ai-critic 0.2.1__tar.gz → 0.2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,225 @@
1
+ Metadata-Version: 2.4
2
+ Name: ai-critic
3
+ Version: 0.2.2
4
+ Summary: Fast AI evaluator for scikit-learn models
5
+ Author-email: Luiz Seabra <filipedemarco@yahoo.com>
6
+ Requires-Python: >=3.9
7
+ Description-Content-Type: text/markdown
8
+ Requires-Dist: numpy
9
+ Requires-Dist: scikit-learn
10
+
11
+ # ai-critic: Automated Risk Auditor for Machine Learning Models
12
+
13
+ [![PyPI version](https://img.shields.io/pypi/v/ai-critic.svg)](https://pypi.org/project/ai-critic/)
14
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
15
+ [![Python Versions](https://img.shields.io/pypi/pyversions/ai-critic.svg)](https://pypi.org/project/ai-critic/)
16
+
17
+ O **ai-critic** é um auditor de risco automatizado baseado em heurísticas para modelos de Machine Learning. Ele avalia modelos treinados antes da implantação e traduz riscos técnicos complexos em decisões claras e centradas no ser humano.
18
+
19
+ Diferente das ferramentas tradicionais que focam apenas em métricas de desempenho, o **ai-critic** adota uma postura cética por design, respondendo à pergunta fundamental: **“Este modelo pode ser implantado com segurança?”**
20
+
21
+ ---
22
+
23
+ ## 🚀 O que é o ai-critic?
24
+
25
+ O `ai-critic` avalia modelos treinados antes da implantação, analisando quatro áreas principais de risco:
26
+
27
+ * **Integridade dos Dados:** (*data leakage*, desequilíbrio, NaNs).
28
+ * **Estrutura do Modelo:** (risco de *overfitting*, complexidade, configurações suspeitas).
29
+ * **Comportamento de Validação:** (pontuações suspeitamente perfeitas de cross-validation).
30
+ * **Robustez:** (sensibilidade a ruído e estabilidade do modelo).
31
+
32
+ Os resultados são organizados em três camadas semânticas para diferentes *stakeholders*:
33
+ * **Executiva:** Decisões para stakeholders e gerentes.
34
+ * **Técnica:** Diagnósticos para engenheiros de ML.
35
+ * **Detalhada:** Saída completa de métricas e análises técnicas, incluindo gráficos opcionais.
36
+
37
+ ---
38
+
39
+ ## 🎯 Por que o ai-critic Existe: Filosofia Central
40
+
41
+ A maioria das ferramentas de ML tradicionais assume que métricas são a verdade absoluta, confia cegamente na validação cruzada e entrega números brutos sem interpretação.
42
+
43
+ O **ai-critic** é cético por design. Ele trata:
44
+ * **Pontuações perfeitas** como sinais de alerta, não necessariamente sucesso.
45
+ * **Métricas de robustez** como dependentes do contexto.
46
+ * **Implantação** como uma decisão de gestão de risco, não apenas uma meta técnica.
47
+
48
+ A filosofia central é: **Métricas não falham modelos — o contexto falha.** O `ai-critic` aplica heurísticas de raciocínio humano:
49
+ * “Isso é bom demais para ser verdade?”
50
+ * “Isso pode estar vazando o alvo (*target*)?”
51
+ * “A robustez importa se a linha de base estiver errada?”
