ai-data-science-team 0.0.0.9014__tar.gz → 0.0.0.9016__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ai_data_science_team-0.0.0.9014/ai_data_science_team.egg-info → ai_data_science_team-0.0.0.9016}/PKG-INFO +64 -57
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/README.md +61 -55
- ai_data_science_team-0.0.0.9016/ai_data_science_team/_version.py +1 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/data_visualization_agent.py +172 -129
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/data_wrangling_agent.py +1 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ds_agents/eda_tools_agent.py +46 -50
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/multiagents/pandas_data_analyst.py +5 -5
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/multiagents/sql_data_analyst.py +7 -18
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/eda.py +123 -60
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016/ai_data_science_team.egg-info}/PKG-INFO +64 -57
- ai_data_science_team-0.0.0.9014/ai_data_science_team/_version.py +0 -1
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/LICENSE +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/MANIFEST.in +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/data_cleaning_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/data_loader_tools_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/feature_engineering_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/agents/sql_database_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ds_agents/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ds_agents/modeling_tools_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ml_agents/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ml_agents/h2o_ml_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ml_agents/h2o_ml_tools_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/ml_agents/mlflow_tools_agent.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/multiagents/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/multiagents/supervised_data_analyst.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/orchestration.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/parsers/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/parsers/parsers.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/templates/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/templates/agent_templates.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/data_loader.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/dataframe.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/h2o.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/mlflow.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/tools/sql.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/__init__.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/html.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/logging.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/matplotlib.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/messages.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/plotly.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team/utils/regex.py +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team.egg-info/SOURCES.txt +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team.egg-info/dependency_links.txt +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team.egg-info/requires.txt +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/ai_data_science_team.egg-info/top_level.txt +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/requirements.txt +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/setup.cfg +0 -0
- {ai_data_science_team-0.0.0.9014 → ai_data_science_team-0.0.0.9016}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: ai-data-science-team
|
3
|
-
Version: 0.0.0.
|
3
|
+
Version: 0.0.0.9016
|
4
4
|
Summary: Build and run an AI-powered data science team.
|
5
5
|
Home-page: https://github.com/business-science/ai-data-science-team
|
6
6
|
Author: Matt Dancho
|
@@ -47,6 +47,7 @@ Dynamic: classifier
|
|
47
47
|
Dynamic: description
|
48
48
|
Dynamic: description-content-type
|
49
49
|
Dynamic: home-page
|
50
|
+
Dynamic: license-file
|
50
51
|
Dynamic: provides-extra
|
51
52
|
Dynamic: requires-dist
|
52
53
|
Dynamic: requires-python
|
@@ -97,9 +98,8 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
97
98
|
- [Companies That Want A Custom AI Data Science Team (And AI Apps)](#companies-that-want-a-custom-ai-data-science-team-and-ai-apps)
|
98
99
|
- [Generative AI for Data Scientists Workshop](#generative-ai-for-data-scientists-workshop)
|
99
100
|
- [Data Science Agents](#data-science-agents)
|
101
|
+
- [🔥 NEW: Data Science Apps](#-new-data-science-apps)
|
100
102
|
- [NEW: Multi-Agents](#new-multi-agents)
|
101
|
-
- [Data Science Apps](#data-science-apps)
|
102
|
-
- [Apps Available Now](#apps-available-now)
|
103
103
|
- [🔥 Agentic Applications](#-agentic-applications)
|
104
104
|
- [Agents Available Now](#agents-available-now)
|
105
105
|
- [Standard Agents](#standard-agents)
|
@@ -110,11 +110,11 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
110
110
|
- [Disclaimer](#disclaimer)
|
111
111
|
- [Installation](#installation)
|
112
112
|
- [Usage](#usage)
|
113
|
-
- [Example
|
114
|
-
- [Example 2: Cleaning Data with the Data Cleaning Agent](#example-2-cleaning-data-with-the-data-cleaning-agent)
|
113
|
+
- [Example: H2O Machine Learning Agent](#example-h2o-machine-learning-agent)
|
115
114
|
- [Contributing](#contributing)
|
116
115
|
- [License](#license)
|
117
116
|
- [Want To Become A Full-Stack Generative AI Data Scientist?](#want-to-become-a-full-stack-generative-ai-data-scientist)
|
117
|
+
- [⭐️ Star History](#️-star-history)
|
118
118
|
|
119
119
|
## Companies That Want A Custom AI Data Science Team (And AI Apps)
|
120
120
|
|
@@ -134,21 +134,24 @@ This project is a work in progress. New data science agents will be released soo
|
|
134
134
|
|
135
135
|

