ai-computer-client 0.1.0__tar.gz → 0.2.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ai_computer_client-0.1.0 → ai_computer_client-0.2.0}/PKG-INFO +114 -16
- ai_computer_client-0.2.0/README.md +195 -0
- {ai_computer_client-0.1.0 → ai_computer_client-0.2.0}/ai_computer/client.py +54 -1
- {ai_computer_client-0.1.0 → ai_computer_client-0.2.0}/pyproject.toml +1 -1
- ai_computer_client-0.1.0/README.md +0 -97
- {ai_computer_client-0.1.0 → ai_computer_client-0.2.0}/.gitignore +0 -0
- {ai_computer_client-0.1.0 → ai_computer_client-0.2.0}/LICENSE +0 -0
- {ai_computer_client-0.1.0 → ai_computer_client-0.2.0}/ai_computer/__init__.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ai-computer-client
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.2.0
|
4
4
|
Summary: Python client for interacting with the AI Computer service
|
5
5
|
Project-URL: Homepage, https://github.com/ColeMurray/ai-computer-client-python
|
6
6
|
Project-URL: Documentation, https://github.com/ColeMurray/ai-computer-client-python#readme
|
@@ -50,16 +50,34 @@ async def main():
|
|
50
50
|
if not setup_response.success:
|
51
51
|
print(f"Setup failed: {setup_response.error}")
|
52
52
|
return
|
53
|
-
|
53
|
+
|
54
54
|
try:
|
55
|
-
#
|
56
|
-
code = """
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
"""
|
55
|
+
# Example 1: Simple code execution
|
56
|
+
code = """x = 10
|
57
|
+
y = 20
|
58
|
+
result = x + y
|
59
|
+
print(f"The sum is: {result}")"""
|
61
60
|
|
62
|
-
|
61
|
+
print("\nExample 1: Simple execution")
|
62
|
+
print("-" * 50)
|
63
|
+
response = await client.execute_code(code)
|
64
|
+
if response.success:
|
65
|
+
print("Execution result:", response.data)
|
66
|
+
else:
|
67
|
+
print("Execution failed:", response.error)
|
68
|
+
|
69
|
+
# Example 2: Streaming execution
|
70
|
+
code = """import time
|
71
|
+
|
72
|
+
for i in range(5):
|
73
|
+
print(f"Processing step {i + 1}")
|
74
|
+
time.sleep(1) # Simulate work
|
75
|
+
|
76
|
+
result = "Calculation complete!"
|
77
|
+
print(result)"""
|
78
|
+
|
79
|
+
print("\nExample 2: Streaming execution")
|
80
|
+
print("-" * 50)
|
63
81
|
async for event in client.execute_code_stream(code):
|
64
82
|
if event.type == 'stdout':
|
65
83
|
print(f"Output: {event.data}")
|
@@ -80,10 +98,27 @@ if __name__ == "__main__":
|
|
80
98
|
asyncio.run(main())
|
81
99
|
```
|
82
100
|
|
101
|
+
Example output:
|
102
|
+
```
|
103
|
+
Example 1: Simple execution
|
104
|
+
--------------------------------------------------
|
105
|
+
Execution result: {'output': 'The sum is: 30\n', 'sandbox_id': '06a30496-b535-47b0-9fe7-34f7ec483cd7'}
|
106
|
+
|
107
|
+
Example 2: Streaming execution
|
108
|
+
--------------------------------------------------
|
109
|
+
Output: Processing step 1
|
110
|
+
Output: Processing step 2
|
111
|
+
Output: Processing step 3
|
112
|
+
Output: Processing step 4
|
113
|
+
Output: Processing step 5
|
114
|
+
Output: Calculation complete!
|
115
|
+
Execution completed
|
116
|
+
```
|
117
|
+
|
83
118
|
## Features
|
84
119
|
|
85
|
-
- Asynchronous API
|
86
|
-
-
|
120
|
+
- Asynchronous API for efficient execution
|
121
|
+
- Real-time streaming of code output
|
87
122
|
- Automatic sandbox management
|
88
123
|
- Error handling and timeouts
|
89
124
|
- Type hints for better IDE support
|
@@ -94,20 +129,83 @@ if __name__ == "__main__":
|
|
94
129
|
|
95
130
|
The main client class for interacting with the AI Computer service.
