aiauto-client 0.1.15__tar.gz → 0.1.16__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/PKG-INFO +7 -5
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/README.md +6 -4
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/examples/example_torch_multiple_objective.py +2 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/examples/example_torch_single_objective.py +3 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/examples/simple_example.py +2 -2
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/pyproject.toml +1 -1
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto_client.egg-info/PKG-INFO +7 -5
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/MANIFEST.in +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/setup.cfg +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto/__init__.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto/_config.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto/constants.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto/core.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto/http_client.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto/serializer.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto_client.egg-info/SOURCES.txt +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto_client.egg-info/dependency_links.txt +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto_client.egg-info/requires.txt +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto_client.egg-info/top_level.txt +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/tests/test_pruners.py +0 -0
- {aiauto_client-0.1.15 → aiauto_client-0.1.16}/tests/test_samplers.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: aiauto-client
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.16
|
4
4
|
Summary: AI Auto HPO (Hyperparameter Optimization) Client Library
|
5
5
|
Author-email: AIAuto Team <ainode@zeroone.ai>
|
6
6
|
Project-URL: Homepage, https://dashboard.common.aiauto.pangyo.ainode.ai
|
@@ -121,7 +121,7 @@ Jupyter Notebook이나 Python REPL에서 정의한 함수는 Serialize 할 수
|
|
121
121
|
import aiauto
|
122
122
|
import optuna
|
123
123
|
|
124
|
-
def objective(trial
|
124
|
+
def objective(trial):
|
125
125
|
"""
|
126
126
|
이 함수는 외부 서버에서 실행됩니다.
|
127
127
|
모든 import는 함수 내부에 작성하세요.
|
@@ -170,7 +170,7 @@ time.sleep(5)
|
|
170
170
|
# `https://dashboard.common.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
|
171
171
|
|
172
172
|
# objective 함수 정의
|
173
|
-
def objective(trial
|
173
|
+
def objective(trial):
|
174
174
|
"""실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수"""
|
175
175
|
x = trial.suggest_float('x', -10, 10)
|
176
176
|
y = trial.suggest_float('y', -10, 10)
|
@@ -214,7 +214,7 @@ time.sleep(5)
|
|
214
214
|
|
215
215
|
# objective 함수 정의
|
216
216
|
# https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
|
217
|
-
def objective(trial
|
217
|
+
def objective(trial):
|
218
218
|
"""
|
219
219
|
실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
|
220
220
|
모든 import는 함수 내부에 존재해야 함
|
@@ -224,6 +224,8 @@ def objective(trial: optuna.trial.Trial):
|
|
224
224
|
from torch.utils.data import DataLoader, random_split, Subset
|
225
225
|
from torchvision import transforms, datasets
|
226
226
|
import torch.nn.functional as F
|
227
|
+
|
228
|
+
import optuna
|
227
229
|
|
228
230
|
# 하이퍼파라미터 샘플링
|
229
231
|
lr = trial.suggest_float('learning_rate', 1e-5, 1e-1, log=True)
|
@@ -349,7 +351,7 @@ time.sleep(5)
|
|
349
351
|
|
350
352
|
# objective 함수 정의
|
351
353
|
# https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
|
352
|
-
def objective(trial
|
354
|
+
def objective(trial):
|
353
355
|
"""
|
354
356
|
실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
|
355
357
|
모든 import는 함수 내부에 존재해야 함
|
@@ -94,7 +94,7 @@ Jupyter Notebook이나 Python REPL에서 정의한 함수는 Serialize 할 수
|
|
94
94
|
import aiauto
|
95
95
|
import optuna
|
96
96
|
|
97
|
-
def objective(trial
|
97
|
+
def objective(trial):
|
98
98
|
"""
|
99
99
|
이 함수는 외부 서버에서 실행됩니다.
|
100
100
|
모든 import는 함수 내부에 작성하세요.
|
@@ -143,7 +143,7 @@ time.sleep(5)
|
|
143
143
|
# `https://dashboard.common.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
|
144
144
|
|
145
145
|
# objective 함수 정의
|
146
|
-
def objective(trial
|
146
|
+
def objective(trial):
|
147
147
|
"""실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수"""
|
148
148
|
x = trial.suggest_float('x', -10, 10)
|
149
149
|
y = trial.suggest_float('y', -10, 10)
|
@@ -187,7 +187,7 @@ time.sleep(5)
|
|
187
187
|
|
188
188
|
# objective 함수 정의
|
189
189
|
# https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
|
190
|
-
def objective(trial
|
190
|
+
def objective(trial):
|
191
191
|
"""
|
192
192
|
실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
|
193
193
|
모든 import는 함수 내부에 존재해야 함
|
@@ -197,6 +197,8 @@ def objective(trial: optuna.trial.Trial):
