agentu 1.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agentu-1.0.0/.github/workflows/python-package.yml +57 -0
- agentu-1.0.0/.gitignore +15 -0
- agentu-1.0.0/CHANGELOG.md +45 -0
- agentu-1.0.0/LICENSE +21 -0
- agentu-1.0.0/PKG-INFO +249 -0
- agentu-1.0.0/README.md +200 -0
- agentu-1.0.0/examples/api.py +17 -0
- agentu-1.0.0/examples/basic.py +29 -0
- agentu-1.0.0/examples/memory.py +25 -0
- agentu-1.0.0/examples/orchestrator.py +33 -0
- agentu-1.0.0/examples/serve_agent.py +29 -0
- agentu-1.0.0/examples/simple_agent.py +44 -0
- agentu-1.0.0/examples/workflow.py +68 -0
- agentu-1.0.0/pyproject.toml +37 -0
- agentu-1.0.0/setup.cfg +4 -0
- agentu-1.0.0/src/agentu/__init__.py +36 -0
- agentu-1.0.0/src/agentu/agent.py +462 -0
- agentu-1.0.0/src/agentu/mcp_config.py +172 -0
- agentu-1.0.0/src/agentu/mcp_tool.py +198 -0
- agentu-1.0.0/src/agentu/mcp_transport.py +499 -0
- agentu-1.0.0/src/agentu/memory.py +417 -0
- agentu-1.0.0/src/agentu/memory_storage.py +385 -0
- agentu-1.0.0/src/agentu/orchestrator.py.old +518 -0
- agentu-1.0.0/src/agentu/search.py +108 -0
- agentu-1.0.0/src/agentu/serve.py +265 -0
- agentu-1.0.0/src/agentu/tools.py +74 -0
- agentu-1.0.0/src/agentu/utils.py +13 -0
- agentu-1.0.0/src/agentu/workflow.py +196 -0
- agentu-1.0.0/src/agentu.egg-info/PKG-INFO +249 -0
- agentu-1.0.0/src/agentu.egg-info/SOURCES.txt +41 -0
- agentu-1.0.0/src/agentu.egg-info/dependency_links.txt +1 -0
- agentu-1.0.0/src/agentu.egg-info/requires.txt +6 -0
- agentu-1.0.0/src/agentu.egg-info/top_level.txt +1 -0
- agentu-1.0.0/tests/__init__.py +1 -0
- agentu-1.0.0/tests/test_agent.py +108 -0
- agentu-1.0.0/tests/test_mcp.py +581 -0
- agentu-1.0.0/tests/test_memory.py +368 -0
- agentu-1.0.0/tests/test_memory_storage.py +260 -0
- agentu-1.0.0/tests/test_orchestrator.py.old +368 -0
- agentu-1.0.0/tests/test_search.py +26 -0
- agentu-1.0.0/tests/test_serve.py +286 -0
- agentu-1.0.0/tests/test_tools.py +70 -0
- agentu-1.0.0/tests/test_workflow.py +356 -0
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
# This workflow will upload a Python Package to PyPI when a release is created
|
|
2
|
+
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
|
|
3
|
+
|
|
4
|
+
# This workflow uses actions that are not certified by GitHub.
|
|
5
|
+
# They are provided by a third-party and are governed by
|
|
6
|
+
# separate terms of service, privacy policy, and support
|
|
7
|
+
# documentation.
|
|
8
|
+
|
|
9
|
+
name: Upload Python Package
|
|
10
|
+
|
|
11
|
+
on:
|
|
12
|
+
release:
|
|
13
|
+
types: [published]
|
|
14
|
+
workflow_dispatch:
|
|
15
|
+
|
|
16
|
+
permissions:
|
|
17
|
+
contents: read
|
|
18
|
+
|
|
19
|
+
jobs:
|
|
20
|
+
release-build:
|
|
21
|
+
runs-on: ubuntu-latest
|
|
22
|
+
|
|
23
|
+
steps:
|
|
24
|
+
- uses: actions/checkout@v4
|
|
25
|
+
|
|
26
|
+
- uses: actions/setup-python@v5
|
|
27
|
+
with:
|
|
28
|
+
python-version: "3.x"
|
|
29
|
+
|
|
30
|
+
- name: Build release distributions
|
|
31
|
+
run: |
|
|
32
|
+
python -m pip install build
|
|
33
|
+
python -m build
|
|
34
|
+
|
|
35
|
+
- name: Upload distributions
|
|
36
|
+
uses: actions/upload-artifact@v4
|
|
37
|
+
with:
|
|
38
|
+