|
96
131
|
|
132
|
+
```python
|
133
|
+
client = SandboxClient(base_url="http://aicomputer.dev")
|
134
|
+
```
|
135
|
+
|
97
136
|
#### Methods
|
98
137
|
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
138
|
+
##### `async setup() -> SandboxResponse`
|
139
|
+
Initialize the client and create a sandbox. This must be called before executing any code.
|
140
|
+
|
141
|
+
```python
|
142
|
+
response = await client.setup()
|
143
|
+
if response.success:
|
144
|
+
print("Sandbox ready")
|
145
|
+
```
|
146
|
+
|
147
|
+
##### `async execute_code(code: str, timeout: int = 30) -> SandboxResponse`
|
148
|
+
Execute Python code and return the combined output.
|
149
|
+
|
150
|
+
```python
|
151
|
+
code = """
|
152
|
+
x = 10
|
153
|
+
y = 20
|
154
|
+
result = x + y
|
155
|
+
print(f"The sum is: {result}")
|
156
|
+
"""
|
157
|
+
|
158
|
+
response = await client.execute_code(code)
|
159
|
+
if response.success:
|
160
|
+
print("Output:", response.data['output'])
|
161
|
+
```
|
162
|
+
|
163
|
+
##### `async execute_code_stream(code: str, timeout: int = 30) -> AsyncGenerator[StreamEvent, None]`
|
164
|
+
Execute Python code and stream the output in real-time.
|
165
|
+
|
166
|
+
```python
|
167
|
+
async for event in client.execute_code_stream(code):
|
168
|
+
if event.type == 'stdout':
|
169
|
+
print("Output:", event.data)
|
170
|
+
elif event.type == 'stderr':
|
171
|
+
print("Error:", event.data)
|
172
|
+
```
|
173
|
+
|
174
|
+
##### `async cleanup() -> SandboxResponse`
|
175
|
+
Delete the sandbox and clean up resources.
|
176
|
+
|
177
|
+
```python
|
178
|
+
await client.cleanup()
|
179
|
+
```
|
180
|
+
|
181
|
+
### Response Types
|
182
|
+
|
183
|
+
#### SandboxResponse
|
184
|
+
```python
|
185
|
+
@dataclass
|
186
|
+
class SandboxResponse:
|
187
|
+
success: bool
|
188
|
+
data: Optional[Dict] = None
|
189
|
+
error: Optional[str] = None
|
190
|
+
```
|
191
|
+
|
192
|
+
#### StreamEvent
|
193
|
+
```python
|
194
|
+
@dataclass
|
195
|
+
class StreamEvent:
|
196
|
+
type: str # 'stdout', 'stderr', 'error', 'completed'
|
197
|
+
data: str
|
198
|
+
```
|
104
199
|
|
105
200
|
## Development
|
106
201
|
|
107
202
|
### Running Tests
|
108
203
|
|
109
204
|
```bash
|
205
|
+
# Install development dependencies
|
110
206
|
pip install -e ".[dev]"
|
207
|
+
|
208
|
+
# Run tests
|
111
209
|
pytest
|
112
210
|
```
|
113
211
|
|
@@ -0,0 +1,195 @@
|
|
1
|
+
# AI Computer Python Client
|
2
|
+
|
3
|
+
A Python client for interacting with the AI Computer service. This client provides a simple interface for executing Python code in an isolated sandbox environment.
|
4
|
+
|
5
|
+
## Installation
|
6
|
+
|
7
|
+
```bash
|
8
|
+
pip install ai-computer-client
|
9
|
+
```
|
10
|
+
|
11
|
+
## Quick Start
|
12
|
+
|
13
|
+
```python
|
14
|
+
import asyncio
|
15
|
+
from ai_computer import SandboxClient
|
16
|
+
|
17
|
+
async def main():
|
18
|
+
# Initialize the client
|
19
|
+
client = SandboxClient()
|
20
|
+
|
21
|
+
# Setup the client (gets token and creates sandbox)
|
22
|
+
setup_response = await client.setup()
|
23
|
+
if not setup_response.success:
|
24
|
+
print(f"Setup failed: {setup_response.error}")
|
25
|
+
return
|
26
|
+
|
27
|
+
try:
|
28
|
+
# Example 1: Simple code execution
|
29
|
+
code = """x = 10
|
30
|
+
y = 20
|
31
|
+
result = x + y
|
32
|
+
print(f"The sum is: {result}")"""
|
33
|
+
|
34
|
+
print("\nExample 1: Simple execution")
|
35
|
+
print("-" * 50)
|
36
|
+
response = await client.execute_code(code)
|
37
|
+
if response.success:
|
38
|
+
print("Execution result:", response.data)
|
39
|
+
else:
|
40
|
+
print("Execution failed:", response.error)
|
41
|
+
|
42
|
+
# Example 2: Streaming execution
|
43
|
+
code = """import time
|
44
|
+
|
45
|
+
for i in range(5):
|
46
|
+
print(f"Processing step {i + 1}")
|
47
|
+
time.sleep(1) # Simulate work
|
48
|
+
|
49
|
+
result = "Calculation complete!"
