aiagents4pharma 1.20.1__tar.gz → 1.22.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/PKG-INFO +2 -1
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/__init__.py +1 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/config.yaml +1 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_nim_molmim.py +64 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_pubchem.py +33 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_pubchem_utils.py +16 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/__init__.py +1 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/embeddings/__init__.py +1 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/utils/embeddings/nim_molmim.py +54 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/enrichments/__init__.py +1 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/utils/enrichments/pubchem_strings.py +49 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/utils/pubchem_utils.py +42 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/agents/main_agent.py +206 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/agents/s2_agent.py +129 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml +39 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml +16 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/app/frontend/default.yaml +11 -9
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/config.yaml +1 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/default.yaml +2 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/tools/search/default.yaml +1 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/configs/tools/single_paper_recommendation/__init__.py +3 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/tools/single_paper_recommendation/default.yaml +1 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/state/state_talk2scholars.py +62 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/tests/test_llm_main_integration.py +58 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/tests/test_main_agent.py +156 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tests/test_s2_agent.py +95 -29
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tests/test_s2_tools.py +158 -22
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tools/s2/__init__.py +4 -2
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/tools/s2/display_results.py +89 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tools/s2/multi_paper_rec.py +35 -8
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/tools/s2/query_results.py +61 -0
- aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/tools/s2/retrieve_semantic_scholar_paper_id.py +79 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tools/s2/search.py +34 -10
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tools/s2/single_paper_rec.py +39 -9
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma.egg-info/PKG-INFO +2 -1
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma.egg-info/SOURCES.txt +10 -1
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma.egg-info/requires.txt +1 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/pyproject.toml +1 -0
- aiagents4pharma-1.22.0/release_version.txt +1 -0
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/agents/main_agent.py +0 -207
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/agents/s2_agent.py +0 -85
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/default.yaml +0 -18
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/default.yaml +0 -24
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/state/state_talk2scholars.py +0 -33
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/tests/test_integration.py +0 -237
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/tests/test_main_agent.py +0 -180
- aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/tools/s2/display_results.py +0 -50
- aiagents4pharma-1.20.1/release_version.txt +0 -1
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/LICENSE +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/README.md +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/agents/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/agents/t2b_agent.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/api/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/api/kegg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/api/ols.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/api/uniprot.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/agents/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/agents/t2b_agent/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/agents/t2b_agent/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/config.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/tools/ask_question/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/tools/ask_question/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/tools/get_annotation/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/configs/tools/get_annotation/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/models/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/models/basico_model.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/models/sys_bio_model.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/states/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/states/state_talk2biomodels.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_api.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_ask_question.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_basico_model.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_get_annotation.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_getmodelinfo.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_integration.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_param_scan.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_query_article.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_search_models.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_simulate_model.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_steady_state.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tests/test_sys_bio_model.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/ask_question.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/custom_plotter.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/get_annotation.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/get_modelinfo.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/load_arguments.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/load_biomodel.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/parameter_scan.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/query_article.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/search_models.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/simulate_model.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2biomodels/tools/steady_state.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/agents/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/agents/scp_agent.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/states/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/states/state_talk2cells.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/tests/scp_agent/test_scp_agent.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/tools/scp_agent/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/tools/scp_agent/display_studies.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2cells/tools/scp_agent/search_studies.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/agents/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/agents/t2kg_agent.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/agents/t2kg_agent/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/app/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/app/frontend/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/graphrag_reasoning/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_extraction/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/configs/tools/subgraph_summarization/default.yaml +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/datasets/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/datasets/biobridge_primekg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/datasets/dataset.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/datasets/primekg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/datasets/starkqa_primekg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/states/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/states/state_talk2knowledgegraphs.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_agents_t2kg_agent.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_biobridge_primekg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_dataset.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_primekg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_datasets_starkqa_primekg.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_tools_graphrag_reasoning.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_tools_subgraph_extraction.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_tools_subgraph_summarization.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_embeddings.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_huggingface.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_ollama.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_embeddings_sentencetransformer.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_enrichments.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_ollama.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_kg_utils.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tools/graphrag_reasoning.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tools/load_arguments.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tools/subgraph_extraction.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/tools/subgraph_summarization.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/embeddings/embeddings.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/embeddings/huggingface.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/embeddings/ollama.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/embeddings/sentence_transformer.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/enrichments/enrichments.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/enrichments/ollama.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/extractions/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/extractions/pcst.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2knowledgegraphs/utils/kg_utils.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/agents/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/agents/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/main_agent/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/agents/talk2scholars/s2_agent/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/app/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/app/frontend/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/configs/tools/multi_paper_recommendation/__init__.py +0 -0
- {aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/configs/tools/search → aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/configs/tools/retrieve_semantic_scholar_paper_id}/__init__.py +0 -0
- {aiagents4pharma-1.20.1/aiagents4pharma/talk2scholars/configs/tools/single_paper_recommendation → aiagents4pharma-1.22.0/aiagents4pharma/talk2scholars/configs/tools/search}/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/state/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tests/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tests/test_state.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma/talk2scholars/tools/__init__.py +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma.egg-info/dependency_links.txt +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/aiagents4pharma.egg-info/top_level.txt +0 -0
- {aiagents4pharma-1.20.1 → aiagents4pharma-1.22.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: aiagents4pharma
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.22.0
|
4
4
|
Summary: AI Agents for drug discovery, drug development, and other pharmaceutical R&D.