name: release-dists
|
|
39
|
+
path: dist/
|
|
40
|
+
|
|
41
|
+
pypi-publish:
|
|
42
|
+
runs-on: ubuntu-latest
|
|
43
|
+
needs:
|
|
44
|
+
- release-build
|
|
45
|
+
|
|
46
|
+
steps:
|
|
47
|
+
- name: Retrieve release distributions
|
|
48
|
+
uses: actions/download-artifact@v4
|
|
49
|
+
with:
|
|
50
|
+
name: release-dists
|
|
51
|
+
path: dist/
|
|
52
|
+
|
|
53
|
+
- name: Publish release distributions to PyPI
|
|
54
|
+
uses: pypa/gh-action-pypi-publish@release/v1
|
|
55
|
+
with:
|
|
56
|
+
user: __token__
|
|
57
|
+
password: ${{ secrets.PYPI_API_TOKEN }}
|
agentu-1.0.0/.gitignore
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# Changelog
|
|
2
|
+
|
|
3
|
+
All notable changes to this project will be documented in this file.
|
|
4
|
+
|
|
5
|
+
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
|
6
|
+
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
|
7
|
+
|
|
8
|
+
## [1.0.0] - 2025-01-09
|
|
9
|
+
|
|
10
|
+
### Added
|
|
11
|
+
- **Workflow system** with operator-based composition (`>>` for sequential, `&` for parallel)
|
|
12
|
+
- `Agent.__call__()` method to create workflow steps with clean syntax
|
|
13
|
+
- Comprehensive workflow tests (18 new tests)
|
|
14
|
+
- `workflow.py` module with `Step`, `SequentialStep`, and `ParallelStep` classes
|
|
15
|
+
- Automatic context passing between workflow steps
|
|
16
|
+
- Lambda support for precise data flow control in workflows
|
|
17
|
+
- New workflow examples (`examples/workflow.py`, `examples/orchestrator.py`)
|
|
18
|
+
|
|
19
|
+
### Changed
|
|
20
|
+
- **BREAKING**: Removed `Orchestrator`, `ExecutionMode`, `Task`, and `Message` classes
|
|
21
|
+
- **BREAKING**: Removed `add_tool()`, `add_tools()`, `add_agent()`, `add_agents()` methods
|
|
22
|
+
- **BREAKING**: Removed `execute_tool()` and `process_input()` (use `call()` and `infer()`)
|
|
23
|
+
- Simplified API: `with_tools()` and `with_agents()` now always require lists
|
|
24
|
+
- Updated all examples to use new workflow operators
|
|
25
|
+
- Simplified README with real-world automated code review example
|
|
26
|
+
- Updated MCP implementation to use `with_mcp()` method
|
|
27
|
+
- Changed tagline to "The sleekest way to build AI agents"
|
|
28
|
+
- Updated default model examples from `llama3` to `qwen3`
|
|
29
|
+
|
|
30
|
+
### Removed
|
|
31
|
+
- Orchestrator-based multi-agent system (replaced by workflow operators)
|
|
32
|
+
- Task class for simple use cases (still available for advanced scenarios)
|
|
33
|
+
- Backward compatibility aliases
|
|
34
|
+
- `SERVING.md` (documentation consolidated into README)
|
|
35
|
+
- Redundant example files
|
|
36
|
+
|
|
37
|
+
### Fixed
|
|
38
|
+
- MCP configuration to use correct `type` parameter instead of `auth_type`
|
|
39
|
+
- Agent initialization to use `with_mcp()` instead of removed `load_mcp_tools()`
|
|
40
|
+
- All orchestrator references updated to use `infer()` instead of `process_input()`
|
|
41
|
+
- Test compatibility with new workflow system
|
|
42
|
+
|
|
43
|
+
## [0.3.0] - Previous release
|
|
44
|
+
|
|
45
|
+
Initial release with basic agent functionality, tools, memory, and orchestration.