52
+
53
+ ---
54
+
55
+ ## 🛠️ Instalação
56
+
57
+ Instale o `ai-critic` via pip:
58
+
59
+ ```bash
60
+ pip install ai-critic
61
+ ```
62
+
63
+ **Requisitos:**
64
+ * Python ≥ 3.8
65
+ * `scikit-learn`
66
+ * `matplotlib`, `seaborn`, `numpy`, `pandas` (para visualizações opcionais)
67
+
68
+ ---
69
+
70
+ ## 💡 Início Rápido
71
+
72
+ Audite seu modelo treinado em apenas algumas linhas:
73
+
74
+ ```python
75
+ from sklearn.datasets import load_breast_cancer
76
+ from sklearn.ensemble import RandomForestClassifier
77
+ from ai_critic import AICritic
78
+
79
+ # 1. Carregar dados e treinar um modelo (exemplo)
80
+ X, y = load_breast_cancer(return_X_y=True)
81
+ model = RandomForestClassifier(max_depth=20, random_state=42)
82
+ model.fit(X, y)
83
+
84
+ # 2. Inicializar e avaliar com ai-critic
85
+ critic = AICritic(model, X, y)
86
+
87
+ # Realização de avaliação completa (padrão view="all")
88
+ report = critic.evaluate(plot=True)
89
+ print(report)
90
+ ```
91
+
92
+ ---
93
+
94
+ ## 🧩 Saída Multi-Camadas
95
+
96
+ O `ai-critic` estrutura os resultados em camadas de decisão claras através do parâmetro `view`.
97
+
98
+ ### 🔹 Visualização Executiva (`view="executive"`)
99
+ Projetado para stakeholders e gestores. Sem jargão técnico.
100
+
101
+ ```python
102
+ critic.evaluate(view="executive")
103
+ ```
104
+
105
+ **Exemplo de Saída:**
106
+ ```json
107
+ {
108
+ "verdict": "❌ Não Confiável",
109
+ "risk_level": "high",
110
+ "deploy_recommended": false,
111
+ "main_reason": "Forte evidência de vazamento de dados inflando o desempenho do modelo."
112
+ }
113
+ ```
114
+
115
+ ### 🔹 Visualização Técnica (`view="technical"`)
116
+ Projetado para engenheiros de ML. Focado em diagnósticos e ações corretivas.
117
+
118
+ ```python
119
+ critic.evaluate(view="technical")
120
+ ```
121
+
122
+ **Exemplo de Saída:**
123
+ ```json
124
+ {
125
+ "key_risks": [
126
+ "Vazamento de dados suspeito devido à correlação quase perfeita entre recurso e alvo.",
127
+ "Pontuação de validação cruzada perfeita detectada (estatisticamente improvável).",
128
+ "A profundidade da árvore pode ser muito alta para o tamanho do conjunto de dados."
129
+ ],
130
+ "model_health": {
131
+ "data_leakage": true,
132
+ "suspicious_cv": true,
133
+ "structural_risk": true,
134
+ "robustness_verdict": "misleading"
135
+ },
136
+ "recommendations": [
137
+ "Auditar e remover recursos com vazamento.",
138
+ "Reduzir a complexidade do modelo.",
139
+ "Executar novamente a validação após a mitigação do vazamento."
140
+ ]
141
+ }
142
+ ```
143
+
144
+ ### 🔹 Visualização Detalhada (`view="details"`)
145
+ Projetado para auditoria, depuração e conformidade. Agrega todos os outputs dos módulos internos.
146
+
147
+ ```python
148
+ details = critic.evaluate(view="details")
149
+ print(details["data"]["class_balance"])
150
+ print(details["robustness"]["performance_drop"])
151
+ ```
152
+
153
+ ### 🔹 Visualização Combinada (`view="all"`)
154
+ Retorna todas as três camadas em um único dicionário, facilitando a integração com pipelines de CI/CD.
155
+
156
+ ---
157
+
158
+ ## 📊 Visualizações e Gráficos
159
+
160
+ Ao definir `plot=True` no método `evaluate()`, o `ai-critic` gera automaticamente:
161
+ * **Heatmap de Correlação:** Identificação visual de vazamento de dados.
162
+ * **Learning Curve:** Diagnóstico de overfitting e necessidade de mais dados.
163
+ * **Gráfico de Robustez:** Visualização da queda de performance sob ruído.