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: MIT License
|
@@ -30,6 +30,7 @@ Requires-Dist: ollama==0.4.6
|
|
30
30
|
Requires-Dist: pandas==2.2.3
|
31
31
|
Requires-Dist: pcst_fast==1.0.10
|
32
32
|
Requires-Dist: plotly==5.24.1
|
33
|
+
Requires-Dist: pubchempy==1.0.4
|
33
34
|
Requires-Dist: pydantic==2.9.2
|
34
35
|
Requires-Dist: pylint==3.3.1
|
35
36
|
Requires-Dist: pypdf==5.2.0
|
@@ -0,0 +1,64 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Test cases for utils/embeddings/nim_molmim.py
|
5
|
+
"""
|
6
|
+
|
7
|
+
import unittest
|
8
|
+
from unittest.mock import patch, MagicMock
|
9
|
+
from ..utils.embeddings.nim_molmim import EmbeddingWithMOLMIM
|
10
|
+
|
11
|
+
class TestEmbeddingWithMOLMIM(unittest.TestCase):
|
12
|
+
"""
|
13
|
+
Test cases for EmbeddingWithMOLMIM class.
|
14
|
+
"""
|
15
|
+
def setUp(self):
|
16
|
+
self.base_url = "https://fake-nim-api.com/embeddings"
|
17
|
+
self.embeddings_model = EmbeddingWithMOLMIM(self.base_url)
|
18
|
+
self.test_texts = ["CCO", "CCC", "C=O"]
|
19
|
+
self.test_query = "CCO"
|
20
|
+
self.mock_response = {
|
21
|
+
"embeddings": [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
|
22
|
+
}
|
23
|
+
|
24
|
+
@patch("requests.post")
|
25
|
+
def test_embed_documents(self, mock_post):
|
26
|
+
'''
|
27
|
+
Test the embed_documents method.
|
28
|
+
'''
|
29
|
+
# Mock the response from requests.post
|
30
|
+
mock_post.return_value = MagicMock()
|
31
|
+
mock_post.return_value.json.return_value = self.mock_response
|
32
|
+
embeddings = self.embeddings_model.embed_documents(self.test_texts)
|
33
|
+
# Assertions
|
34
|
+
self.assertEqual(embeddings, self.mock_response["embeddings"])
|
35
|
+
mock_post.assert_called_once_with(
|
36
|
+
self.base_url,
|
37
|
+
headers={
|
38
|
+
'accept': 'application/json',
|
39
|
+
'Content-Type': 'application/json'
|
40
|
+
},
|
41
|
+
data='{"sequences": ["CCO", "CCC", "C=O"]}',
|
42
|
+
timeout=60
|
43
|
+
)
|
44
|
+
|
45
|
+
@patch("requests.post")
|
46
|
+
def test_embed_query(self, mock_post):
|
47
|
+
'''
|
48
|
+
Test the embed_query method.