|
agentu-1.0.0/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Hemanth HM <hemanth.hm@gmail.com>
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
agentu-1.0.0/PKG-INFO
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: agentu
|
|
3
|
+
Version: 1.0.0
|
|
4
|
+
Summary: A flexible Python package for creating AI agents with customizable tools
|
|
5
|
+
Author-email: Hemanth HM <hemanth.hm@gmail.com>
|
|
6
|
+
License: MIT License
|
|
7
|
+
|
|
8
|
+
Copyright (c) 2025 Hemanth HM <hemanth.hm@gmail.com>
|
|
9
|
+
|
|
10
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
11
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
12
|
+
in the Software without restriction, including without limitation the rights
|
|
13
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
14
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
15
|
+
furnished to do so, subject to the following conditions:
|
|
16
|
+
|
|
17
|
+
The above copyright notice and this permission notice shall be included in all
|
|
18
|
+
copies or substantial portions of the Software.
|
|
19
|
+
|
|
20
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
21
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
22
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
23
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
24
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
25
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
26
|
+
SOFTWARE.
|
|
27
|
+
|
|
28
|
+
Project-URL: Homepage, https://github.com/hemanth/agentu
|
|
29
|
+
Project-URL: Bug Tracker, https://github.com/hemanth/agentu/issues
|
|
30
|
+
Keywords: ai,agents,openai,llm,tools
|
|
31
|
+
Classifier: Development Status :: 3 - Alpha
|
|
32
|
+
Classifier: Intended Audience :: Developers
|
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
34
|
+
Classifier: Programming Language :: Python :: 3
|
|
35
|
+
Classifier: Programming Language :: Python :: 3.7
|
|
36
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
37
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
38
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
39
|
+
Requires-Python: >=3.7
|
|
40
|
+
Description-Content-Type: text/markdown
|
|
41
|
+
License-File: LICENSE
|
|
42
|
+
Requires-Dist: requests>=2.25.1
|
|
43
|
+
Requires-Dist: aiohttp>=3.8.0
|
|
44
|
+
Requires-Dist: duckduckgo-search>=4.1.1
|
|
45
|
+
Requires-Dist: fastapi>=0.100.0
|
|
46
|
+
Requires-Dist: uvicorn>=0.23.0
|
|
47
|
+
Requires-Dist: pydantic>=2.0.0
|
|
48
|
+
Dynamic: license-file
|
|
49
|
+
|
|
50
|
+
# AgentU
|
|
51
|
+
|
|
52
|
+
**The sleekest way to build AI agents.**
|
|
53
|
+
|
|
54
|
+
```bash
|
|
55
|
+
pip install agentu
|
|
56
|
+
```
|
|
57
|
+
|
|
58
|
+
## Why AgentU?
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
# This is all you need:
|
|
62
|
+
from agentu import Agent
|
|
63
|
+
|
|
64
|
+
def search_products(query: str) -> list:
|
|
65
|
+
return db.products.search(query)
|
|
66
|
+
|
|
67
|
+
agent = Agent("sales").with_tools([search_products])
|
|
68
|
+
|
|
69
|
+
# Direct execution
|
|
70
|
+
result = await agent.call("search_products", {"query": "laptop"})
|
|
71
|
+
|
|
72
|
+
# Natural language (LLM figures out the tool + params)
|
|
73
|
+
result = await agent.infer("Find me laptops under $1500")
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
## Workflows in 3 Lines
|
|
77
|
+
|
|
78
|
+
```python
|
|
79
|
+
# Sequential: researcher → analyst → writer
|
|
80
|
+
workflow = researcher("Find AI trends") >> analyst("Analyze") >> writer("Summarize")
|
|
81
|
+
|
|
82
|
+
# Parallel: run 3 searches concurrently
|
|
83
|
+
workflow = search("AI") & search("ML") & search("Crypto")
|
|
84
|
+
|
|
85
|
+
# Combined: parallel then merge
|
|
86
|
+
workflow = (search("AI") & search("ML") & search("Crypto")) >> analyst("Compare")
|
|
87
|
+
|
|
88
|
+
result = await workflow.run()
|
|
89
|
+
```
|
|
90
|
+
|
|
91
|
+
**`>>` chains steps. `&` runs in parallel.** That's the entire API.
|
|
92
|
+
|
|
93
|
+
## Memory
|
|
94
|
+
|
|
95
|
+
```python
|
|
96
|
+
agent.remember("Customer prefers email", importance=0.9)
|
|
97
|
+
memories = agent.recall(query="email")
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
Stored in SQLite. Searchable. Persistent.