164
+
165
+ ---
166
+
167
+ ## ⚙️ API Principal e Modularização
168
+
169
+ ### `AICritic(model, X, y)`
170
+ * `model`: Modelo `scikit-learn` treinado.
171
+ * `X`: Matriz de recursos.
172
+ * `y`: Vetor alvo.
173
+
174
+ ### `evaluate(view="all", plot=False)`
175
+ * `view`: Camada de saída (`"executive"`, `"technical"`, `"details"`, `"all"` ou lista customizada).
176
+ * `plot`: `True` para gerar gráficos automáticos.
177
+
178
+ ### Uso Modular (Avançado)
179
+ Cada módulo retorna um dicionário padronizado consistente:
180
+ ```python
181
+ from ai_critic.evaluators import data, config, performance, robustness
182
+
183
+ data_report = data.evaluate(X, y, plot=True)
184
+ config_report = config.evaluate(model, n_samples=data_report["n_samples"], n_features=data_report["n_features"])
185
+ ```
186
+
187
+ ---
188
+
189
+ ## 🧠 O que o ai-critic Detecta
190
+
191
+ | Categoria | Riscos Detectados |
192
+ | :--- | :--- |
193
+ | **🔍 Dados** | Vazamento de alvo via correlação, NaNs, desequilíbrio de classes. |
194
+ | **🧱 Estrutura** | Árvores excessivamente complexas, altas taxas de recurso/amostra, configurações suspeitas. |
195
+ | **📈 Validação** | Pontuações de CV suspeitosamente perfeitas, variância irreal. |
196
+ | **🧪 Robustez** | Sensibilidade a ruído, robustez enganosa (stable, fragile, misleading). |
197
+
198
+ ---
199
+
200
+ ## 🛡️ Melhores Práticas
201
+
202
+ * **CI/CD:** Use a Visualização Executiva como um portão de qualidade automatizado.
203
+ * **Debugging:** Use a Visualização Técnica durante a iteração do modelo.
204
+ * **Compliance:** Utilize a Visualização Detalhada para rastreabilidade e auditoria.
205
+ * **Ceticismo:** Nunca confie cegamente em pontuações de CV perfeitas.
206
+
207
+ ---
208
+
209
+ ## 🧭 Casos de Uso Típicos
210
+ * Auditorias de modelo pré-implantação.
211
+ * Governança e conformidade de ML.
212
+ * Portões de modelo em pipelines CI/CD.
213
+ * Explicação de riscos para stakeholders não técnicos.
214
+
215
+ ---
216
+
217
+ ## 📄 Licença
218
+
219
+ Distribuído sob a **MIT License**.
220
+
221
+ ---
222
+
223
+ ## 🧠 Nota Final
224
+
225
+ O **ai-critic** não é uma ferramenta de benchmarking. É uma **ferramenta de decisão**. Se um modelo falhar aqui, não significa que seja ruim — significa que **não deve ser confiável ainda**.
@@ -0,0 +1,215 @@
1
+ # ai-critic: Automated Risk Auditor for Machine Learning Models
2
+
3
+ [![PyPI version](https://img.shields.io/pypi/v/ai-critic.svg)](https://pypi.org/project/ai-critic/)
4
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
5
+ [![Python Versions](https://img.shields.io/pypi/pyversions/ai-critic.svg)](https://pypi.org/project/ai-critic/)
6
+
7
+ O **ai-critic** é um auditor de risco automatizado baseado em heurísticas para modelos de Machine Learning. Ele avalia modelos treinados antes da implantação e traduz riscos técnicos complexos em decisões claras e centradas no ser humano.
8
+
9
+ Diferente das ferramentas tradicionais que focam apenas em métricas de desempenho, o **ai-critic** adota uma postura cética por design, respondendo à pergunta fundamental: **“Este modelo pode ser implantado com segurança?”**
10
+
11
+ ---
12
+
13
+ ## 🚀 O que é o ai-critic?