|
49
|
+
'''
|
50
|
+
# Mock the response from requests.post
|
51
|
+
mock_post.return_value = MagicMock()
|
52
|
+
mock_post.return_value.json.return_value = {"embeddings": [[0.1, 0.2, 0.3]]}
|
53
|
+
embedding = self.embeddings_model.embed_query(self.test_query)
|
54
|
+
# Assertions
|
55
|
+
self.assertEqual(embedding, [[0.1, 0.2, 0.3]])
|
56
|
+
mock_post.assert_called_once_with(
|
57
|
+
self.base_url,
|
58
|
+
headers={
|
59
|
+
'accept': 'application/json',
|
60
|
+
'Content-Type': 'application/json'
|
61
|
+
},
|
62
|
+
data='{"sequences": ["CCO"]}',
|
63
|
+
timeout=60
|
64
|
+
)
|
aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/tests/test_utils_enrichments_pubchem.py
ADDED
@@ -0,0 +1,33 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Test cases for utils/enrichments/pubchem_strings.py
|
5
|
+
"""
|
6
|
+
|
7
|
+
import pytest
|
8
|
+
from ..utils.enrichments.pubchem_strings import EnrichmentWithPubChem
|
9
|
+
|
10
|
+
# In this test, we will consider 2 examples:
|
11
|
+
# 1. PubChem ID: 5311000 (Alclometasone)
|
12
|
+
# 2. PubChem ID: 1X (Fake ID)
|
13
|
+
# The expected SMILES representation for the first PubChem ID is:
|
14
|
+
SMILES_FIRST = 'C[C@@H]1C[C@H]2[C@@H]3[C@@H](CC4=CC(=O)C=C[C@@]'
|
15
|
+
SMILES_FIRST += '4([C@H]3[C@H](C[C@@]2([C@]1(C(=O)CO)O)C)O)C)Cl'
|
16
|
+
# The expected SMILES representation for the second PubChem ID is None.
|
17
|
+
|
18
|
+
@pytest.fixture(name="enrich_obj")
|
19
|
+
def fixture_pubchem_config():
|
20
|
+
"""Return a dictionary with the configuration for the PubChem enrichment."""
|
21
|
+
return EnrichmentWithPubChem()
|
22
|
+
|
23
|
+
def test_enrich_documents(enrich_obj):
|
24
|
+
"""Test the enrich_documents method."""
|
25
|
+
pubchem_ids = ["5311000", "1X"]
|
26
|
+
enriched_strings = enrich_obj.enrich_documents(pubchem_ids)
|
27
|
+
assert enriched_strings == [SMILES_FIRST, None]
|
28
|
+
|
29
|
+
def test_enrich_documents_with_rag(enrich_obj):
|
30
|
+
"""Test the enrich_documents_with_rag method."""
|
31
|
+
pubchem_ids = ["5311000", "1X"]
|
32
|
+
enriched_strings = enrich_obj.enrich_documents_with_rag(pubchem_ids, None)
|
33
|
+
assert enriched_strings == [SMILES_FIRST, None]
|
@@ -0,0 +1,16 @@
|
|
1
|
+
"""
|
2
|
+
Test cases for utils/pubchem_utils.py
|
3
|
+
"""
|
4
|
+
|
5
|
+
from ..utils import pubchem_utils
|
6
|
+
|
7
|
+
def test_drugbank_id2pubchem_cid():
|
8
|
+
"""
|
9
|
+
Test the drugbank_id2pubchem_cid method.
|
10
|
+
|
11
|
+
The DrugBank ID for Alclometasone is DB00240.
|
12
|
+
The PubChem CID for Alclometasone is 5311000.
|
13
|
+
"""
|
14
|
+
drugbank_id = "DB00240"
|
15
|
+
pubchem_cid = pubchem_utils.drugbank_id2pubchem_cid(drugbank_id)
|
16
|
+
assert pubchem_cid == 5311000
|
@@ -0,0 +1,54 @@
|
|
1
|
+
"""
|
2
|
+
Embedding class using MOLMIM model from NVIDIA NIM.
|
3
|
+
"""
|
4
|
+
|
5
|
+
import json
|
6
|
+
from typing import List
|
7
|
+
import requests
|
8
|
+
from .embeddings import Embeddings
|
9
|
+
|
10
|
+
class EmbeddingWithMOLMIM(Embeddings):
|
11
|
+
"""
|
12
|
+
Embedding class using MOLMIM model from NVIDIA NIM
|
13
|
+
"""
|
14
|
+
def __init__(self, base_url: str):
|
15
|
+
"""
|
16
|
+
Initialize the EmbeddingWithMOLMIM class.
|
17
|
+
|
18
|
+
Args:
|
19
|
+
base_url: The base URL for the NIM/MOLMIM model.
|
20
|
+
"""
|
21
|
+
# Set base URL
|
22
|
+
self.base_url = base_url
|
23
|
+
|
24
|
+
def embed_documents(self, texts: List[str]) -> List[float]:
|
25
|
+
"""
|
26
|
+
Generate embedding for a list of SMILES strings using MOLMIM model.