|
|
101
|
+
|
|
102
|
+
## REST API
|
|
103
|
+
|
|
104
|
+
```python
|
|
105
|
+
from agentu import serve
|
|
106
|
+
|
|
107
|
+
serve(agent, port=8000)
|
|
108
|
+
# curl -X POST localhost:8000/execute -d '{"tool_name": "search_products", ...}'
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
Auto-generated Swagger docs at `/docs`.
|
|
112
|
+
|
|
113
|
+
## Real-World Example: Automated Code Review
|
|
114
|
+
|
|
115
|
+
```python
|
|
116
|
+
import asyncio
|
|
117
|
+
from agentu import Agent
|
|
118
|
+
|
|
119
|
+
def get_pr_diff(pr_number: int) -> str:
|
|
120
|
+
"""Fetch PR changes from GitHub."""
|
|
121
|
+
# GitHub API integration
|
|
122
|
+
return "diff --git a/src/auth.py... +added_line -removed_line"
|
|
123
|
+
|
|
124
|
+
def run_tests(branch: str) -> dict:
|
|
125
|
+
"""Run test suite."""
|
|
126
|
+
return {"passed": 47, "failed": 2, "coverage": 94.2}
|
|
127
|
+
|
|
128
|
+
def post_comment(pr_number: int, comment: str) -> bool:
|
|
129
|
+
"""Post review comment to GitHub."""
|
|
130
|
+
return True
|
|
131
|
+
|
|
132
|
+
async def main():
|
|
133
|
+
# Setup agents
|
|
134
|
+
reviewer = Agent("reviewer", model="gpt-4").with_tools([get_pr_diff])
|
|
135
|
+
tester = Agent("tester").with_tools([run_tests])
|
|
136
|
+
commenter = Agent("commenter").with_tools([post_comment])
|
|
137
|
+
|
|
138
|
+
# Parallel: review code + run tests
|
|
139
|
+
workflow = reviewer("Review PR #247") & tester("Run tests on PR #247")
|
|
140
|
+
code_review, test_results = await workflow.run()
|
|
141
|
+
|
|
142
|
+
# Natural language: synthesize findings
|
|
143
|
+
summary = await commenter.infer(
|
|
144
|
+
f"Create a review comment for PR #247. "
|
|
145
|
+
f"Code review: {code_review}. Tests: {test_results}. "
|
|
146
|
+
f"Be constructive and specific."
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
# Post to GitHub
|
|
150
|
+
await commenter.call("post_comment", {"pr_number": 247, "comment": summary})
|
|
151
|
+
print("✓ Review posted to PR #247")
|
|
152
|
+
|
|
153
|
+
asyncio.run(main())
|
|
154
|
+
```
|
|
155
|
+
|
|
156
|
+
**What this does:**
|
|
157
|
+
- Reviews code and runs tests **in parallel** (saves time)
|
|
158
|
+
- Uses `infer()` to write **human-quality review comments**
|
|
159
|
+
- Posts directly to GitHub
|
|
160
|
+
- **Zero manual work** - runs on every PR
|
|
161
|
+
|
|
162
|
+
## Advanced: Lambda Control
|
|
163
|
+
|
|
164
|
+
Need precise data flow? Use lambdas:
|
|
165
|
+
|
|
166
|
+
```python
|
|
167
|
+
workflow = (
|
|
168
|
+
researcher("Find companies")
|
|
169
|
+
>> analyst(lambda prev: f"Extract top 5 from: {prev['result']}")
|
|
170
|
+
>> writer(lambda prev: f"Write report about: {prev['companies']}")
|
|
171
|
+
)
|
|
172
|
+
```
|
|
173
|
+
|
|
174
|
+
## LLM Support
|
|
175
|
+
|
|
176
|
+
Works with any OpenAI-compatible API:
|
|
177
|
+
|
|
178
|
+
```python
|
|
179
|
+
# Ollama (default)
|
|
180
|
+
Agent("assistant", model="qwen3")
|
|
181
|
+
|
|
182
|
+
# OpenAI
|
|
183
|
+
Agent("assistant", model="gpt-4", api_key="sk-...")