|
50
|
+
print(result)"""
|
51
|
+
|
52
|
+
print("\nExample 2: Streaming execution")
|
53
|
+
print("-" * 50)
|
54
|
+
async for event in client.execute_code_stream(code):
|
55
|
+
if event.type == 'stdout':
|
56
|
+
print(f"Output: {event.data}")
|
57
|
+
elif event.type == 'stderr':
|
58
|
+
print(f"Error: {event.data}")
|
59
|
+
elif event.type == 'error':
|
60
|
+
print(f"Execution error: {event.data}")
|
61
|
+
break
|
62
|
+
elif event.type == 'completed':
|
63
|
+
print("Execution completed")
|
64
|
+
break
|
65
|
+
|
66
|
+
finally:
|
67
|
+
# Clean up
|
68
|
+
await client.cleanup()
|
69
|
+
|
70
|
+
if __name__ == "__main__":
|
71
|
+
asyncio.run(main())
|
72
|
+
```
|
73
|
+
|
74
|
+
Example output:
|
75
|
+
```
|
76
|
+
Example 1: Simple execution
|
77
|
+
--------------------------------------------------
|
78
|
+
Execution result: {'output': 'The sum is: 30\n', 'sandbox_id': '06a30496-b535-47b0-9fe7-34f7ec483cd7'}
|
79
|
+
|
80
|
+
Example 2: Streaming execution
|
81
|
+
--------------------------------------------------
|
82
|
+
Output: Processing step 1
|
83
|
+
Output: Processing step 2
|
84
|
+
Output: Processing step 3
|
85
|
+
Output: Processing step 4
|
86
|
+
Output: Processing step 5
|
87
|
+
Output: Calculation complete!
|
88
|
+
Execution completed
|
89
|
+
```
|
90
|
+
|
91
|
+
## Features
|
92
|
+
|
93
|
+
- Asynchronous API for efficient execution
|
94
|
+
- Real-time streaming of code output
|
95
|
+
- Automatic sandbox management
|
96
|
+
- Error handling and timeouts
|
97
|
+
- Type hints for better IDE support
|
98
|
+
|
99
|
+
## API Reference
|
100
|
+
|
101
|
+
### SandboxClient
|
102
|
+
|
103
|
+
The main client class for interacting with the AI Computer service.
|
104
|
+
|
105
|
+
```python
|
106
|
+
client = SandboxClient(base_url="http://aicomputer.dev")
|
107
|
+
```
|
108
|
+
|
109
|
+
#### Methods
|
110
|
+
|
111
|
+
##### `async setup() -> SandboxResponse`
|
112
|
+
Initialize the client and create a sandbox. This must be called before executing any code.
|
113
|
+
|
114
|
+
```python
|
115
|
+
response = await client.setup()
|
116
|
+
if response.success:
|
117
|
+
print("Sandbox ready")
|
118
|
+
```
|
119
|
+
|
120
|
+
##### `async execute_code(code: str, timeout: int = 30) -> SandboxResponse`
|
121
|
+
Execute Python code and return the combined output.
|
122
|
+
|
123
|
+
```python
|
124
|
+
code = """
|
125
|
+
x = 10
|
126
|
+
y = 20
|
127
|
+
result = x + y
|
128
|
+
print(f"The sum is: {result}")
|
129
|
+
"""
|
130
|
+
|
131
|
+
response = await client.execute_code(code)
|
132
|
+
if response.success:
|
133
|
+
print("Output:", response.data['output'])
|
134
|
+
```
|
135
|
+
|
136
|
+
##### `async execute_code_stream(code: str, timeout: int = 30) -> AsyncGenerator[StreamEvent, None]`
|
137
|
+
Execute Python code and stream the output in real-time.