|
136
136
|
|
137
|
-
### NEW:
|
137
|
+
### 🔥 NEW: Data Science Apps
|
138
138
|
|
139
|
-
|
139
|
+
**🔥 Open Pandas AI Data Analyst:** Load an Excel or CSV file and ask it questions. Get data and charts back.
|
140
140
|
|
141
|
-

|
142
142
|
|
143
|
-
|
143
|
+
**🔥 SQL Database Agent:** Connects any SQL Database, generates SQL queries from natural language, and returns data as a downloadable table.
|
144
144
|
|
145
|
-
|
145
|
+
**🔥 Exploratory Data Copilot:** An AI-powered data science app that performs automated exploratory data analysis (EDA) with EDA Reporting, Missing Data Analysis, Correlation Analysis, and more.
|
146
146
|
|
147
|
-
|
147
|
+
[See all available apps here](/apps)
|
148
148
|
|
149
|
-
###
|
149
|
+
### NEW: Multi-Agents
|
150
|
+
|
151
|
+
**🔥 Pandas Data Analyst Agent:** Combines the ability to wrangle, transform, and analyze data with an optional data visualization agent that can create interactive plots.
|
152
|
+
|
153
|
+

|
150
154
|
|
151
|
-
[See all available apps here](/apps)
|
152
155
|
|
153
156
|
#### 🔥 Agentic Applications
|
154
157
|
|
@@ -182,7 +185,8 @@ This is a top secret project I'm working on. It's a multi-agent data science app
|
|
182
185
|
|
183
186
|
#### Multi-Agents
|
184
187
|
|
185
|
-
1.
|
188
|
+
1. **🔥🔥 Pandas Data Analyst Agent:** Combines the ability to wrangle, transform, and analyze data with an optional data visualization agent that can create interactive plots. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/pandas_data_analyst.ipynb)
|
189
|
+
2. **🔥🔥 SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
|
186
190
|
|
187
191
|
### Agents Coming Soon
|
188
192
|
|
@@ -204,6 +208,14 @@ By using this software, you agree to use it solely for learning purposes.
|
|
204
208
|
|
205
209
|
## Installation
|
206
210
|
|
211
|
+
You can install via PyPI (note that this is a beta version and breaking changes may occur until 0.1.0):
|
212
|
+
|
213
|
+
``` bash
|
214
|
+
pip install ai-data-science-team
|
215
|
+
```
|
216
|
+
|
217
|
+
Or, if you want the latest version from GitHub:
|
218
|
+
|
207
219
|
``` bash
|
208
220
|
pip install git+https://github.com/business-science/ai-data-science-team.git --upgrade
|
209
221
|
```
|
@@ -212,55 +224,46 @@ pip install git+https://github.com/business-science/ai-data-science-team.git --u
|
|
212
224
|
|
213
225
|
[See all examples here.](/examples)
|
214
226
|
|
215
|
-
### Example
|
227
|
+
### Example: H2O Machine Learning Agent
|
216
228
|
|
217
|
-
[See the full example here.](/examples/
|
229
|
+
[See the full example here.](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
|
218
230
|
|
219
231
|
``` python
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
232
|
+
# Import libraries
|
233
|
+
from langchain_openai import ChatOpenAI
|
234
|
+
import pandas as pd
|
235
|
+
import h2o
|
236
|
+
import os
|
237
|
+
from ai_data_science_team.ml_agents import H2OMLAgent
|
238
|
+
|
239
|
+
# Load the data
|
240
|
+
df = pd.read_csv("data/churn_data.csv")
|
241
|
+
df
|
242
|