|
27
|
+
|
28
|
+
Args:
|
29
|
+
texts: The list of SMILES strings to be embedded.
|
30
|
+
|
31
|
+
Returns:
|
32
|
+
The list of embeddings for the given SMILES strings.
|
33
|
+
"""
|
34
|
+
headers = {
|
35
|
+
'accept': 'application/json',
|
36
|
+
'Content-Type': 'application/json'
|
37
|
+
}
|
38
|
+
data = json.dumps({"sequences": texts})
|
39
|
+
response = requests.post(self.base_url, headers=headers, data=data, timeout=60)
|
40
|
+
embeddings = response.json()["embeddings"]
|
41
|
+
return embeddings
|
42
|
+
|
43
|
+
def embed_query(self, text: str) -> List[float]:
|
44
|
+
"""
|
45
|
+
Generate embeddings for an input query using MOLMIM model.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
text: A query to be embedded.
|
49
|
+
Returns:
|
50
|
+
The embeddings for the given query.
|
51
|
+
"""
|
52
|
+
# Generate the embedding
|
53
|
+
embeddings = self.embed_documents([text])
|
54
|
+
return embeddings
|
aiagents4pharma-1.22.0/aiagents4pharma/talk2knowledgegraphs/utils/enrichments/pubchem_strings.py
ADDED
@@ -0,0 +1,49 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Enrichment class for enriching PubChem IDs with their STRINGS representation.
|
5
|
+
"""
|
6
|
+
|
7
|
+
from typing import List
|
8
|
+
import pubchempy as pcp
|
9
|
+
from .enrichments import Enrichments
|
10
|
+
|
11
|
+
class EnrichmentWithPubChem(Enrichments):
|
12
|
+
"""
|
13
|
+
Enrichment class using PubChem
|
14
|
+
"""
|
15
|
+
def enrich_documents(self, texts: List[str]) -> List[str]:
|
16
|
+
"""
|
17
|
+
Enrich a list of input PubChem IDs with their STRINGS representation.
|
18
|
+
|
19
|
+
Args:
|
20
|
+
texts: The list of pubchem IDs to be enriched.
|
21
|
+
|
22
|
+
Returns:
|
23
|
+
The list of enriched STRINGS
|
24
|
+
"""
|
25
|
+
|
26
|
+
enriched_pubchem_ids = []
|
27
|
+
pubchem_cids = texts
|
28
|
+
for pubchem_cid in pubchem_cids:
|
29
|
+
try:
|
30
|
+
c = pcp.Compound.from_cid(pubchem_cid)
|
31
|
+
except pcp.BadRequestError:
|
32
|
+
enriched_pubchem_ids.append(None)
|
33
|
+
continue
|
34
|
+
enriched_pubchem_ids.append(c.isomeric_smiles)
|
35
|
+
|
36
|
+
return enriched_pubchem_ids
|
37
|
+
|
38
|
+
def enrich_documents_with_rag(self, texts, docs):
|
39
|
+
"""
|
40
|
+
Enrich a list of input PubChem IDs with their STRINGS representation.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
texts: The list of pubchem IDs to be enriched.
|
44
|
+
docs: None
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
The list of enriched STRINGS
|
48
|
+
"""
|
49
|
+
return self.enrich_documents(texts)
|
@@ -0,0 +1,42 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Enrichment class for enriching PubChem IDs with their STRINGS representation.
|
5
|
+
"""
|
6
|
+
|
7
|
+
import logging
|
8
|
+
import requests
|
9
|
+
import hydra
|
10
|
+
|
11
|
+
# Initialize logger
|
12
|
+
logging.basicConfig(level=logging.INFO)
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
def drugbank_id2pubchem_cid(drugbank_id):
|
16
|
+
"""
|
17
|
+
Convert DrugBank ID to PubChem CID.
|
18
|
+
|
19
|
+
Args:
|
20
|
+
drugbank_id: The DrugBank ID of the drug.
|
21
|
+
|
22
|
+
Returns:
|
23
|
+
The PubChem CID of the drug.
|
24
|
+
"""
|
25
|
+
logger.log(logging.INFO, "Load Hydra configuration for PubChem ID conversion.")