|
|
184
|
+
|
|
185
|
+
# vLLM, LM Studio, etc.
|
|
186
|
+
Agent("assistant", model="mistral", api_base="http://localhost:8000/v1")
|
|
187
|
+
```
|
|
188
|
+
|
|
189
|
+
## MCP Integration
|
|
190
|
+
|
|
191
|
+
Connect to Model Context Protocol servers:
|
|
192
|
+
|
|
193
|
+
```python
|
|
194
|
+
agent.with_mcp(["http://localhost:3000"])
|
|
195
|
+
agent.with_mcp([{"url": "https://api.com/mcp", "headers": {"Auth": "token"}}])
|
|
196
|
+
```
|
|
197
|
+
|
|
198
|
+
## API Reference
|
|
199
|
+
|
|
200
|
+
### Agent
|
|
201
|
+
```python
|
|
202
|
+
agent = Agent(name, model="qwen3", enable_memory=True)
|
|
203
|
+
agent.with_tools([func1, func2]) # Add tools
|
|
204
|
+
agent.with_mcp([url]) # Connect MCP servers
|
|
205
|
+
|
|
206
|
+
await agent.call("tool", params) # Direct execution
|
|
207
|
+
await agent.infer("natural language") # LLM routing
|
|
208
|
+
|
|
209
|
+
agent.remember(content, importance=0.8) # Store
|
|
210
|
+
agent.recall(query) # Search
|
|
211
|
+
```
|
|
212
|
+
|
|
213
|
+
### Workflows
|
|
214
|
+
```python
|
|
215
|
+
agent("task") # Create step
|
|
216
|
+
step1 >> step2 # Sequential
|
|
217
|
+
step1 & step2 # Parallel
|
|
218
|
+
await workflow.run() # Execute
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
### serve()
|
|
222
|
+
```python
|
|
223
|
+
serve(agent, port=8000, enable_cors=True)
|
|
224
|
+
```
|
|
225
|
+
|
|
226
|
+
**Endpoints:** `/execute`, `/process`, `/tools`, `/memory/remember`, `/memory/recall`, `/docs`
|
|
227
|
+
|
|
228
|
+
## Examples
|
|
229
|
+
|
|
230
|
+
```bash
|
|
231
|
+
git clone https://github.com/hemanth/agentu
|
|
232
|
+
cd agentu
|
|
233
|
+
|
|
234
|
+
python examples/basic.py # Simple agent
|
|
235
|
+
python examples/workflow.py # Workflows
|
|
236
|
+
python examples/memory.py # Memory system
|
|
237
|
+
python examples/api.py # REST API
|
|
238
|
+
```
|
|
239
|
+
|
|
240
|
+
## Testing
|
|
241
|
+
|
|
242
|
+
```bash
|
|
243
|
+
pytest
|
|
244
|
+
pytest --cov=agentu
|
|
245
|
+
```
|
|
246
|
+
|
|
247
|
+
## License
|
|
248
|
+
|
|
249
|
+
MIT
|
agentu-1.0.0/README.md
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
# AgentU
|
|
2
|
+
|
|
3
|
+
**The sleekest way to build AI agents.**
|
|
4
|
+
|
|
5
|
+
```bash
|
|
6
|
+
pip install agentu
|
|
7
|
+
```
|
|
8
|
+
|
|
9
|
+
## Why AgentU?
|
|
10
|
+
|
|
11
|
+
```python
|
|
12
|
+
# This is all you need:
|
|
13
|
+
from agentu import Agent
|
|
14
|
+
|
|
15
|
+
def search_products(query: str) -> list:
|
|
16
|
+
return db.products.search(query)
|
|
17
|
+
|
|
18
|
+
agent = Agent("sales").with_tools([search_products])
|
|
19
|
+
|
|
20
|
+
# Direct execution
|
|
21
|
+
result = await agent.call("search_products", {"query": "laptop"})
|
|
22
|
+
|
|
23
|
+
# Natural language (LLM figures out the tool + params)
|
|
24
|
+
result = await agent.infer("Find me laptops under $1500")
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
## Workflows in 3 Lines
|
|
28
|
+
|
|
29
|
+
```python
|
|
30
|
+
# Sequential: researcher → analyst → writer
|
|
31
|
+
workflow = researcher("Find AI trends") >> analyst("Analyze") >> writer("Summarize")
|
|
32
|
+
|
|
33
|
+
# Parallel: run 3 searches concurrently
|
|
34
|
+
workflow = search("AI") & search("ML") & search("Crypto")
|
|
35
|
+
|
|
36
|
+
# Combined: parallel then merge
|
|
37
|
+
workflow = (search("AI") & search("ML") & search("Crypto")) >> analyst("Compare")
|
|
38
|
+
|
|
39
|
+
result = await workflow.run()
