ai-critic 0.1.0__tar.gz → 0.2.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ai_critic-0.2.1/PKG-INFO +258 -0
- ai_critic-0.2.1/README.md +248 -0
- ai_critic-0.2.1/ai_critic/critic.py +87 -0
- ai_critic-0.2.1/ai_critic/evaluators/config.py +35 -0
- ai_critic-0.2.1/ai_critic/evaluators/data.py +57 -0
- ai_critic-0.2.1/ai_critic/evaluators/performance.py +43 -0
- ai_critic-0.2.1/ai_critic/evaluators/robustness.py +54 -0
- ai_critic-0.2.1/ai_critic/evaluators/summary.py +96 -0
- ai_critic-0.2.1/ai_critic.egg-info/PKG-INFO +258 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/ai_critic.egg-info/SOURCES.txt +1 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/pyproject.toml +2 -2
- ai_critic-0.2.1/test/test_in_ia.py +56 -0
- ai_critic-0.1.0/PKG-INFO +0 -64
- ai_critic-0.1.0/README.md +0 -54
- ai_critic-0.1.0/ai_critic/critic.py +0 -30
- ai_critic-0.1.0/ai_critic/evaluators/config.py +0 -6
- ai_critic-0.1.0/ai_critic/evaluators/data.py +0 -14
- ai_critic-0.1.0/ai_critic/evaluators/performance.py +0 -11
- ai_critic-0.1.0/ai_critic/evaluators/robustness.py +0 -18
- ai_critic-0.1.0/ai_critic.egg-info/PKG-INFO +0 -64
- ai_critic-0.1.0/test/test_in_ia.py +0 -16
- {ai_critic-0.1.0 → ai_critic-0.2.1}/ai_critic/__init__.py +0 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/ai_critic/evaluators/__init__.py +0 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/ai_critic.egg-info/dependency_links.txt +0 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/ai_critic.egg-info/requires.txt +0 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/ai_critic.egg-info/top_level.txt +0 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/setup.cfg +0 -0
- {ai_critic-0.1.0 → ai_critic-0.2.1}/test/test_model.py +0 -0
ai_critic-0.2.1/PKG-INFO
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: ai-critic
|
|
3
|
+
Version: 0.2.1
|
|
4
|
+
Summary: Fast AI evaluator for scikit-learn models
|
|
5
|
+
Author-email: Luiz Seabra <filipedemarco@yahoo.com>
|
|
6
|
+
Requires-Python: >=3.9
|
|
7
|
+
Description-Content-Type: text/markdown
|
|
8
|
+
Requires-Dist: numpy
|
|
9
|
+
Requires-Dist: scikit-learn
|
|
10
|
+
|
|
11
|
+
# ai-critic: Automated Risk Auditor for Machine Learning Models**
|
|
12
|
+
|
|
13
|
+
---
|
|
14
|
+
|
|
15
|
+
## 🚀 What is ai-critic?
|
|
16
|
+
|
|
17
|
+
`ai-critic` é um **auditor de risco automatizado baseado em heurísticas** para modelos de *machine learning*. Ele avalia modelos treinados antes da implantação e traduz riscos técnicos de ML em decisões claras e centradas no ser humano.
|
|
18
|
+
|
|
19
|
+
Em vez de apenas relatar métricas, o `ai-critic` responde à pergunta crítica:
|
|
20
|
+
|
|
21
|
+
> “Este modelo pode ser implantado com segurança?”
|
|
22
|
+
|
|
23
|
+
Ele faz isso analisando as principais áreas de risco:
|
|
24
|
+
|
|
25
|
+
* **Integridade dos Dados:** (*data leakage*, desequilíbrio, NaNs)
|
|
26
|
+
* **Estrutura do Modelo:** (risco de *overfitting*, complexidade)
|
|
27
|
+
* **Comportamento de Validação:** (pontuações suspeitamente perfeitas)
|
|
28
|
+
* **Robustez:** (sensibilidade a ruído)
|
|
29
|
+
|
|
30
|
+
Os resultados são organizados em três camadas semânticas para diferentes *stakeholders*:
|
|
31
|
+
|
|
32
|
+
* **Executiva:** (tomadores de decisão)
|
|
33
|
+
* **Técnica:** (engenheiros de ML)
|
|
34
|
+
* **Detalhada:** (auditores e depuração)
|
|
35
|
+
|
|
36
|
+
## 🎯 Por que o ai-critic Existe: Filosofia Central
|
|
37
|
+
|
|
38
|
+
A maioria das ferramentas de ML:
|
|
39
|
+
|
|
40
|
+
* assume que métricas = verdade
|
|
41
|
+
* confia cegamente na validação cruzada
|
|
42
|
+
* despeja números brutos sem interpretação
|
|
43
|
+
|
|
44
|
+
O `ai-critic` é cético por design.