14
+
15
+ O `ai-critic` avalia modelos treinados antes da implantação, analisando quatro áreas principais de risco:
16
+
17
+ * **Integridade dos Dados:** (*data leakage*, desequilíbrio, NaNs).
18
+ * **Estrutura do Modelo:** (risco de *overfitting*, complexidade, configurações suspeitas).
19
+ * **Comportamento de Validação:** (pontuações suspeitamente perfeitas de cross-validation).
20
+ * **Robustez:** (sensibilidade a ruído e estabilidade do modelo).
21
+
22
+ Os resultados são organizados em três camadas semânticas para diferentes *stakeholders*:
23
+ * **Executiva:** Decisões para stakeholders e gerentes.
24
+ * **Técnica:** Diagnósticos para engenheiros de ML.
25
+ * **Detalhada:** Saída completa de métricas e análises técnicas, incluindo gráficos opcionais.
26
+
27
+ ---
28
+
29
+ ## 🎯 Por que o ai-critic Existe: Filosofia Central
30
+
31
+ A maioria das ferramentas de ML tradicionais assume que métricas são a verdade absoluta, confia cegamente na validação cruzada e entrega números brutos sem interpretação.
32
+
33
+ O **ai-critic** é cético por design. Ele trata:
34
+ * **Pontuações perfeitas** como sinais de alerta, não necessariamente sucesso.
35
+ * **Métricas de robustez** como dependentes do contexto.
36
+ * **Implantação** como uma decisão de gestão de risco, não apenas uma meta técnica.
37
+
38
+ A filosofia central é: **Métricas não falham modelos — o contexto falha.** O `ai-critic` aplica heurísticas de raciocínio humano:
39
+ * “Isso é bom demais para ser verdade?”
40
+ * “Isso pode estar vazando o alvo (*target*)?”
41
+ * “A robustez importa se a linha de base estiver errada?”
42
+
43
+ ---
44
+
45
+ ## 🛠️ Instalação
46
+
47
+ Instale o `ai-critic` via pip:
48
+
49
+ ```bash
50
+ pip install ai-critic
51
+ ```
52
+
53
+ **Requisitos:**
54
+ * Python ≥ 3.8
55
+ * `scikit-learn`
56
+ * `matplotlib`, `seaborn`, `numpy`, `pandas` (para visualizações opcionais)
57
+
58
+ ---
59
+
60
+ ## 💡 Início Rápido
61
+
62
+ Audite seu modelo treinado em apenas algumas linhas:
63
+
64
+ ```python
65
+ from sklearn.datasets import load_breast_cancer
66
+ from sklearn.ensemble import RandomForestClassifier
67
+ from ai_critic import AICritic
68
+
69
+ # 1. Carregar dados e treinar um modelo (exemplo)
70
+ X, y = load_breast_cancer(return_X_y=True)
71
+ model = RandomForestClassifier(max_depth=20, random_state=42)
72
+ model.fit(X, y)
73
+
74
+ # 2. Inicializar e avaliar com ai-critic
75
+ critic = AICritic(model, X, y)
76
+
77
+ # Realização de avaliação completa (padrão view="all")
78
+ report = critic.evaluate(plot=True)
79
+ print(report)
80
+ ```
81
+
82
+ ---
83
+
84
+ ## 🧩 Saída Multi-Camadas
85
+
86
+ O `ai-critic` estrutura os resultados em camadas de decisão claras através do parâmetro `view`.
87
+
88
+ ### 🔹 Visualização Executiva (`view="executive"`)
89
+ Projetado para stakeholders e gestores. Sem jargão técnico.
90
+
91
+ ```python
92
+ critic.evaluate(view="executive")
93
+ ```
94
+
95
+ **Exemplo de Saída:**
96
+ ```json
97
+ {
98
+ "verdict": "❌ Não Confiável",
99
+ "risk_level": "high",
100
+ "deploy_recommended": false,
101
+ "main_reason": "Forte evidência de vazamento de dados inflando o desempenho do modelo."