+
|
243
|
+
# Initialize the language model
|
244
|
+
os.environ['OPENAI_API_KEY'] = "YOUR_OPENAI_API_KEY"
|
245
|
+
llm = ChatOpenAI(model=MODEL)
|
246
|
+
llm
|
247
|
+
|
248
|
+
# Initialize the H2O ML Agent
|
249
|
+
ml_agent = H2OMLAgent(
|
250
|
+
model=llm,
|
251
|
+
log=True,
|
252
|
+
log_path="logs/",
|
253
|
+
model_directory="h2o_models/",
|
254
|
+
enable_mlflow=True, # Use this if you wish to log models to MLflow
|
227
255
|
)
|
228
|
-
|
229
|
-
|
230
|
-
``` bash
|
231
|
-
---FEATURE ENGINEERING AGENT----
|
232
|
-
* CREATE FEATURE ENGINEER CODE
|
233
|
-
* EXECUTING AGENT CODE
|
234
|
-
* EXPLAIN AGENT CODE
|
235
|
-
```
|
236
|
-
|
237
|
-
``` python
|
238
|
-
feature_engineering_agent.get_data_engineered()
|
239
|
-
```
|
240
|
-
|
241
|
-
### Example 2: Cleaning Data with the Data Cleaning Agent
|
242
|
-
|
243
|
-
[See the full example here.](/examples/data_cleaning_agent.ipynb)
|
244
|
-
|
245
|
-
``` python
|
246
|
-
data_cleaning_agent = DataCleaningAgent(model = llm)
|
256
|
+
ml_agent
|
247
257
|
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
258
|
+
# Run the agent
|
259
|
+
ml_agent.invoke_agent(
|
260
|
+
data_raw=df.drop(columns=["customerID"]),
|
261
|
+
user_instructions="Please do classification on 'Churn'. Use a max runtime of 30 seconds.",
|
262
|
+
target_variable="Churn"
|
252
263
|
)
|
253
|
-
```
|
254
264
|
|
255
|
-
|
256
|
-
|
257
|
-
* CREATE DATA CLEANER CODE
|
258
|
-
* EXECUTING AGENT CODE
|
259
|
-
* EXPLAIN AGENT CODE
|
260
|
-
```
|
261
|
-
|
262
|
-
``` python
|
263
|
-
data_cleaning_agent.get_data_cleaned()
|
265
|
+
# Retrieve and display the leaderboard of models
|
266
|
+
ml_agent.get_leaderboard()
|
264
267
|
```
|
265
268
|
|
266
269
|
## Contributing
|
@@ -281,4 +284,8 @@ This project is licensed under the MIT License. See LICENSE file for details.
|
|
281
284
|
|
282
285
|
I teach Generative AI Data Science to help you build AI-powered data science apps. [**Register for my next Generative AI for Data Scientists workshop here.**](https://learn.business-science.io/ai-register)
|
283
286
|
|
287
|
+
# ⭐️ Star History
|
288
|
+
|
289
|
+
[](https://star-history.com/#)
|
284
290
|
|
291
|
+
[**Please ⭐ us on GitHub (it takes 2 seconds and means a lot).**](https://github.com/business-science/ai-data-science-team)
|
@@ -43,9 +43,8 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
43
43
|
- [Companies That Want A Custom AI Data Science Team (And AI Apps)](#companies-that-want-a-custom-ai-data-science-team-and-ai-apps)
|
44
44
|
- [Generative AI for Data Scientists Workshop](#generative-ai-for-data-scientists-workshop)
|
45
45
|
- [Data Science Agents](#data-science-agents)
|
46
|
+
- [🔥 NEW: Data Science Apps](#-new-data-science-apps)
|
46
47
|
- [NEW: Multi-Agents](#new-multi-agents)
|
47
|
-
- [Data Science Apps](#data-science-apps)
|
48
|
-
- [Apps Available Now](#apps-available-now)
|
49
48
|
- [🔥 Agentic Applications](#-agentic-applications)
|
50
49
|
- [Agents Available Now](#agents-available-now)
|
51
50
|