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
**`>>` chains steps. `&` runs in parallel.** That's the entire API.
|
|
43
|
+
|
|
44
|
+
## Memory
|
|
45
|
+
|
|
46
|
+
```python
|
|
47
|
+
agent.remember("Customer prefers email", importance=0.9)
|
|
48
|
+
memories = agent.recall(query="email")
|
|
49
|
+
```
|
|
50
|
+
|
|
51
|
+
Stored in SQLite. Searchable. Persistent.
|
|
52
|
+
|
|
53
|
+
## REST API
|
|
54
|
+
|
|
55
|
+
```python
|
|
56
|
+
from agentu import serve
|
|
57
|
+
|
|
58
|
+
serve(agent, port=8000)
|
|
59
|
+
# curl -X POST localhost:8000/execute -d '{"tool_name": "search_products", ...}'
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
Auto-generated Swagger docs at `/docs`.
|
|
63
|
+
|
|
64
|
+
## Real-World Example: Automated Code Review
|
|
65
|
+
|
|
66
|
+
```python
|
|
67
|
+
import asyncio
|
|
68
|
+
from agentu import Agent
|
|
69
|
+
|
|
70
|
+
def get_pr_diff(pr_number: int) -> str:
|
|
71
|
+
"""Fetch PR changes from GitHub."""
|
|
72
|
+
# GitHub API integration
|
|
73
|
+
return "diff --git a/src/auth.py... +added_line -removed_line"
|
|
74
|
+
|
|
75
|
+
def run_tests(branch: str) -> dict:
|
|
76
|
+
"""Run test suite."""
|
|
77
|
+
return {"passed": 47, "failed": 2, "coverage": 94.2}
|
|
78
|
+
|
|
79
|
+
def post_comment(pr_number: int, comment: str) -> bool:
|
|
80
|
+
"""Post review comment to GitHub."""
|
|
81
|
+
return True
|
|
82
|
+
|
|
83
|
+
async def main():
|
|
84
|
+
# Setup agents
|
|
85
|
+
reviewer = Agent("reviewer", model="gpt-4").with_tools([get_pr_diff])
|
|
86
|
+
tester = Agent("tester").with_tools([run_tests])
|
|
87
|
+
commenter = Agent("commenter").with_tools([post_comment])
|
|
88
|
+
|
|
89
|
+
# Parallel: review code + run tests
|
|
90
|
+
workflow = reviewer("Review PR #247") & tester("Run tests on PR #247")
|
|
91
|
+
code_review, test_results = await workflow.run()
|
|
92
|
+
|
|
93
|
+
# Natural language: synthesize findings
|
|
94
|
+
summary = await commenter.infer(
|
|
95
|
+
f"Create a review comment for PR #247. "
|
|
96
|
+
f"Code review: {code_review}. Tests: {test_results}. "
|
|
97
|
+
f"Be constructive and specific."
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Post to GitHub
|
|
101
|
+
await commenter.call("post_comment", {"pr_number": 247, "comment": summary})
|
|
102
|
+
print("✓ Review posted to PR #247")
|
|
103
|
+
|
|
104
|
+
asyncio.run(main())
|
|
105
|
+
```
|
|
106
|
+
|
|
107
|
+
**What this does:**
|
|
108
|
+
- Reviews code and runs tests **in parallel** (saves time)
|
|
109
|
+
- Uses `infer()` to write **human-quality review comments**
|
|
110
|
+
- Posts directly to GitHub
|
|
111
|
+
- **Zero manual work** - runs on every PR
|
|
112
|
+
|
|
113
|
+
## Advanced: Lambda Control
|
|
114
|
+
|
|
115
|
+
Need precise data flow? Use lambdas:
|
|
116
|
+
|
|
117
|
+
```python
|
|
118
|
+
workflow = (
|
|
119
|
+
researcher("Find companies")
|
|
120
|
+
>> analyst(lambda prev: f"Extract top 5 from: {prev['result']}")
|
|
121
|
+
>> writer(lambda prev: f"Write report about: {prev['companies']}")
|
|
122
|
+
)
|
|
123
|
+
```
|
|
124
|
+
|
|
125
|
+
## LLM Support
|
|
126
|
+
|
|
127
|
+
Works with any OpenAI-compatible API:
|
|
128
|
+
|
|
129
|
+
```python
|
|
130
|
+
# Ollama (default)
|
|
131
|
+
Agent("assistant", model="qwen3")
|
|
132
|
+
|
|
133
|
+
# OpenAI
|
|
134
|
+
Agent("assistant", model="gpt-4", api_key="sk-...")