|
|
45
|
+
|
|
46
|
+
Ele trata:
|
|
47
|
+
|
|
48
|
+
* pontuações perfeitas como **sinais**, não sucesso
|
|
49
|
+
* métricas de robustez como **dependentes do contexto**
|
|
50
|
+
* implantação como uma **decisão de risco**, não um limite de métrica
|
|
51
|
+
|
|
52
|
+
A filosofia central é: **Métricas não falham modelos — o contexto falha.**
|
|
53
|
+
|
|
54
|
+
O `ai-critic` aplica heurísticas de raciocínio humano à avaliação de ML:
|
|
55
|
+
|
|
56
|
+
* “Isso é bom demais para ser verdade?”
|
|
57
|
+
* “Isso pode estar vazando o alvo (*target*)?”
|
|
58
|
+
* “A robustez importa se a linha de base estiver errada?”
|
|
59
|
+
|
|
60
|
+
## 🛠️ Instalação
|
|
61
|
+
|
|
62
|
+
Instale o `ai-critic` via pip:
|
|
63
|
+
|
|
64
|
+
```bash
|
|
65
|
+
pip install ai-critic
|
|
66
|
+
```
|
|
67
|
+
|
|
68
|
+
**Requisitos:**
|
|
69
|
+
|
|
70
|
+
* Python ≥ 3.8
|
|
71
|
+
* `scikit-learn`
|
|
72
|
+
|
|
73
|
+
## 💡 Início Rápido
|
|
74
|
+
|
|
75
|
+
Audite seu modelo treinado em apenas algumas linhas:
|
|
76
|
+
|
|
77
|
+
```python
|
|
78
|
+
from sklearn.datasets import load_breast_cancer
|
|
79
|
+
from sklearn.ensemble import RandomForestClassifier
|
|
80
|
+
from ai_critic import AICritic
|
|
81
|
+
|
|
82
|
+
# 1. Carregar dados e treinar um modelo (exemplo)
|
|
83
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
84
|
+
model = RandomForestClassifier(max_depth=20, random_state=42)
|
|
85
|
+
model.fit(X, y) # O modelo deve estar treinado
|
|
86
|
+
|
|
87
|
+
# 2. Inicializar e avaliar com ai-critic
|
|
88
|
+
critic = AICritic(model, X, y)
|
|
89
|
+
report = critic.evaluate()
|
|
90
|
+
|
|
91
|
+
# A visualização padrão é 'all' (todas as camadas)
|
|
92
|
+
print(report)
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
## 🧩 Saída Multi-Camadas
|
|
96
|
+
|
|
97
|
+
O `ai-critic` nunca despeja tudo de uma vez. Ele estrutura os resultados em camadas de decisão claras.
|
|
98
|
+
|
|
99
|
+
### 🔹 Visualização Executiva (`view="executive"`)
|
|
100
|
+
|
|
101
|
+
Projetado para CTOs, gerentes e *stakeholders*. Sem jargão de ML.
|
|
102
|
+
|
|
103
|
+
```python
|
|
104
|
+
critic.evaluate(view="executive")
|
|
105
|
+
```
|
|
106
|
+
|
|
107
|
+
**Exemplo de Saída:**
|
|
108
|
+
|
|
109
|
+
```json
|
|
110
|
+
{
|
|
111
|
+
"verdict": "❌ Não Confiável",
|
|
112
|
+
"risk_level": "high",
|
|
113
|
+
"deploy_recommended": false,
|
|
114
|
+
"main_reason": "Forte evidência de vazamento de dados inflando o desempenho do modelo."
|
|
115
|
+
}
|
|
116
|
+
```
|
|
117
|
+
|
|
118
|
+
### 🔹 Visualização Técnica (`view="technical"`)
|
|
119
|
+
|
|
120
|
+
Projetado para engenheiros de ML. Acionável, diagnóstico e focado no que precisa ser corrigido.
|
|
121
|
+
|
|
122
|
+
```python
|
|
123
|
+
critic.evaluate(view="technical")
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
**Exemplo de Saída:**
|
|
127
|
+
|
|
128
|
+
```json
|
|
129
|
+
{
|
|
130
|
+
"key_risks": [
|
|
131
|
+
"Vazamento de dados suspeito devido à correlação quase perfeita entre recurso e alvo.",
|
|
132
|
+
"Pontuação de validação cruzada perfeita detectada (estatisticamente improvável).",
|
|
133
|
+
"A profundidade da árvore pode ser muito alta para o tamanho do conjunto de dados."