- [Standard Agents](#standard-agents)
|
@@ -56,11 +55,11 @@ The AI Data Science Team of Copilots includes Agents that specialize data cleani
|
|
56
55
|
- [Disclaimer](#disclaimer)
|
57
56
|
- [Installation](#installation)
|
58
57
|
- [Usage](#usage)
|
59
|
-
- [Example
|
60
|
-
- [Example 2: Cleaning Data with the Data Cleaning Agent](#example-2-cleaning-data-with-the-data-cleaning-agent)
|
58
|
+
- [Example: H2O Machine Learning Agent](#example-h2o-machine-learning-agent)
|
61
59
|
- [Contributing](#contributing)
|
62
60
|
- [License](#license)
|
63
61
|
- [Want To Become A Full-Stack Generative AI Data Scientist?](#want-to-become-a-full-stack-generative-ai-data-scientist)
|
62
|
+
- [⭐️ Star History](#️-star-history)
|
64
63
|
|
65
64
|
## Companies That Want A Custom AI Data Science Team (And AI Apps)
|
66
65
|
|
@@ -80,21 +79,24 @@ This project is a work in progress. New data science agents will be released soo
|
|
80
79
|
|
81
80
|

|
82
81
|
|
83
|
-
### NEW:
|
82
|
+
### 🔥 NEW: Data Science Apps
|
84
83
|
|
85
|
-
|
84
|
+
**🔥 Open Pandas AI Data Analyst:** Load an Excel or CSV file and ask it questions. Get data and charts back.
|
86
85
|
|
87
|
-

|
88
87
|
|
89
|
-
|
88
|
+
**🔥 SQL Database Agent:** Connects any SQL Database, generates SQL queries from natural language, and returns data as a downloadable table.
|
90
89
|
|
91
|
-
|
90
|
+
**🔥 Exploratory Data Copilot:** An AI-powered data science app that performs automated exploratory data analysis (EDA) with EDA Reporting, Missing Data Analysis, Correlation Analysis, and more.
|
92
91
|
|
93
|
-
|
92
|
+
[See all available apps here](/apps)
|
94
93
|
|
95
|
-
###
|
94
|
+
### NEW: Multi-Agents
|
95
|
+
|
96
|
+
**🔥 Pandas Data Analyst Agent:** Combines the ability to wrangle, transform, and analyze data with an optional data visualization agent that can create interactive plots.
|
97
|
+
|
98
|
+

|
96
99
|
|
97
|
-
[See all available apps here](/apps)
|
98
100
|
|
99
101
|
#### 🔥 Agentic Applications
|
100
102
|
|
@@ -128,7 +130,8 @@ This is a top secret project I'm working on. It's a multi-agent data science app
|
|
128
130
|
|
129
131
|
#### Multi-Agents
|
130
132
|
|
131
|
-
1.
|
133
|
+
1. **🔥🔥 Pandas Data Analyst Agent:** Combines the ability to wrangle, transform, and analyze data with an optional data visualization agent that can create interactive plots. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/pandas_data_analyst.ipynb)
|
134
|
+
2. **🔥🔥 SQL Data Analyst Agent:** Connects to SQL databases to pull data into the data science environment. Creates pipelines to automate data extraction. Performs Joins, Aggregations, and other SQL Query operations. Includes a Data Visualization Agent that creates visualizations to help you understand your data. [See Example](https://github.com/business-science/ai-data-science-team/blob/master/examples/multiagents/sql_data_analyst.ipynb)
|
132
135
|
|
133
136
|
### Agents Coming Soon
|
134
137
|
|
@@ -150,6 +153,14 @@ By using this software, you agree to use it solely for learning purposes.