|
26
|
+
with hydra.initialize(version_base=None, config_path="../configs"):
|
27
|
+
cfg = hydra.compose(config_name='config',
|
28
|
+
overrides=['utils/pubchem_utils=default'])
|
29
|
+
cfg = cfg.utils.pubchem_utils
|
30
|
+
# Prepare the URL
|
31
|
+
pubchem_url_for_drug = cfg.drugbank_id_to_pubchem_cid_url + drugbank_id + '/JSON'
|
32
|
+
# Get the data
|
33
|
+
response = requests.get(pubchem_url_for_drug, timeout=60)
|
34
|
+
data = response.json()
|
35
|
+
# Extract the PubChem CID
|
36
|
+
cid = None
|
37
|
+
for substance in data.get("PC_Substances", []):
|
38
|
+
for compound in substance.get("compound", []):
|
39
|
+
if "id" in compound and "type" in compound["id"] and compound["id"]["type"] == 1:
|
40
|
+
cid = compound["id"].get("id", {}).get("cid")
|
41
|
+
break
|
42
|
+
return cid
|
@@ -0,0 +1,206 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Main agent for the talk2scholars app using ReAct pattern.
|
5
|
+
|
6
|
+
This module implements a hierarchical agent system where a supervisor agent
|
7
|
+
routes queries to specialized sub-agents. It follows the LangGraph patterns
|
8
|
+
for multi-agent systems and implements proper state management.
|
9
|
+
"""
|
10
|
+
|
11
|
+
import logging
|
12
|
+
from typing import Literal, Callable
|
13
|
+
from pydantic import BaseModel
|
14
|
+
import hydra
|
15
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
16
|
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
17
|
+
from langchain_openai import ChatOpenAI
|
18
|
+
from langgraph.checkpoint.memory import MemorySaver
|
19
|
+
from langgraph.graph import END, START, StateGraph
|
20
|
+
from langgraph.types import Command
|
21
|
+
from ..agents import s2_agent
|
22
|
+
from ..state.state_talk2scholars import Talk2Scholars
|
23
|
+
|
24
|
+
# Configure logging
|
25
|
+
logging.basicConfig(level=logging.INFO)
|
26
|
+
logger = logging.getLogger(__name__)
|
27
|
+
|
28
|
+
|
29
|
+
def get_hydra_config():
|
30
|
+
"""
|
31
|
+
Loads the Hydra configuration for the main agent.
|
32
|
+
|
33
|
+
This function initializes the Hydra configuration system and retrieves the settings
|
34
|
+
for the `Talk2Scholars` agent, ensuring that all required parameters are loaded.
|
35
|
+
|
36
|
+
Returns:
|
37
|
+
DictConfig: The configuration object containing parameters for the main agent.
|
38
|
+
"""
|
39
|
+
with hydra.initialize(version_base=None, config_path="../configs"):
|
40
|
+
cfg = hydra.compose(
|
41
|
+
config_name="config", overrides=["agents/talk2scholars/main_agent=default"]
|
42
|
+
)
|
43
|
+
return cfg.agents.talk2scholars.main_agent
|
44
|
+
|
45
|
+
|
46
|
+
def make_supervisor_node(llm_model: BaseChatModel, thread_id: str) -> Callable:
|
47
|
+
"""
|
48
|
+
Creates the supervisor node responsible for routing user queries to the appropriate sub-agents.
|
49
|
+
|
50
|
+
This function initializes the routing logic by leveraging the system and router prompts defined
|
51
|
+
in the Hydra configuration. The supervisor determines whether to
|
52
|
+
call a sub-agent (like `s2_agent`)
|
53
|
+
or directly generate a response using the language model.
|
54
|
+
|
55
|
+
Args:
|
56
|
+
llm_model (BaseChatModel): The language model used for decision-making.
|
57
|
+
thread_id (str): Unique identifier for the current conversation session.
|
58
|
+
|
59
|
+
Returns:
|
60
|
+
Callable: The supervisor node function that processes user queries and
|
61
|
+
decides the next step.
|
62
|
+
"""
|
63
|
+
cfg = get_hydra_config()
|
64
|
+
logger.info("Hydra configuration for Talk2Scholars main agent loaded: %s", cfg)
|
65
|
+
members = ["s2_agent"]
|
66
|
+
options = ["FINISH"] + members
|
67
|
+
# Define system prompt for general interactions
|
68
|
+
system_prompt = cfg.system_prompt
|
69
|
+
# Define router prompt for routing to sub-agents
|
70
|
+
router_prompt = cfg.router_prompt
|
71
|
+
|
72
|
+
class Router(BaseModel):
|
73
|
+
"""Worker to route to next. If no workers needed, route to FINISH."""