|
138
|
+
|
139
|
+
```python
|
140
|
+
async for event in client.execute_code_stream(code):
|
141
|
+
if event.type == 'stdout':
|
142
|
+
print("Output:", event.data)
|
143
|
+
elif event.type == 'stderr':
|
144
|
+
print("Error:", event.data)
|
145
|
+
```
|
146
|
+
|
147
|
+
##### `async cleanup() -> SandboxResponse`
|
148
|
+
Delete the sandbox and clean up resources.
|
149
|
+
|
150
|
+
```python
|
151
|
+
await client.cleanup()
|
152
|
+
```
|
153
|
+
|
154
|
+
### Response Types
|
155
|
+
|
156
|
+
#### SandboxResponse
|
157
|
+
```python
|
158
|
+
@dataclass
|
159
|
+
class SandboxResponse:
|
160
|
+
success: bool
|
161
|
+
data: Optional[Dict] = None
|
162
|
+
error: Optional[str] = None
|
163
|
+
```
|
164
|
+
|
165
|
+
#### StreamEvent
|
166
|
+
```python
|
167
|
+
@dataclass
|
168
|
+
class StreamEvent:
|
169
|
+
type: str # 'stdout', 'stderr', 'error', 'completed'
|
170
|
+
data: str
|
171
|
+
```
|
172
|
+
|
173
|
+
## Development
|
174
|
+
|
175
|
+
### Running Tests
|
176
|
+
|
177
|
+
```bash
|
178
|
+
# Install development dependencies
|
179
|
+
pip install -e ".[dev]"
|
180
|
+
|
181
|
+
# Run tests
|
182
|
+
pytest
|
183
|
+
```
|
184
|
+
|
185
|
+
### Contributing
|
186
|
+
|
187
|
+
1. Fork the repository
|
188
|
+
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
|
189
|
+
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
|
190
|
+
4. Push to the branch (`git push origin feature/amazing-feature`)
|
191
|
+
5. Open a Pull Request
|
192
|
+
|
193
|
+
## License
|
194
|
+
|
195
|
+
MIT License
|
@@ -1,7 +1,7 @@
|
|
1
1
|
import aiohttp
|
2
2
|
import json
|
3
3
|
import asyncio
|
4
|
-
from typing import Optional, Dict, AsyncGenerator, Union
|
4
|
+
from typing import Optional, Dict, AsyncGenerator, Union, List
|
5
5
|
from dataclasses import dataclass
|
6
6
|
|
7
7
|
@dataclass
|
@@ -241,6 +241,59 @@ class SandboxClient:
|
|
241
241
|
except Exception as e:
|
242
242
|
yield StreamEvent(type="error", data=f"Connection error: {str(e)}")
|
243
243
|
|
244
|
+
async def execute_shell(
|
245
|
+
self,
|
246
|
+
command: str,
|
247
|
+
args: Optional[List[str]] = None,
|
248
|
+
timeout: int = 30
|
249
|
+
) -> SandboxResponse:
|
250
|
+
"""Execute a shell command in the sandbox.
|
251
|
+
|
252
|
+
Args:
|
253
|
+
command: The shell command to execute
|
254
|
+
args: Optional list of arguments for the command
|
255
|
+
timeout: Maximum execution time in seconds
|
256
|
+
|
257
|
+
Returns:
|
258
|
+
SandboxResponse containing execution results
|
259
|
+
"""
|
260
|
+
if not self.token or not self.sandbox_id:
|
261
|
+
return SandboxResponse(success=False, error="Client not properly initialized. Call setup() first")
|
262
|
+
|
263
|
+
# Ensure sandbox is ready
|
264
|
+
ready = await self.wait_for_ready()
|
265
|
+
if not ready.success:
|
266
|
+
return ready
|
267
|
+
|
268
|
+
headers = {
|
269
|
+
"Authorization": f"Bearer {self.token}",
|
270
|
+
"Content-Type": "application/json"
|
271
|
+
}
|
272
|
+
|
273
|
+
data = {
|
274
|
+
"command": command,
|
275
|
+
"args": args or [],
|
276
|
+
"timeout": timeout
|
277
|
+
}
|
278
|
+
|
279
|
+
try:
|
280
|
+
async with aiohttp.ClientSession() as session:
|
281
|
+
async with session.post(
|
282
|
+
f"{self.base_url}/api/v1/sandbox/{self.sandbox_id}/execute/shell",
|
283
|
+
headers=headers,
|
284
|
+
json=data
|
285
|
+
) as response:
|
286
|
+
if response.status != 200:
|
287
|
+
error_text = await response.text()
|
288
|
+
return SandboxResponse(success=False, error=error_text)
|
289
|
+
|
290
|
+
# Parse the response
|
291
|
+
result = await response.json()
|
292
|
+
return SandboxResponse(success=True, data=result)
|
293
|
+
|
294
|
+
except Exception as e:
|
295
|
+
return SandboxResponse(success=False, error=f"Connection error: {str(e)}")
|
296
|
+
|
244
297
|
async def cleanup(self) -> SandboxResponse:
|
245
298
|
"""Delete the sandbox.