|
|
134
|
+
],
|
|
135
|
+
"model_health": {
|
|
136
|
+
"data_leakage": true,
|
|
137
|
+
"suspicious_cv": true,
|
|
138
|
+
"structural_risk": true,
|
|
139
|
+
"robustness_verdict": "misleading"
|
|
140
|
+
},
|
|
141
|
+
"recommendations": [
|
|
142
|
+
"Auditar e remover recursos com vazamento.",
|
|
143
|
+
"Reduzir a complexidade do modelo.",
|
|
144
|
+
"Executar novamente a validação após a mitigação do vazamento."
|
|
145
|
+
]
|
|
146
|
+
}
|
|
147
|
+
```
|
|
148
|
+
|
|
149
|
+
### 🔹 Visualização Detalhada (`view="details"`)
|
|
150
|
+
|
|
151
|
+
Projetado para auditoria, depuração e conformidade.
|
|
152
|
+
|
|
153
|
+
```python
|
|
154
|
+
critic.evaluate(view="details")
|
|
155
|
+
```
|
|
156
|
+
|
|
157
|
+
Inclui:
|
|
158
|
+
|
|
159
|
+
* Métricas brutas
|
|
160
|
+
* Correlações de recursos
|
|
161
|
+
* Pontuações de robustez
|
|
162
|
+
* Avisos estruturais
|
|
163
|
+
* Rastreabilidade completa
|
|
164
|
+
|
|
165
|
+
### 🔹 Visualização Combinada (`view="all"`)
|
|
166
|
+
|
|
167
|
+
Retorna todas as três camadas em um único dicionário.
|
|
168
|
+
|
|
169
|
+
```python
|
|
170
|
+
critic.evaluate(view="all")
|
|
171
|
+
```
|
|
172
|
+
|
|
173
|
+
**Retorna:**
|
|
174
|
+
|
|
175
|
+
```json
|
|
176
|
+
{
|
|
177
|
+
"executive": {...},
|
|
178
|
+
"technical": {...},
|
|
179
|
+
"details": {...}
|
|
180
|
+
}
|
|
181
|
+
```
|
|
182
|
+
|
|
183
|
+
## ⚙️ API Principal
|
|
184
|
+
|
|
185
|
+
### `AICritic`
|
|
186
|
+
|
|
187
|
+
| Parâmetro | Descrição |
|
|
188
|
+
| :--- | :--- |
|
|
189
|
+
| `model` | Modelo `scikit-learn` treinado |
|
|
190
|
+
| `X` | Matriz de recursos |
|
|
191
|
+
| `y` | Vetor alvo |
|
|
192
|
+
|
|
193
|
+
**Uso:** `AICritic(model, X, y)`
|
|
194
|
+
|
|
195
|
+
### `evaluate()`
|
|
196
|
+
|
|
197
|
+
| Parâmetro | Descrição |
|
|
198
|
+
| :--- | :--- |
|
|
199
|
+
| `view` | Camada de saída desejada: `"executive"`, `"technical"`, `"details"`, ou `"all"` (padrão) |
|
|
200
|
+
|
|
201
|
+
**Uso:** `evaluate(view="all")`
|
|
202
|
+
|
|
203
|
+
## 🧠 O que o ai-critic Detecta
|
|
204
|
+
|
|
205
|
+
| Categoria | Riscos Detectados |
|
|
206
|
+
| :--- | :--- |
|
|
207
|
+
| **🔍 Riscos de Dados** | Vazamento de alvo via correlação, NaNs, desequilíbrio de classes |
|
|
208
|
+
| **🧱 Riscos Estruturais** | Árvores excessivamente complexas, altas taxas de recurso/amostra, *configuration smells* |
|
|
209
|
+
| **📈 Riscos de Validação** | Pontuações de CV suspeitosamente perfeitas, variância irreal |
|
|
210
|
+
| **🧪 Riscos de Robustez** | Sensibilidade a ruído, robustez enganosa se a linha de base estiver inflada |
|
|
211
|
+
|
|
212
|
+
## 🧪 Exemplo: Detectando Vazamento de Dados
|
|
213
|
+
|
|
214
|
+
```python
|
|
215
|
+
import numpy as np
|
|
216
|
+
# ... (imports e código do modelo)
|
|
217
|
+
|
|
218
|
+
# Vazamento artificial: adicionando o alvo como um recurso
|
|
219
|
+
X_leaky = np.hstack([X, y.reshape(-1, 1)])
|
|
220
|
+
|
|
221
|
+
critic = AICritic(model, X_leaky, y)
|
|
222
|
+
executive_report = critic.evaluate(view="executive")
|
|
223
|
+
|
|
224
|
+
print(executive_report)
|
|
225
|
+
```
|
|
226
|
+
|
|
227
|
+
**Saída (Visualização Executiva):**
|
|
228
|
+
|
|
229
|
+
```
|
|
230
|
+
❌ Não Confiável
|
|
231
|
+
Forte evidência de vazamento de dados inflando o desempenho do modelo.