|
74
|
+
|
75
|
+
next: Literal[*options]
|
76
|
+
|
77
|
+
def supervisor_node(
|
78
|
+
state: Talk2Scholars,
|
79
|
+
) -> Command:
|
80
|
+
"""
|
81
|
+
Handles the routing logic for the supervisor agent.
|
82
|
+
|
83
|
+
This function determines the next agent to invoke based on the router prompt response.
|
84
|
+
If no further processing is required, it generates an AI response using the system prompt.
|
85
|
+
|
86
|
+
Args:
|
87
|
+
state (Talk2Scholars): The current conversation state, including messages
|
88
|
+
exchanged so far.
|
89
|
+
|
90
|
+
Returns:
|
91
|
+
Command: A command dictating whether to invoke a sub-agent or generate a final response.
|
92
|
+
"""
|
93
|
+
messages = [SystemMessage(content=router_prompt)] + state["messages"]
|
94
|
+
structured_llm = llm_model.with_structured_output(Router)
|
95
|
+
response = structured_llm.invoke(messages)
|
96
|
+
goto = response.next
|
97
|
+
logger.info("Routing to: %s, Thread ID: %s", goto, thread_id)
|
98
|
+
if goto == "FINISH":
|
99
|
+
goto = END # Using END from langgraph.graph
|
100
|
+
# If no agents were called, and the last message was
|
101
|
+
# from the user, call the LLM to respond to the user
|
102
|
+
# with a slightly different system prompt.
|
103
|
+
if isinstance(messages[-1], HumanMessage):
|
104
|
+
response = llm_model.invoke(
|
105
|
+
[
|
106
|
+
SystemMessage(content=system_prompt),
|
107
|
+
]
|
108
|
+
+ messages[1:]
|
109
|
+
)
|
110
|
+
return Command(
|
111
|
+
goto=goto, update={"messages": AIMessage(content=response.content)}
|
112
|
+
)
|
113
|
+
# Go to the requested agent
|
114
|
+
return Command(goto=goto)
|
115
|
+
|
116
|
+
return supervisor_node
|
117
|
+
|
118
|
+
|
119
|
+
def get_app(
|
120
|
+
thread_id: str,
|
121
|
+
llm_model: BaseChatModel = ChatOpenAI(model="gpt-4o-mini", temperature=0),
|
122
|
+
):
|
123
|
+
"""
|
124
|
+
Initializes and returns the LangGraph-based hierarchical agent system.
|
125
|
+
|
126
|
+
This function constructs the agent workflow by defining nodes for the supervisor
|
127
|
+
and sub-agents. It compiles the graph using `StateGraph` to enable structured
|
128
|
+
conversational workflows.
|
129
|
+
|
130
|
+
Args:
|
131
|
+
thread_id (str): A unique session identifier for tracking conversation state.
|
132
|
+
llm_model (BaseChatModel, optional): The language model used for query processing.
|
133
|
+
Defaults to `ChatOpenAI(model="gpt-4o-mini", temperature=0)`.
|
134
|
+
|
135
|
+
Returns:
|
136
|
+
StateGraph: A compiled LangGraph application that can process user queries.
|
137
|
+
|
138
|
+
Example:
|
139
|
+
>>> app = get_app("thread_123")
|
140
|
+
>>> result = app.invoke(initial_state)
|
141
|
+
"""
|
142
|
+
cfg = get_hydra_config()
|
143
|
+
|
144
|
+
def call_s2_agent(
|
145
|
+
state: Talk2Scholars,
|
146
|
+
) -> Command[Literal["supervisor"]]:
|
147
|
+
"""
|
148
|
+
Invokes the Semantic Scholar (S2) agent to retrieve relevant research papers.
|
149
|
+
|
150
|
+
This function calls the `s2_agent` and updates the conversation state with retrieved
|
151
|
+
academic papers. The agent uses Semantic Scholar's API to find papers based on
|
152
|
+
user queries.
|
153
|
+
|
154
|
+
Args:
|
155
|
+
state (Talk2Scholars): The current state of the conversation, containing messages
|
156
|
+
and any previous search results.
|
157
|
+
|
158
|
+
Returns:
|
159
|
+
Command: A command to update the conversation state with the retrieved papers
|
160
|
+
and return control to the supervisor node.