|
246
299
|
|
@@ -1,97 +0,0 @@
|
|
1
|
-
# AI Computer Python Client
|
2
|
-
|
3
|
-
A Python client for interacting with the AI Computer service. This client provides a simple interface for executing Python code in an isolated sandbox environment.
|
4
|
-
|
5
|
-
## Installation
|
6
|
-
|
7
|
-
```bash
|
8
|
-
pip install ai-computer-client
|
9
|
-
```
|
10
|
-
|
11
|
-
## Quick Start
|
12
|
-
|
13
|
-
```python
|
14
|
-
import asyncio
|
15
|
-
from ai_computer import SandboxClient
|
16
|
-
|
17
|
-
async def main():
|
18
|
-
# Initialize the client
|
19
|
-
client = SandboxClient()
|
20
|
-
|
21
|
-
# Setup the client (gets token and creates sandbox)
|
22
|
-
setup_response = await client.setup()
|
23
|
-
if not setup_response.success:
|
24
|
-
print(f"Setup failed: {setup_response.error}")
|
25
|
-
return
|
26
|
-
|
27
|
-
try:
|
28
|
-
# Execute some code
|
29
|
-
code = """
|
30
|
-
print('Hello from AI Computer!')
|
31
|
-
result = 42
|
32
|
-
print(f'The answer is {result}')
|
33
|
-
"""
|
34
|
-
|
35
|
-
# Stream execution
|
36
|
-
async for event in client.execute_code_stream(code):
|
37
|
-
if event.type == 'stdout':
|
38
|
-
print(f"Output: {event.data}")
|
39
|
-
elif event.type == 'stderr':
|
40
|
-
print(f"Error: {event.data}")
|
41
|
-
elif event.type == 'error':
|
42
|
-
print(f"Execution error: {event.data}")
|
43
|
-
break
|
44
|
-
elif event.type == 'completed':
|
45
|
-
print("Execution completed")
|
46
|
-
break
|
47
|
-
|
48
|
-
finally:
|
49
|
-
# Clean up
|
50
|
-
await client.cleanup()
|
51
|
-
|
52
|
-
if __name__ == "__main__":
|
53
|
-
asyncio.run(main())
|
54
|
-
```
|
55
|
-
|
56
|
-
## Features
|
57
|
-
|
58
|
-
- Asynchronous API
|
59
|
-
- Streaming execution output
|
60
|
-
- Automatic sandbox management
|
61
|
-
- Error handling and timeouts
|
62
|
-
- Type hints for better IDE support
|
63
|
-
|
64
|
-
## API Reference
|
65
|
-
|
66
|
-
### SandboxClient
|
67
|
-
|
68
|
-
The main client class for interacting with the AI Computer service.
|
69
|
-
|
70
|
-
#### Methods
|
71
|
-
|
72
|
-
- `setup()`: Initialize the client and create a sandbox
|
73
|
-
- `execute_code(code: str, timeout: int = 30)`: Execute code and return combined output
|
74
|
-
- `execute_code_stream(code: str, timeout: int = 30)`: Execute code and stream output
|
75
|
-
- `cleanup()`: Delete the sandbox
|
76
|
-
- `wait_for_ready()`: Wait for sandbox to be ready
|
77
|
-
|
78
|
-
## Development
|
79
|
-
|
80
|
-
### Running Tests
|
81
|
-
|
82
|
-
```bash
|
83
|
-
pip install -e ".[dev]"
|
84
|
-
pytest
|
85
|
-
```
|
86
|
-
|
87
|
-
### Contributing
|
88
|
-
|
89
|
-
1. Fork the repository
|
90
|
-
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
|
91
|
-
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
|
92
|
-
4. Push to the branch (`git push origin feature/amazing-feature`)
|
93
|
-
5. Open a Pull Request
|
94
|
-
|
95
|
-
## License
|
96
|
-
|
97
|
-
MIT License
|
File without changes
|
File without changes
|
File without changes
|