|
|
232
|
+
```
|
|
233
|
+
|
|
234
|
+
## 🛡️ Melhores Práticas
|
|
235
|
+
|
|
236
|
+
* Execute o `ai-critic` antes da implantação.
|
|
237
|
+
* Nunca confie cegamente em pontuações de CV perfeitas.
|
|
238
|
+
* Use a Visualização Executiva em seu *pipeline* de CI/CD como um portão de modelo.
|
|
239
|
+
* Use a Visualização Técnica durante a iteração do modelo.
|
|
240
|
+
* Use a Visualização Detalhada para auditoria e conformidade.
|
|
241
|
+
|
|
242
|
+
## 🧭 Casos de Uso Típicos
|
|
243
|
+
|
|
244
|
+
* Auditorias de modelo pré-implantação
|
|
245
|
+
* Governança e conformidade de ML
|
|
246
|
+
* Portões de modelo CI/CD
|
|
247
|
+
* Ensino de ceticismo em ML
|
|
248
|
+
* Explicação de risco de ML para *stakeholders* não técnicos
|
|
249
|
+
|
|
250
|
+
## 📄 Licença
|
|
251
|
+
|
|
252
|
+
Distribuído sob a Licença MIT.
|
|
253
|
+
|
|
254
|
+
## 🧠 Nota Final
|
|
255
|
+
|
|
256
|
+
O `ai-critic` não é uma ferramenta de *benchmarking*. É uma **ferramenta de decisão**.
|
|
257
|
+
|
|
258
|
+
Se um modelo falhar aqui, não significa que seja ruim — significa que **não deve ser confiável ainda**.
|
|
@@ -0,0 +1,248 @@
|
|
|
1
|
+
# ai-critic: Automated Risk Auditor for Machine Learning Models**
|
|
2
|
+
|
|
3
|
+
---
|
|
4
|
+
|
|
5
|
+
## 🚀 What is ai-critic?
|
|
6
|
+
|
|
7
|
+
`ai-critic` é um **auditor de risco automatizado baseado em heurísticas** para modelos de *machine learning*. Ele avalia modelos treinados antes da implantação e traduz riscos técnicos de ML em decisões claras e centradas no ser humano.
|
|
8
|
+
|
|
9
|
+
Em vez de apenas relatar métricas, o `ai-critic` responde à pergunta crítica:
|
|
10
|
+
|
|
11
|
+
> “Este modelo pode ser implantado com segurança?”
|
|
12
|
+
|
|
13
|
+
Ele faz isso analisando as principais áreas de risco:
|
|
14
|
+
|
|
15
|
+
* **Integridade dos Dados:** (*data leakage*, desequilíbrio, NaNs)
|
|
16
|
+
* **Estrutura do Modelo:** (risco de *overfitting*, complexidade)
|
|
17
|
+
* **Comportamento de Validação:** (pontuações suspeitamente perfeitas)
|
|
18
|
+
* **Robustez:** (sensibilidade a ruído)
|
|
19
|
+
|
|
20
|
+
Os resultados são organizados em três camadas semânticas para diferentes *stakeholders*:
|
|
21
|
+
|
|
22
|
+
* **Executiva:** (tomadores de decisão)
|
|
23
|
+
* **Técnica:** (engenheiros de ML)
|
|
24
|
+
* **Detalhada:** (auditores e depuração)
|
|
25
|
+
|
|
26
|
+
## 🎯 Por que o ai-critic Existe: Filosofia Central
|
|
27
|
+
|
|
28
|
+
A maioria das ferramentas de ML:
|
|
29
|
+
|
|
30
|
+
* assume que métricas = verdade
|
|
31
|
+
* confia cegamente na validação cruzada
|
|
32
|
+
* despeja números brutos sem interpretação
|
|
33
|
+
|
|
34
|
+
O `ai-critic` é cético por design.