|
161
|
+
|
162
|
+
Example:
|
163
|
+
>>> result = call_s2_agent(current_state)
|
164
|
+
>>> next_step = result.goto
|
165
|
+
"""
|
166
|
+
logger.info("Calling S2 agent")
|
167
|
+
app = s2_agent.get_app(thread_id, llm_model)
|
168
|
+
|
169
|
+
# Invoke the S2 agent, passing state,
|
170
|
+
# Pass both config_id and thread_id
|
171
|
+
response = app.invoke(
|
172
|
+
state,
|
173
|
+
{
|
174
|
+
"configurable": {
|
175
|
+
"config_id": thread_id,
|
176
|
+
"thread_id": thread_id,
|
177
|
+
}
|
178
|
+
},
|
179
|
+
)
|
180
|
+
logger.info("S2 agent completed with response")
|
181
|
+
return Command(
|
182
|
+
update={
|
183
|
+
"messages": response["messages"],
|
184
|
+
"papers": response.get("papers", {}),
|
185
|
+
"multi_papers": response.get("multi_papers", {}),
|
186
|
+
"last_displayed_papers": response.get("last_displayed_papers", {}),
|
187
|
+
},
|
188
|
+
# Always return to supervisor
|
189
|
+
goto="supervisor",
|
190
|
+
)
|
191
|
+
|
192
|
+
# Initialize LLM
|
193
|
+
logger.info("Using model %s with temperature %s", llm_model, cfg.temperature)
|
194
|
+
|
195
|
+
# Build the graph
|
196
|
+
workflow = StateGraph(Talk2Scholars)
|
197
|
+
supervisor = make_supervisor_node(llm_model, thread_id)
|
198
|
+
# Add nodes
|
199
|
+
workflow.add_node("supervisor", supervisor)
|
200
|
+
workflow.add_node("s2_agent", call_s2_agent)
|
201
|
+
# Add edges
|
202
|
+
workflow.add_edge(START, "supervisor")
|
203
|
+
# Compile the workflow
|
204
|
+
app = workflow.compile(checkpointer=MemorySaver())
|
205
|
+
logger.info("Main agent workflow compiled")
|
206
|
+
return app
|
@@ -0,0 +1,129 @@
|
|
1
|
+
# /usr/bin/env python3
|
2
|
+
|
3
|
+
"""
|
4
|
+
Agent for interacting with Semantic Scholar
|
5
|
+
"""
|
6
|
+
|
7
|
+
import logging
|
8
|
+
from typing import Any, Dict
|
9
|
+
import hydra
|
10
|
+
from langchain_openai import ChatOpenAI
|
11
|
+
from langchain_core.language_models.chat_models import BaseChatModel
|
12
|
+
from langgraph.graph import START, StateGraph
|
13
|
+
from langgraph.prebuilt import create_react_agent, ToolNode
|
14
|
+
from langgraph.checkpoint.memory import MemorySaver
|
15
|
+
from ..state.state_talk2scholars import Talk2Scholars
|
16
|
+
from ..tools.s2.search import search_tool as s2_search
|
17
|
+
from ..tools.s2.display_results import display_results as s2_display
|
18
|
+
from ..tools.s2.query_results import query_results as s2_query_results
|
19
|
+
from ..tools.s2.retrieve_semantic_scholar_paper_id import (
|
20
|
+
retrieve_semantic_scholar_paper_id as s2_retrieve_id,
|
21
|
+
)
|
22
|
+
from ..tools.s2.single_paper_rec import (
|
23
|
+
get_single_paper_recommendations as s2_single_rec,
|
24
|
+
)
|
25
|
+
from ..tools.s2.multi_paper_rec import get_multi_paper_recommendations as s2_multi_rec
|
26
|
+
|
27
|
+
# Initialize logger
|
28
|
+
logging.basicConfig(level=logging.INFO)
|
29
|
+
logger = logging.getLogger(__name__)
|
30
|
+
|
31
|
+
|
32
|
+
def get_app(
|
33
|
+
uniq_id, llm_model: BaseChatModel = ChatOpenAI(model="gpt-4o-mini", temperature=0)
|
34
|
+
):
|
35
|
+
"""
|
36
|
+
Initializes and returns the LangGraph application for the Semantic Scholar (S2) agent.
|
37
|
+
|
38
|
+
This function sets up the S2 agent, which integrates various tools to search, retrieve,
|
39
|
+
and display research papers from Semantic Scholar. The agent follows the ReAct pattern
|
40
|
+
for structured interaction.
|
41
|
+
|
42
|
+
Args:
|
43
|
+
uniq_id (str): Unique identifier for the current conversation session.
