
172
+ import optuna
173
+ import aiauto
174
+
175
+
176
+ # `https://dashboard.aiauto.pangyo.ainode.ai` 에 접속하여 ainode 에 로그인 한 후 aiauto 의 token 을 발급
177
+ # AIAutoController singleton 객체를 초기화 하여, OptunaWorkspace 를 활성화 시킨다 (토큰은 한 번만 설정)
178
+ ac = aiauto.AIAutoController('<token>')
179
+ # `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 OptunaWorkspace 와 optuna-dashboard 링크를 확인할 수 있음
180
+
181
+ # StudyWrapper 생성
182
+ study_wrapper = ac.create_study(
183
+ study_name="pytorch_optimization",
184
+ direction="minimize",
185
+ # sampler=optuna.samplers.TPESampler(), # optuna 에서 제공하는 sampler 그대로 사용 가능, 참고 https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
186
+ pruner=optuna.pruners.PatientPruner( # optuna 에서 제공하는 pruner 그대로 사용 가능, 참고 https://optuna.readthedocs.io/en/stable/reference/pruners.html
187
+ optuna.pruners.MedianPruner(),
188
+ patience=4,
189
+ ),
190
+ )
191
+ # `https://dashboard.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
192
+
193
+ # objective 함수 정의
194
+ # https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
195
+ def objective(trial: optuna.trial.Trial):
196
+ """
197
+ 실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
198
+ 모든 import는 함수 내부에 존재해야 함
199
+ """
200
+ import torch
201
+ from torch import nn, optim
202
+ from torch.utils.data import DataLoader, random_split, Subset
203
+ from torchvision import transforms, datasets
204
+ import torch.nn.functional as F
205
+
206
+ # 하이퍼파라미터 샘플링
207
+ lr = trial.suggest_float('learning_rate', 1e-5, 1e-1, log=True)
208
+ momentom = trial.suggest_float('momentom', 0.1, 0.99)
209
+ batch_size = trial.suggest_categorical('batch_size', [16, 32, 64, 128])
210
+ epochs = trial.suggest_int('epochs', 10, 100, step=10)
211
+
212
+ # 모델 정의
213
+ class Net(nn.Module):
214
+ def __init__(self):
215
+ super().__init__()
216
+ self.conv1 = nn.Conv2d(3, 6, 5)
217
+ self.pool = nn.MaxPool2d(2, 2)
218
+ self.conv2 = nn.Conv2d(6, 16, 5)
219
+ self.fc1 = nn.Linear(16 * 5 * 5, 120)
220
+ self.fc2 = nn.Linear(120, 84)
221
+ self.fc3 = nn.Linear(84, 10)
222
+
223
+ def forward(self, x):
224
+ x = self.pool(F.relu(self.conv1(x)))
225
+ x = self.pool(F.relu(self.conv2(x)))
226
+ x = torch.flatten(x, 1) # flatten all dimensions except batch
227
+ x = F.relu(self.fc1(x))
228
+ x = F.relu(self.fc2(x))
229
+ x = self.fc3(x)
230
+ return x
231
+
232
+ # 모델 정의 및 학습 (GPU 자동 사용)
233
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
234
+ model = Net().to(device)
235
+ criterion = nn.CrossEntropyLoss()
236
+ optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentom)
237
+
238
+ # 데이터 로드
239
+ train_set = datasets.CIFAR10(
240
+ root="/tmp/cifar10_data", # Pod의 임시 디렉토리 사용
241
+ train=True,
242
+ download=True,
243
+ transform=[
244
+ transforms.ToTensor(),
245
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
246
+ ],
247
+ )
248
+ train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2)
249
+
250
+ test_set = datasets.CIFAR10(
251
+ root="/tmp/cifar10_data", # Pod의 임시 디렉토리 사용
252
+ train=False,
253
+ download=True,
254
+ transform=[
255
+ transforms.ToTensor(),
256
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
257
+ ],
258
+ )
259
+ test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=2)
260
+
261
+ # 학습
262
+ min_epochs_for_pruning = max(50, epochs // 5) # 최소 50 epoch 또는 전체의 1/5 후부터 pruning
263
+ total_loss = 0.0
264
+ for epoch in range(epochs): # loop over the dataset multiple times
265
+ running_loss = 0.0
266
+ model.train()
267