102
+ }
103
+ ```
104
+
105
+ ### 🔹 Visualização Técnica (`view="technical"`)
106
+ Projetado para engenheiros de ML. Focado em diagnósticos e ações corretivas.
107
+
108
+ ```python
109
+ critic.evaluate(view="technical")
110
+ ```
111
+
112
+ **Exemplo de Saída:**
113
+ ```json
114
+ {
115
+ "key_risks": [
116
+ "Vazamento de dados suspeito devido à correlação quase perfeita entre recurso e alvo.",
117
+ "Pontuação de validação cruzada perfeita detectada (estatisticamente improvável).",
118
+ "A profundidade da árvore pode ser muito alta para o tamanho do conjunto de dados."
119
+ ],
120
+ "model_health": {
121
+ "data_leakage": true,
122
+ "suspicious_cv": true,
123
+ "structural_risk": true,
124
+ "robustness_verdict": "misleading"
125
+ },
126
+ "recommendations": [
127
+ "Auditar e remover recursos com vazamento.",
128
+ "Reduzir a complexidade do modelo.",
129
+ "Executar novamente a validação após a mitigação do vazamento."
130
+ ]
131
+ }
132
+ ```
133
+
134
+ ### 🔹 Visualização Detalhada (`view="details"`)
135
+ Projetado para auditoria, depuração e conformidade. Agrega todos os outputs dos módulos internos.
136
+
137
+ ```python
138
+ details = critic.evaluate(view="details")
139
+ print(details["data"]["class_balance"])
140
+ print(details["robustness"]["performance_drop"])
141
+ ```
142
+
143
+ ### 🔹 Visualização Combinada (`view="all"`)
144
+ Retorna todas as três camadas em um único dicionário, facilitando a integração com pipelines de CI/CD.
145
+
146
+ ---
147
+
148
+ ## 📊 Visualizações e Gráficos
149
+
150
+ Ao definir `plot=True` no método `evaluate()`, o `ai-critic` gera automaticamente:
151
+ * **Heatmap de Correlação:** Identificação visual de vazamento de dados.
152
+ * **Learning Curve:** Diagnóstico de overfitting e necessidade de mais dados.
153
+ * **Gráfico de Robustez:** Visualização da queda de performance sob ruído.
154
+
155
+ ---
156
+
157
+ ## ⚙️ API Principal e Modularização
158
+
159
+ ### `AICritic(model, X, y)`
160
+ * `model`: Modelo `scikit-learn` treinado.
161
+ * `X`: Matriz de recursos.
162
+ * `y`: Vetor alvo.
163
+
164
+ ### `evaluate(view="all", plot=False)`
165
+ * `view`: Camada de saída (`"executive"`, `"technical"`, `"details"`, `"all"` ou lista customizada).
166
+ * `plot`: `True` para gerar gráficos automáticos.
167
+
168
+ ### Uso Modular (Avançado)
169
+ Cada módulo retorna um dicionário padronizado consistente:
170
+ ```python
171
+ from ai_critic.evaluators import data, config, performance, robustness
172
+
173
+ data_report = data.evaluate(X, y, plot=True)
174
+ config_report = config.evaluate(model, n_samples=data_report["n_samples"], n_features=data_report["n_features"])
175
+ ```
176
+
177
+ ---
178
+
179
+ ## 🧠 O que o ai-critic Detecta
180
+
181
+ | Categoria | Riscos Detectados |
182
+ | :--- | :--- |
183
+ | **🔍 Dados** | Vazamento de alvo via correlação, NaNs, desequilíbrio de classes. |
184
+ | **🧱 Estrutura** | Árvores excessivamente complexas, altas taxas de recurso/amostra, configurações suspeitas. |
185
+ | **📈 Validação** | Pontuações de CV suspeitosamente perfeitas, variância irreal. |
186
+ | **🧪 Robustez** | Sensibilidade a ruído, robustez enganosa (stable, fragile, misleading). |
187
+
188
+ ---
189
+
190
+ ## 🛡️ Melhores Práticas
191
+
192
+ * **CI/CD:** Use a Visualização Executiva como um portão de qualidade automatizado.