|
|
197
197
|
from torch.utils.data import DataLoader, random_split, Subset
|
198
198
|
from torchvision import transforms, datasets
|
199
199
|
import torch.nn.functional as F
|
200
|
+
|
201
|
+
import optuna
|
200
202
|
|
201
203
|
# 하이퍼파라미터 샘플링
|
202
204
|
lr = trial.suggest_float('learning_rate', 1e-5, 1e-1, log=True)
|
@@ -322,7 +324,7 @@ time.sleep(5)
|
|
322
324
|
|
323
325
|
# objective 함수 정의
|
324
326
|
# https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
|
325
|
-
def objective(trial
|
327
|
+
def objective(trial):
|
326
328
|
"""
|
327
329
|
실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
|
328
330
|
모든 import는 함수 내부에 존재해야 함
|
@@ -49,6 +49,7 @@ def objective_multi(trial):
|
|
49
49
|
from fvcore.nn import FlopCountAnalysis
|
50
50
|
|
51
51
|
from optuna.artifacts import upload_artifact
|
52
|
+
import aiauto
|
52
53
|
|
53
54
|
|
54
55
|
# objective 함수의 매개변수로 받아온 optuna 자체의 trial 을 aiauto 에서 사용하는 TrialController 로 Warpping Log 찍는 용도
|
@@ -259,6 +260,7 @@ def objective_detailed(trial):
|
|
259
260
|
from fvcore.nn import FlopCountAnalysis
|
260
261
|
|
261
262
|
from optuna.artifacts import upload_artifact
|
263
|
+
import aiauto
|
262
264
|
|
263
265
|
|
264
266
|
# objective 함수의 매개변수로 받아온 optuna 자체의 trial 을 aiauto 에서 사용하는 TrialController 로 Warpping Log 찍는 용도
|
@@ -47,7 +47,9 @@ def objective_single(trial):
|
|
47
47
|
from torchvision import transforms, datasets
|
48
48
|
import torch.nn.functional as F
|
49
49
|
|
50
|
+
import optuna
|
50
51
|
from optuna.artifacts import upload_artifact
|
52
|
+
import aiauto
|
51
53
|
|
52
54
|
|
53
55
|
# objective 함수의 매개변수로 받아온 optuna 자체의 trial 을 aiauto 에서 사용하는 TrialController 로 Warpping Log 찍는 용도
|
@@ -261,6 +263,7 @@ def objective_detailed(trial):
|
|
261
263
|
import torch.nn.functional as F
|
262
264
|
|
263
265
|
from optuna.artifacts import upload_artifact
|
266
|
+
import aiauto
|
264
267
|
|
265
268
|
|
266
269
|
# objective 함수의 매개변수로 받아온 optuna 자체의 trial 을 aiauto 에서 사용하는 TrialController 로 Warpping Log 찍는 용도
|
@@ -26,7 +26,7 @@ ac = aiauto.AIAutoController('<token>')
|
|
26
26
|
|
27
27
|
|
28
28
|
# single objective accuracy
|
29
|
-
def
|
29
|
+
def objective_simple(trial):
|
30
30
|
import optuna
|
31
31
|
import aiauto
|
32
32
|
"""
|
@@ -74,7 +74,7 @@ if __name__ == '__main__':
|
|
74
74
|
# runtime_image = "ghcr.io/astral-sh/uv:python3.8-bookworm-slim", # default image for use_gpu False
|
75
75
|
)
|
76
76
|
time.sleep(5)
|
77
|
-
|
77
|
+
|
78
78
|
study = study_wrapper.get_study()
|
79
79
|
|
80
80
|
print('\nBest trials:')
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: aiauto-client
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.16
|
4
4
|
Summary: AI Auto HPO (Hyperparameter Optimization) Client Library
|
5
5
|
Author-email: AIAuto Team <ainode@zeroone.ai>
|
6
6
|
Project-URL: Homepage, https://dashboard.common.aiauto.pangyo.ainode.ai
|
@@ -121,7 +121,7 @@ Jupyter Notebook이나 Python REPL에서 정의한 함수는 Serialize 할 수
|
|
121
121
|
import aiauto
|
122
122
|
import optuna
|
123
123
|
|
124
|
-
def objective(trial
|
124
|
+
def objective(trial):
|
125
125
|
"""
|
126
126
|
이 함수는 외부 서버에서 실행됩니다.
|
127
127
|
모든 import는 함수 내부에 작성하세요.
|
@@ -170,7 +170,7 @@ time.sleep(5)
|
|
170
170
|
# `https://dashboard.common.aiauto.pangyo.ainode.ai/study` 에서 생성된 study 확인 가능
|
171
171
|
|
172
172
|
# objective 함수 정의
|
173
|
-
def objective(trial
|
173
|
+
def objective(trial):
|
174
174
|
"""실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수"""
|
175
175
|
x = trial.suggest_float('x', -10, 10)
|
176
176
|
y = trial.suggest_float('y', -10, 10)
|
@@ -214,7 +214,7 @@ time.sleep(5)
|
|
214
214
|
|
215
215
|
# objective 함수 정의
|
216
216
|
# https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
|
217
|
-
def objective(trial
|
217
|
+
def objective(trial):
|
218
218
|
"""
|
219
219
|
실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
|
220
220
|
모든 import는 함수 내부에 존재해야 함
|
@@ -224,6 +224,8 @@ def objective(trial: optuna.trial.Trial):
|
|
224
224
|
from torch.utils.data import DataLoader, random_split, Subset
|
225
225
|
from torchvision import transforms, datasets
|
226
226
|
import torch.nn.functional as F
|
227
|
+
|
228
|
+
import optuna
|
227
229
|
|
228
230
|
# 하이퍼파라미터 샘플링
|
229
231
|
lr = trial.suggest_float('learning_rate', 1e-5, 1e-1, log=True)
|
@@ -349,7 +351,7 @@ time.sleep(5)
|
|
349
351
|
|
350
352
|
# objective 함수 정의
|
351
353
|
# https://docs.pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 참고
|
352
|
-
def objective(trial
|
354
|
+
def objective(trial):
|
353
355
|
"""
|
354
356
|
실제 실행은 사용자 로컬 컴퓨터가 아닌 서버에서 실행 될 함수
|
355
357
|
모든 import는 함수 내부에 존재해야 함
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{aiauto_client-0.1.15 → aiauto_client-0.1.16}/src/aiauto_client.egg-info/dependency_links.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|