|
|
35
|
+
|
|
36
|
+
Ele trata:
|
|
37
|
+
|
|
38
|
+
* pontuações perfeitas como **sinais**, não sucesso
|
|
39
|
+
* métricas de robustez como **dependentes do contexto**
|
|
40
|
+
* implantação como uma **decisão de risco**, não um limite de métrica
|
|
41
|
+
|
|
42
|
+
A filosofia central é: **Métricas não falham modelos — o contexto falha.**
|
|
43
|
+
|
|
44
|
+
O `ai-critic` aplica heurísticas de raciocínio humano à avaliação de ML:
|
|
45
|
+
|
|
46
|
+
* “Isso é bom demais para ser verdade?”
|
|
47
|
+
* “Isso pode estar vazando o alvo (*target*)?”
|
|
48
|
+
* “A robustez importa se a linha de base estiver errada?”
|
|
49
|
+
|
|
50
|
+
## 🛠️ Instalação
|
|
51
|
+
|
|
52
|
+
Instale o `ai-critic` via pip:
|
|
53
|
+
|
|
54
|
+
```bash
|
|
55
|
+
pip install ai-critic
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
**Requisitos:**
|
|
59
|
+
|
|
60
|
+
* Python ≥ 3.8
|
|
61
|
+
* `scikit-learn`
|
|
62
|
+
|
|
63
|
+
## 💡 Início Rápido
|
|
64
|
+
|
|
65
|
+
Audite seu modelo treinado em apenas algumas linhas:
|
|
66
|
+
|
|
67
|
+
```python
|
|
68
|
+
from sklearn.datasets import load_breast_cancer
|
|
69
|
+
from sklearn.ensemble import RandomForestClassifier
|
|
70
|
+
from ai_critic import AICritic
|
|
71
|
+
|
|
72
|
+
# 1. Carregar dados e treinar um modelo (exemplo)
|
|
73
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
74
|
+
model = RandomForestClassifier(max_depth=20, random_state=42)
|
|
75
|
+
model.fit(X, y) # O modelo deve estar treinado
|
|
76
|
+
|
|
77
|
+
# 2. Inicializar e avaliar com ai-critic
|
|
78
|
+
critic = AICritic(model, X, y)
|
|
79
|
+
report = critic.evaluate()
|
|
80
|
+
|
|
81
|
+
# A visualização padrão é 'all' (todas as camadas)
|
|
82
|
+
print(report)
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
## 🧩 Saída Multi-Camadas
|
|
86
|
+
|
|
87
|
+
O `ai-critic` nunca despeja tudo de uma vez. Ele estrutura os resultados em camadas de decisão claras.
|
|
88
|
+
|
|
89
|
+
### 🔹 Visualização Executiva (`view="executive"`)
|
|
90
|
+
|
|
91
|
+
Projetado para CTOs, gerentes e *stakeholders*. Sem jargão de ML.
|
|
92
|
+
|
|
93
|
+
```python
|
|
94
|
+
critic.evaluate(view="executive")
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
**Exemplo de Saída:**
|
|
98
|
+
|
|
99
|
+
```json
|
|
100
|
+
{
|
|
101
|
+
"verdict": "❌ Não Confiável",
|
|
102
|
+
"risk_level": "high",
|
|
103
|
+
"deploy_recommended": false,
|
|
104
|
+
"main_reason": "Forte evidência de vazamento de dados inflando o desempenho do modelo."
|
|
105
|
+
}
|
|
106
|
+
```
|
|
107
|
+
|
|
108
|
+
### 🔹 Visualização Técnica (`view="technical"`)
|
|
109
|
+
|
|
110
|
+
Projetado para engenheiros de ML. Acionável, diagnóstico e focado no que precisa ser corrigido.
|
|
111
|
+
|
|
112
|
+
```python
|
|
113
|
+
critic.evaluate(view="technical")
|
|
114
|
+
```
|
|
115
|
+
|
|
116
|
+
**Exemplo de Saída:**
|
|
117
|
+
|
|
118
|
+
```json
|
|
119
|
+
{
|
|
120
|
+
"key_risks": [
|
|
121
|
+
"Vazamento de dados suspeito devido à correlação quase perfeita entre recurso e alvo.",
|
|
122
|
+
"Pontuação de validação cruzada perfeita detectada (estatisticamente improvável).",
|
|
123
|
+
"A profundidade da árvore pode ser muito alta para o tamanho do conjunto de dados."
|
|
124
|
+
],
|
|
125
|
+
"model_health": {
|
|
126
|
+
"data_leakage": true,
|
|
127
|
+
"suspicious_cv": true,
|
|
128
|
+
"structural_risk": true,
|
|
129
|
+
"robustness_verdict": "misleading"
|
|
130
|
+
},
|
|
131
|
+
"recommendations": [
|
|
132
|
+
"Auditar e remover recursos com vazamento.",
|
|
133
|
+
"Reduzir a complexidade do modelo.",
|
|
134
|
+
"Executar novamente a validação após a mitigação do vazamento."