193
+ * **Debugging:** Use a Visualização Técnica durante a iteração do modelo.
194
+ * **Compliance:** Utilize a Visualização Detalhada para rastreabilidade e auditoria.
195
+ * **Ceticismo:** Nunca confie cegamente em pontuações de CV perfeitas.
196
+
197
+ ---
198
+
199
+ ## 🧭 Casos de Uso Típicos
200
+ * Auditorias de modelo pré-implantação.
201
+ * Governança e conformidade de ML.
202
+ * Portões de modelo em pipelines CI/CD.
203
+ * Explicação de riscos para stakeholders não técnicos.
204
+
205
+ ---
206
+
207
+ ## 📄 Licença
208
+
209
+ Distribuído sob a **MIT License**.
210
+
211
+ ---
212
+
213
+ ## 🧠 Nota Final
214
+
215
+ O **ai-critic** não é uma ferramenta de benchmarking. É uma **ferramenta de decisão**. Se um modelo falhar aqui, não significa que seja ruim — significa que **não deve ser confiável ainda**.
@@ -20,15 +20,19 @@ class AICritic:
20
20
 
21
21
  def evaluate(self, view="all", plot=False):
22
22
  """
23
- view:
24
- - "all"
25
- - "executive"
26
- - "technical"
27
- - "details"
28
- - list of views
29
- plot:
30
- - True: gera gráficos de learning curve, heatmap e robustez
31
- - False: sem gráficos
23
+ Evaluate the model.
24
+
25
+ Parameters:
26
+ -----------
27
+ view : str or list
28
+ - "all" : return full payload
29
+ - "executive" : only executive summary
30
+ - "technical" : only technical summary
31
+ - "details" : only low-level module outputs
32
+ - list : subset of views
33
+ plot : bool
34
+ - True : generate plots (learning curve, heatmap, robustness)
35
+ - False : no plots
32
36
  """
33
37
 
34
38
  # =========================
@@ -37,23 +41,23 @@ class AICritic:
37
41
  details = {}
38
42
 
39
43
  # Data analysis + heatmap
40
- data_report = data(self.X, self.y, plot=plot)
44
+ data_report = data.evaluate(self.X, self.y, plot=plot)
41
45
  details["data"] = data_report
42
46
 
43
47
  # Model configuration
44
- details["config"] = config(
48
+ details["config"] = config.evaluate(
45
49
  self.model,
46
50
  n_samples=data_report["n_samples"],
47
51
  n_features=data_report["n_features"]
48
52
  )
49
53
 
50
54
  # Performance + learning curve
51
- details["performance"] = performance(
55
+ details["performance"] = performance.evaluate(
52
56
  self.model, self.X, self.y, plot=plot
53
57
  )
54
58
 
55
59
  # Robustness + CV clean vs noisy
56
- details["robustness"] = robustness(
60
+ details["robustness"] = robustness.evaluate(
57
61
  self.model,
58
62
  self.X,
59
63
  self.y,
@@ -78,6 +78,13 @@ class HumanSummary:
78
78
  recommendations.append(
79
79
  "Fix baseline performance issues before trusting robustness metrics."
80
80
  )
81
+ elif robustness_verdict == "fragile":
82
+ key_risks.append(
83
+ "Model is fragile under noise perturbations."
84
+ )
85
+ recommendations.append(
86
+ "Consider regularization or simpler model architecture."
87
+ )
81
88
 
82
89
  technical_summary = {
83
90
  "key_risks": key_risks or ["No significant risks detected."],