+ for i, (inputs, targets) in enumerate(train_loader, 0):
268
+ inputs, targets = inputs.to(device), targets.to(device)
269
+ # zero the parameter gradients
270
+ optimizer.zero_grad()
271
+ # forward + backward + optimize
272
+ outputs = model(inputs)
273
+ loss = criterion(outputs, targets)
274
+ loss.backward()
275
+ optimizer.step()
276
+
277
+ # print statistics
278
+ running_loss += loss.item()
279
+ if i % 2000 == 1999: # print every 2000 mini-batches
280
+ print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
281
+
282
+ # intermediate result 보고 및 초기 중단 검사 - 최소 epochs 후 부터만 pruning
283
+ trial.report(running_loss, epoch)
284
+ total_loss += running_loss
285
+ if epoch >= min_epochs_for_pruning and trial.should_prune():
286
+ raise optuna.TrialPruned()
287
+
288
+ return total_loss
289
+
290
+ # GPU Pod에서 실행
291
+ study_wrapper.optimize(
292
+ objective,
293
+ n_trials=100,
294
+ parallelism=4,
295
+ use_gpu=True, # GPU 사용
296
+ requirements_list=['torch', 'torchvision'] # Pod에서 자동 설치
297
+ )
298
+ ```
299
+
300
+ ### 3. Multi-Objective 최적화 (Accuracy + FLOPS)
301
+
302
+ ```python
303
+ import optuna
304
+ import aiauto
305
+
306
+
307
+ # `https://dashboard.aiauto.pangyo.ainode.ai` 에 접속하여 ainode 에 로그인 한 후 aiauto 의 token 을 발급
308
+ # AIAutoController singleton 객체를 초기화 하여, OptunaWorkspace 를 활성화 시킨다 (토큰은 한 번만 설정)
309
+ ac = aiauto.AIAutoController('<token>')
310
+ # `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 OptunaWorkspace 와 optuna-dashboard 링크를 확인할 수 있음
311
+
312
+ # StudyWrapper 생성
313
+ study_wrapper = ac.create_study(
314
+ study_name="pytorch_multiple_optimization",
315
+ direction=["minimize", "minimize"], # loss minimize, FLOPS minimize
316
+ # sampler=optuna.samplers.TPESampler(), # optuna 에서 제공하는 sampler 그대로 사용 가능, 참고 https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
317
+ )
318
+ # `https://dashboard.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
319
+
320
+ # objective 함수 정의
321
+ # https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
322
+ def objective(trial: optuna.trial.Trial):
323
+ """
324
+ 실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
325
+ 모든 import는 함수 내부에 존재해야 함
326
+ """
327
+ import torch
328
+ from torch import nn, optim
329
+ from torch.utils.data import DataLoader, random_split, Subset
330
+ from torchvision import transforms, datasets
331
+ import torch.nn.functional as F
332
+ from fvcore.nn import FlopCountAnalysis
333
+
334
+ # 하이퍼파라미터 샘플링
335
+ lr = trial.suggest_float('learning_rate', 1e-5, 1e-1, log=True)
336
+ momentom = trial.suggest_float('momentom', 0.1, 0.99)
337
+ batch_size = trial.suggest_categorical('batch_size', [16, 32, 64, 128])
338
+ epochs = trial.suggest_int('epochs', 10, 100, step=10)
339
+
340
+ # 모델 정의
341
+ class Net(nn.Module):
342
+ def __init__(self):
343
+ super().__init__()
344
+ self.conv1 = nn.Conv2d(3, 6, 5)
345
+ self.pool = nn.MaxPool2d(2, 2)
346
+ self.conv2 = nn.Conv2d(6, 16, 5)
347
+ self.fc1 = nn.Linear(16 * 5 * 5, 120)
348
+ self.fc2 = nn.Linear(120, 84)
349
+ self.fc3 = nn.Linear(84, 10)
350
+
351
+ def forward(self, x):
352
+ x = self.pool(F.relu(self.conv1(x)))
353
+ x = self.pool(F.relu(self.conv2(x)))
354
+ x = torch.flatten(x, 1) # flatten all dimensions except batch
355
+ x = F.relu(self.fc1(x))
356
+ x = F.relu(self.fc2(x))
357
+ x = self.fc3(x)
358
+ return x
359
+
360
+ # 모델 정의 및 학습 (GPU 자동 사용)
361
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
362
+ model = Net().to(device)
363
+ criterion = nn.CrossEntropyLoss()
364
+ optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentom)
365
+
366
+ # 데이터 로드
367
+ train_set = datasets.CIFAR10(
368
+ root="/tmp/cifar10_data", # Pod의 임시 디렉토리 사용
369
+ train=True,
370
+ download=True,
371
+ transform=[
372
+ transforms.ToTensor(),
373
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
374
+ ],
375
+ )
376
+ train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2)
377
+
378
+ test_set = datasets.CIFAR10(
379
+ root="/tmp/cifar10_data", # Pod의 임시 디렉토리 사용
380
+ train=False,
381
+ download=True,
382
+ transform=[
383
+ transforms.ToTensor(),
384
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
385
+ ],
386
+ )
387
+ test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True, num_workers=2)
388
+
389
+ # 학습
390
+ total_loss = 0.0
391
+ # multiple objective 는 pruning 미지원
392
+ for epoch in range(epochs): # loop over the dataset multiple times
393
+ running_loss = 0.0
394
+ model.train()
395
+ for i, (inputs, targets) in enumerate(train_loader, 0):
396
+ inputs, targets = inputs.to(device), targets.to(device)
397
+ # zero the parameter gradients
398
+ optimizer.zero_grad()
399
+ # forward + backward + optimize
400
+ outputs = model(inputs)
401
+ loss = criterion(outputs, targets)
402
+ loss.backward()
403
+ optimizer.step()
404
+
405
+ # print statistics
406
+ running_loss += loss.item()
407
+ if i % 2000 == 1999: # print every 2000 mini-batches
408
+ print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
409
+
410
+ # multiple objective 는 pruning 미지원
411
+
412
+ # FLOPS 계산
413
+ dummy_input = torch.randn(1, 3, 32, 32).to(device)
414
+ flops = FlopCountAnalysis(model, (dummy_input,)).total()
415
+
416
+ return total_loss, flops
417
+
418
+ # GPU Pod에서 실행
419
+ study_wrapper.optimize(
420
+ objective,
421
+ n_trials=100,
422
+ parallelism=4,
423
+ use_gpu=True, # GPU 사용
424
+ requirements_list=['torch', 'torchvision', 'fvcore'] # Pod에서 자동 설치
425
+ )
426
+ ```
427
+
428
+ ### 4. Ask/Tell 패턴 및 Optuna 자체의 Study
429
+
430
+ ```python
431
+ import optuna
432
+ import aiauto
433
+
434
+ # `https://dashboard.aiauto.pangyo.ainode.ai` 에 접속하여 ainode 에 로그인 한 후 aiauto 의 token 을 발급
435
+ # AIAutoController singleton 객체를 초기화 하여, OptunaWorkspace 를 활성화 시킨다 (토큰은 한 번만 설정)
436
+ ac = aiauto.AIAutoController('<token>')
437
+ # `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 OptunaWorkspace 와 optuna-dashboard 링크를 확인할 수 있음
438
+
439
+ # Study 생성
440
+ study_wrapper = ac.create_study(
441
+ study_name="test",
442
+ direction='minimize',
443
+ # sampler=optuna.samplers.TPESampler(), # optuna 에서 제공하는 sampler 그대로 사용 가능, 참고 https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
444
+ # pruner=optuna.pruners.PatientPruner( # optuna 에서 제공하는 pruner 그대로 사용 가능, 참고 https://optuna.readthedocs.io/en/stable/reference/pruners.html
445
+ # optuna.pruners.MedianPruner(),
446
+ # patience=4,
447
+ # )
448
+ )
449
+ # `https://dashboard.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
450
+
451
+ # 실제 optuna.Study 객체 획득 (로컬에서 ask/tell 가능)
452
+ study = study_wrapper.get_study()
453
+
454
+ # Ask/Tell 패턴으로 최적화
455
+ trial = study.ask()
456
+
457
+ # 파라미터 최적화
458
+ x = trial.suggest_float('x', -10, 10)
459
+ y = trial.suggest_float('y', -10, 10)
460
+
461
+ # 사용자 모델 학습 or 최적화 실행 (서버에서 병렬 실행)
462
+ ret = (x - 2) ** 2 + (y - 3) ** 2
463
+
464
+ # 결과 보고
465
+ study.tell(trial, ret)
466
+ # `https://dashboard.aiauto.pangyo.ainode.ai/workspace` 에서 생성된 optuna-dashboard 링크에서 결과 확인 가능
467
+ ```
468
+
469
+ # lib build
470
+ ```bash
471
+ make build push
472
+ ```