|
|
135
|
+
]
|
|
136
|
+
}
|
|
137
|
+
```
|
|
138
|
+
|
|
139
|
+
### 🔹 Visualização Detalhada (`view="details"`)
|
|
140
|
+
|
|
141
|
+
Projetado para auditoria, depuração e conformidade.
|
|
142
|
+
|
|
143
|
+
```python
|
|
144
|
+
critic.evaluate(view="details")
|
|
145
|
+
```
|
|
146
|
+
|
|
147
|
+
Inclui:
|
|
148
|
+
|
|
149
|
+
* Métricas brutas
|
|
150
|
+
* Correlações de recursos
|
|
151
|
+
* Pontuações de robustez
|
|
152
|
+
* Avisos estruturais
|
|
153
|
+
* Rastreabilidade completa
|
|
154
|
+
|
|
155
|
+
### 🔹 Visualização Combinada (`view="all"`)
|
|
156
|
+
|
|
157
|
+
Retorna todas as três camadas em um único dicionário.
|
|
158
|
+
|
|
159
|
+
```python
|
|
160
|
+
critic.evaluate(view="all")
|
|
161
|
+
```
|
|
162
|
+
|
|
163
|
+
**Retorna:**
|
|
164
|
+
|
|
165
|
+
```json
|
|
166
|
+
{
|
|
167
|
+
"executive": {...},
|
|
168
|
+
"technical": {...},
|
|
169
|
+
"details": {...}
|
|
170
|
+
}
|
|
171
|
+
```
|
|
172
|
+
|
|
173
|
+
## ⚙️ API Principal
|
|
174
|
+
|
|
175
|
+
### `AICritic`
|
|
176
|
+
|
|
177
|
+
| Parâmetro | Descrição |
|
|
178
|
+
| :--- | :--- |
|
|
179
|
+
| `model` | Modelo `scikit-learn` treinado |
|
|
180
|
+
| `X` | Matriz de recursos |
|
|
181
|
+
| `y` | Vetor alvo |
|
|
182
|
+
|
|
183
|
+
**Uso:** `AICritic(model, X, y)`
|
|
184
|
+
|
|
185
|
+
### `evaluate()`
|
|
186
|
+
|
|
187
|
+
| Parâmetro | Descrição |
|
|
188
|
+
| :--- | :--- |
|
|
189
|
+
| `view` | Camada de saída desejada: `"executive"`, `"technical"`, `"details"`, ou `"all"` (padrão) |
|
|
190
|
+
|
|
191
|
+
**Uso:** `evaluate(view="all")`
|
|
192
|
+
|
|
193
|
+
## 🧠 O que o ai-critic Detecta
|
|
194
|
+
|
|
195
|
+
| Categoria | Riscos Detectados |
|
|
196
|
+
| :--- | :--- |
|
|
197
|
+
| **🔍 Riscos de Dados** | Vazamento de alvo via correlação, NaNs, desequilíbrio de classes |
|
|
198
|
+
| **🧱 Riscos Estruturais** | Árvores excessivamente complexas, altas taxas de recurso/amostra, *configuration smells* |
|
|
199
|
+
| **📈 Riscos de Validação** | Pontuações de CV suspeitosamente perfeitas, variância irreal |
|
|
200
|
+
| **🧪 Riscos de Robustez** | Sensibilidade a ruído, robustez enganosa se a linha de base estiver inflada |
|
|
201
|
+
|
|
202
|
+
## 🧪 Exemplo: Detectando Vazamento de Dados
|
|
203
|
+
|
|
204
|
+
```python
|
|
205
|
+
import numpy as np
|
|
206
|
+
# ... (imports e código do modelo)
|
|
207
|
+
|
|
208
|
+
# Vazamento artificial: adicionando o alvo como um recurso
|
|
209
|
+
X_leaky = np.hstack([X, y.reshape(-1, 1)])
|
|
210
|
+
|
|
211
|
+
critic = AICritic(model, X_leaky, y)
|
|
212
|
+
executive_report = critic.evaluate(view="executive")
|
|
213
|
+
|
|
214
|
+
print(executive_report)
|
|
215
|
+
```
|
|
216
|
+
|
|
217
|
+
**Saída (Visualização Executiva):**
|
|
218
|
+
|
|
219
|
+
```
|
|
220
|
+
❌ Não Confiável
|
|
221
|
+
Forte evidência de vazamento de dados inflando o desempenho do modelo.