|
44
|
+
llm_model (BaseChatModel, optional): The language model to be used by the agent.
|
45
|
+
Defaults to `ChatOpenAI(model="gpt-4o-mini", temperature=0)`.
|
46
|
+
|
47
|
+
Returns:
|
48
|
+
StateGraph: A compiled LangGraph application that enables the S2 agent to process
|
49
|
+
user queries and retrieve research papers.
|
50
|
+
|
51
|
+
Example:
|
52
|
+
>>> app = get_app("thread_123")
|
53
|
+
>>> result = app.invoke(initial_state)
|
54
|
+
"""
|
55
|
+
|
56
|
+
# def agent_s2_node(state: Talk2Scholars) -> Command[Literal["supervisor"]]:
|
57
|
+
def agent_s2_node(state: Talk2Scholars) -> Dict[str, Any]:
|
58
|
+
"""
|
59
|
+
Processes the user query and retrieves relevant research papers.
|
60
|
+
|
61
|
+
This function calls the language model using the configured `ReAct` agent to analyze
|
62
|
+
the state and generate an appropriate response. The function then returns control
|
63
|
+
to the main supervisor.
|
64
|
+
|
65
|
+
Args:
|
66
|
+
state (Talk2Scholars): The current conversation state, including messages exchanged
|
67
|
+
and any previously retrieved research papers.
|
68
|
+
|
69
|
+
Returns:
|
70
|
+
Dict[str, Any]: A dictionary containing the updated conversation state.
|
71
|
+
|
72
|
+
Example:
|
73
|
+
>>> result = agent_s2_node(current_state)
|
74
|
+
>>> papers = result.get("papers", [])
|
75
|
+
"""
|
76
|
+
logger.log(logging.INFO, "Creating Agent_S2 node with thread_id %s", uniq_id)
|
77
|
+
result = model.invoke(state, {"configurable": {"thread_id": uniq_id}})
|
78
|
+
|
79
|
+
return result
|
80
|
+
|
81
|
+
logger.log(logging.INFO, "thread_id, llm_model: %s, %s", uniq_id, llm_model)
|
82
|
+
|
83
|
+
# Load hydra configuration
|
84
|
+
logger.log(logging.INFO, "Load Hydra configuration for Talk2Scholars S2 agent.")
|
85
|
+
with hydra.initialize(version_base=None, config_path="../configs"):
|
86
|
+
cfg = hydra.compose(
|
87
|
+
config_name="config", overrides=["agents/talk2scholars/s2_agent=default"]
|
88
|
+
)
|
89
|
+
cfg = cfg.agents.talk2scholars.s2_agent
|
90
|
+
|
91
|
+
# Define the tools
|
92
|
+
tools = ToolNode(
|
93
|
+
[
|
94
|
+
s2_search,
|
95
|
+
s2_display,
|
96
|
+
s2_query_results,
|
97
|
+
s2_retrieve_id,
|
98
|
+
s2_single_rec,
|
99
|
+
s2_multi_rec,
|
100
|
+
]
|
101
|
+
)
|
102
|
+
|
103
|
+
# Define the model
|
104
|
+
logger.log(logging.INFO, "Using OpenAI model %s", llm_model)
|
105
|
+
|
106
|
+
# Create the agent
|
107
|
+
model = create_react_agent(
|
108
|
+
llm_model,
|
109
|
+
tools=tools,
|
110
|
+
state_schema=Talk2Scholars,
|
111
|
+
state_modifier=cfg.s2_agent,
|
112
|
+
checkpointer=MemorySaver(),
|
113
|
+
)
|
114
|
+
|
115
|
+
workflow = StateGraph(Talk2Scholars)
|
116
|
+
workflow.add_node("agent_s2", agent_s2_node)
|
117
|
+
workflow.add_edge(START, "agent_s2")
|
118
|
+
|
119
|
+
# Initialize memory to persist state between graph runs
|
120
|
+
checkpointer = MemorySaver()
|
121
|
+
|
122
|
+
# Finally, we compile it!
|
123
|
+
# This compiles it into a LangChain Runnable,
|
124
|
+
# meaning you can use it as you would any other runnable.
|
125
|
+
# Note that we're (optionally) passing the memory when compiling the graph
|
126
|
+
app = workflow.compile(checkpointer=checkpointer)
|
127
|
+
logger.log(logging.INFO, "Compiled the graph")
|
128
|
+
|
129
|
+
return app
|