|
|
150
153
|
|
151
154
|
## Installation
|
152
155
|
|
156
|
+
You can install via PyPI (note that this is a beta version and breaking changes may occur until 0.1.0):
|
157
|
+
|
158
|
+
``` bash
|
159
|
+
pip install ai-data-science-team
|
160
|
+
```
|
161
|
+
|
162
|
+
Or, if you want the latest version from GitHub:
|
163
|
+
|
153
164
|
``` bash
|
154
165
|
pip install git+https://github.com/business-science/ai-data-science-team.git --upgrade
|
155
166
|
```
|
@@ -158,55 +169,46 @@ pip install git+https://github.com/business-science/ai-data-science-team.git --u
|
|
158
169
|
|
159
170
|
[See all examples here.](/examples)
|
160
171
|
|
161
|
-
### Example
|
172
|
+
### Example: H2O Machine Learning Agent
|
162
173
|
|
163
|
-
[See the full example here.](/examples/
|
174
|
+
[See the full example here.](https://github.com/business-science/ai-data-science-team/blob/master/examples/ml_agents/h2o_machine_learning_agent.ipynb)
|
164
175
|
|
165
176
|
``` python
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
177
|
+
# Import libraries
|
178
|
+
from langchain_openai import ChatOpenAI
|
179
|
+
import pandas as pd
|
180
|
+
import h2o
|
181
|
+
import os
|
182
|
+
from ai_data_science_team.ml_agents import H2OMLAgent
|
183
|
+
|
184
|
+
# Load the data
|
185
|
+
df = pd.read_csv("data/churn_data.csv")
|
186
|
+
df
|
187
|
+
|
188
|
+
# Initialize the language model
|
189
|
+
os.environ['OPENAI_API_KEY'] = "YOUR_OPENAI_API_KEY"
|
190
|
+
llm = ChatOpenAI(model=MODEL)
|
191
|
+
llm
|
192
|
+
|
193
|
+
# Initialize the H2O ML Agent
|
194
|
+
ml_agent = H2OMLAgent(
|
195
|
+
model=llm,
|
196
|
+
log=True,
|
197
|
+
log_path="logs/",
|
198
|
+
model_directory="h2o_models/",
|
199
|
+
enable_mlflow=True, # Use this if you wish to log models to MLflow
|
173
200
|
)
|
174
|
-
|
175
|
-
|
176
|
-
``` bash
|
177
|
-
---FEATURE ENGINEERING AGENT----
|
178
|
-
* CREATE FEATURE ENGINEER CODE
|
179
|
-
* EXECUTING AGENT CODE
|
180
|
-
* EXPLAIN AGENT CODE
|
181
|
-
```
|
182
|
-
|
183
|
-
``` python
|
184
|
-
feature_engineering_agent.get_data_engineered()
|
185
|
-
```
|
186
|
-
|
187
|
-
### Example 2: Cleaning Data with the Data Cleaning Agent
|
188
|
-
|
189
|
-
[See the full example here.](/examples/data_cleaning_agent.ipynb)
|
190
|
-
|
191
|
-
``` python
|
192
|
-
data_cleaning_agent = DataCleaningAgent(model = llm)
|
201
|
+
ml_agent
|
193
202
|
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
203
|
+
# Run the agent
|
204
|
+
ml_agent.invoke_agent(
|
205
|
+
data_raw=df.drop(columns=["customerID"]),
|
206
|
+
user_instructions="Please do classification on 'Churn'. Use a max runtime of 30 seconds.",
|
207
|
+
target_variable="Churn"
|
198
208
|
)
|
199
|
-
```
|
200
209
|
|
201
|
-
|
202
|
-
|
203
|
-
* CREATE DATA CLEANER CODE
|
204
|
-
* EXECUTING AGENT CODE
|
205
|
-
* EXPLAIN AGENT CODE
|
206
|
-
```
|
207
|
-
|
208
|
-
``` python
|
209
|
-
data_cleaning_agent.get_data_cleaned()
|
210
|
+
# Retrieve and display the leaderboard of models
|
211
|
+
ml_agent.get_leaderboard()
|
210
212
|
```
|
211
213
|
|
212
214
|
## Contributing
|
@@ -227,4 +229,8 @@ This project is licensed under the MIT License. See LICENSE file for details.
|
|
227
229
|
|
228
230
|
I teach Generative AI Data Science to help you build AI-powered data science apps. [**Register for my next Generative AI for Data Scientists workshop here.**](https://learn.business-science.io/ai-register)
|
229
231
|
|
232
|
+
# ⭐️ Star History
|
233
|
+
|
234
|
+
[](https://star-history.com/#)
|
230
235
|
|
236
|
+
[**Please ⭐ us on GitHub (it takes 2 seconds and means a lot).**](https://github.com/business-science/ai-data-science-team)
|
@@ -0,0 +1 @@
|
|
1
|
+
__version__ = "0.0.0.9016"
|