|
|
222
|
+
```
|
|
223
|
+
|
|
224
|
+
## 🛡️ Melhores Práticas
|
|
225
|
+
|
|
226
|
+
* Execute o `ai-critic` antes da implantação.
|
|
227
|
+
* Nunca confie cegamente em pontuações de CV perfeitas.
|
|
228
|
+
* Use a Visualização Executiva em seu *pipeline* de CI/CD como um portão de modelo.
|
|
229
|
+
* Use a Visualização Técnica durante a iteração do modelo.
|
|
230
|
+
* Use a Visualização Detalhada para auditoria e conformidade.
|
|
231
|
+
|
|
232
|
+
## 🧭 Casos de Uso Típicos
|
|
233
|
+
|
|
234
|
+
* Auditorias de modelo pré-implantação
|
|
235
|
+
* Governança e conformidade de ML
|
|
236
|
+
* Portões de modelo CI/CD
|
|
237
|
+
* Ensino de ceticismo em ML
|
|
238
|
+
* Explicação de risco de ML para *stakeholders* não técnicos
|
|
239
|
+
|
|
240
|
+
## 📄 Licença
|
|
241
|
+
|
|
242
|
+
Distribuído sob a Licença MIT.
|
|
243
|
+
|
|
244
|
+
## 🧠 Nota Final
|
|
245
|
+
|
|
246
|
+
O `ai-critic` não é uma ferramenta de *benchmarking*. É uma **ferramenta de decisão**.
|
|
247
|
+
|
|
248
|
+
Se um modelo falhar aqui, não significa que seja ruim — significa que **não deve ser confiável ainda**.
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
from ai_critic.evaluators import (
|
|
2
|
+
robustness,
|
|
3
|
+
config,
|
|
4
|
+
data,
|
|
5
|
+
performance
|
|
6
|
+
)
|
|
7
|
+
from ai_critic.evaluators.summary import HumanSummary
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class AICritic:
|
|
11
|
+
"""
|
|
12
|
+
Automated reviewer for scikit-learn models.
|
|
13
|
+
Produces a multi-layered risk assessment with visualizations.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
def __init__(self, model, X, y):
|
|
17
|
+
self.model = model
|
|
18
|
+
self.X = X
|
|
19
|
+
self.y = y
|
|
20
|
+
|
|
21
|
+
def evaluate(self, view="all", plot=False):
|
|
22
|
+
"""
|
|
23
|
+
view:
|
|
24
|
+
- "all"
|
|
25
|
+
- "executive"
|
|
26
|
+
- "technical"
|
|
27
|
+
- "details"
|
|
28
|
+
- list of views
|
|
29
|
+
plot:
|
|
30
|
+
- True: gera gráficos de learning curve, heatmap e robustez
|
|
31
|
+
- False: sem gráficos
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
# =========================
|
|
35
|
+
# Low-level technical details
|
|
36
|
+
# =========================
|
|
37
|
+
details = {}
|
|
38
|
+
|
|
39
|
+
# Data analysis + heatmap
|
|
40
|
+
data_report = data(self.X, self.y, plot=plot)
|
|
41
|
+
details["data"] = data_report
|
|
42
|
+
|
|
43
|
+
# Model configuration
|
|
44
|
+
details["config"] = config(
|
|
45
|
+
self.model,
|
|
46
|
+
n_samples=data_report["n_samples"],
|
|
47
|
+
n_features=data_report["n_features"]
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
# Performance + learning curve
|
|
51
|
+
details["performance"] = performance(
|
|
52
|
+
self.model, self.X, self.y, plot=plot
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
# Robustness + CV clean vs noisy
|
|
56
|
+
details["robustness"] = robustness(
|
|
57
|
+
self.model,
|
|
58
|
+
self.X,
|
|
59
|
+
self.y,
|
|
60
|
+
leakage_suspected=data_report["data_leakage"]["suspected"],
|
|
61
|
+
plot=plot
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
# =========================
|
|
65
|
+
# Human interpretation
|
|
66
|
+
# =========================
|
|
67
|
+
human = HumanSummary().generate(details)
|
|
68
|
+
|
|
69
|
+
# =========================
|
|
70
|
+
# Full payload
|
|
71
|
+
# =========================
|
|
72
|
+
payload = {
|
|
73
|
+
"executive": human["executive_summary"],
|
|
74
|
+
"technical": human["technical_summary"],
|
|
75
|
+
"details": details
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
# =========================
|
|
79
|
+
# View selector
|
|
80
|
+
# =========================
|
|
81
|
+
if view == "all":
|
|
82
|
+
return payload
|
|
83
|
+
|
|
84
|
+
if isinstance(view, list):
|
|
85
|
+
return {k: payload[k] for k in view if k in payload}
|
|
86
|
+
|
|
87
|
+
return payload.get(view)
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
def evaluate(model, n_samples=None, n_features=None):
|
|
4
|
+
params = model.get_params()
|
|
5
|
+
model_type = type(model).__name__
|
|
6
|
+
|
|
7
|
+
report = {
|
|
8
|
+
"model_type": model_type,
|
|
9
|
+
"n_params": len(params),
|
|
10
|
+
"uses_random_state": "random_state" in params
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
# 🧠 Structural overfitting heuristics
|
|
14
|
+
warnings = []
|
|
15
|
+
|
|
16
|
+
if n_samples and hasattr(model, "max_depth"):
|
|
17
|
+
max_depth = params.get("max_depth")
|
|
18
|
+
if max_depth is not None:
|
|
19
|
+
recommended_depth = math.log2(n_samples)
|
|
20
|
+
if max_depth > recommended_depth:
|
|
21
|
+
warnings.append({
|
|
22
|
+
"issue": "structural_overfitting_risk",
|
|
23
|
+
"max_depth": max_depth,
|
|
24
|
+
"recommended_max_depth": int(recommended_depth),
|
|
25
|
+
"message": "Tree depth may be too high for dataset size."
|
|
26
|
+
})
|
|
27
|
+
|
|
28
|
+
if n_samples and n_features and n_features > n_samples:
|
|
29
|
+
warnings.append({
|
|
30
|
+
"issue": "high_feature_sample_ratio",
|
|
31
|
+
"message": "More features than samples can cause instability."
|
|
32
|
+
})
|
|
33
|
+
|
|
34
|
+
report["structural_warnings"] = warnings
|
|
35
|
+
return report
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
import seaborn as sns
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
def evaluate(X, y, plot=False):
|
|
7
|
+
report = {
|
|
8
|
+
"n_samples": int(X.shape[0]),
|
|
9
|
+
"n_features": int(X.shape[1]),
|
|
10
|
+
"has_nan": bool(np.isnan(X).any() or np.isnan(y).any())
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
# Class balance
|
|
14
|
+
if len(set(y)) < 20:
|
|
15
|
+
values, counts = np.unique(y, return_counts=True)
|
|
16
|
+
report["class_balance"] = {int(v): int(c) for v, c in zip(values, counts)}
|
|
17
|
+
else:
|
|
18
|
+
report["class_balance"] = "many_classes"
|
|
19
|
+
|
|
20
|
+
# Data leakage detection
|
|
21
|
+
suspicious_features = []
|
|
22
|
+
y_mean = np.mean(y)
|
|
23
|
+
y_centered = y - y_mean
|
|
24
|
+
for i in range(X.shape[1]):
|
|
25
|
+
feature = X[:, i]
|
|
26
|
+
if np.std(feature) == 0:
|
|
27
|
+
continue
|
|
28
|
+
corr = np.corrcoef(feature, y_centered)[0, 1]
|
|
29
|
+
if abs(corr) > 0.98:
|
|
30
|
+
suspicious_features.append({"feature_index": int(i), "correlation": float(corr)})
|
|
31
|
+
|
|
32
|
+
report["data_leakage"] = {
|
|
33
|
+
"suspected": bool(len(suspicious_features) > 0),
|
|
34
|
+
"details": suspicious_features,
|
|
35
|
+
"message": (
|
|
36
|
+
"Highly correlated features may reveal the target directly."
|
|
37
|
+
if suspicious_features else "No obvious data leakage detected."
|
|
38
|
+
)
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
# =========================
|
|
42
|
+
# Heatmap de correlação Features x Target
|
|
43
|
+
# =========================
|
|
44
|
+
if plot:
|
|
45
|
+
feature_names = [f"feat_{i}" for i in range(X.shape[1])]
|
|
46
|
+
df = pd.DataFrame(X, columns=feature_names)
|
|
47
|
+
df['target'] = y
|
|
48
|
+
corr_matrix = df.corr()
|
|
49
|
+
|
|
50
|
+
plt.figure(figsize=(10,8))
|
|
51
|
+
sns.heatmap(corr_matrix, annot=False, cmap="coolwarm") # <- removi os números
|
|
52
|
+
plt.title("Correlação Features x Target")
|
|
53
|
+
plt.tight_layout()
|
|
54
|
+
plt.savefig("heatmap_correlation.png", dpi=150) # Salva automaticamente
|
|
55
|
+
plt.show()
|
|
56
|
+
|
|
57
|
+
return report
|