|
|
135
|
+
|
|
136
|
+
# vLLM, LM Studio, etc.
|
|
137
|
+
Agent("assistant", model="mistral", api_base="http://localhost:8000/v1")
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
## MCP Integration
|
|
141
|
+
|
|
142
|
+
Connect to Model Context Protocol servers:
|
|
143
|
+
|
|
144
|
+
```python
|
|
145
|
+
agent.with_mcp(["http://localhost:3000"])
|
|
146
|
+
agent.with_mcp([{"url": "https://api.com/mcp", "headers": {"Auth": "token"}}])
|
|
147
|
+
```
|
|
148
|
+
|
|
149
|
+
## API Reference
|
|
150
|
+
|
|
151
|
+
### Agent
|
|
152
|
+
```python
|
|
153
|
+
agent = Agent(name, model="qwen3", enable_memory=True)
|
|
154
|
+
agent.with_tools([func1, func2]) # Add tools
|
|
155
|
+
agent.with_mcp([url]) # Connect MCP servers
|
|
156
|
+
|
|
157
|
+
await agent.call("tool", params) # Direct execution
|
|
158
|
+
await agent.infer("natural language") # LLM routing
|
|
159
|
+
|
|
160
|
+
agent.remember(content, importance=0.8) # Store
|
|
161
|
+
agent.recall(query) # Search
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
### Workflows
|
|
165
|
+
```python
|
|
166
|
+
agent("task") # Create step
|
|
167
|
+
step1 >> step2 # Sequential
|
|
168
|
+
step1 & step2 # Parallel
|
|
169
|
+
await workflow.run() # Execute
|
|
170
|
+
```
|
|
171
|
+
|
|
172
|
+
### serve()
|
|
173
|
+
```python
|
|
174
|
+
serve(agent, port=8000, enable_cors=True)
|
|
175
|
+
```
|
|
176
|
+
|
|
177
|
+
**Endpoints:** `/execute`, `/process`, `/tools`, `/memory/remember`, `/memory/recall`, `/docs`
|
|
178
|
+
|
|
179
|
+
## Examples
|
|
180
|
+
|
|
181
|
+
```bash
|
|
182
|
+
git clone https://github.com/hemanth/agentu
|
|
183
|
+
cd agentu
|
|
184
|
+
|
|
185
|
+
python examples/basic.py # Simple agent
|
|
186
|
+
python examples/workflow.py # Workflows
|
|
187
|
+
python examples/memory.py # Memory system
|
|
188
|
+
python examples/api.py # REST API
|
|
189
|
+
```
|
|
190
|
+
|
|
191
|
+
## Testing
|
|
192
|
+
|
|
193
|
+
```bash
|
|
194
|
+
pytest
|
|
195
|
+
pytest --cov=agentu
|
|
196
|
+
```
|
|
197
|
+
|
|
198
|
+
## License
|
|
199
|
+
|
|
200
|
+
MIT
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
"""Serve agent as REST API."""
|
|
2
|
+
from agentu import Agent, serve
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def get_status(order_id: str) -> dict:
|
|
6
|
+
"""Get order status."""
|
|
7
|
+
return {"order_id": order_id, "status": "shipped"}
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
# Create agent
|
|
11
|
+
agent = Agent("support").with_tools([get_status])
|
|
12
|
+
|
|
13
|
+
# Serve on port 8000
|
|
14
|
+
# curl -X POST http://localhost:8000/execute \
|
|
15
|
+
# -H "Content-Type: application/json" \
|
|
16
|
+
# -d '{"tool_name": "get_status", "parameters": {"order_id": "12345"}}'
|
|
17
|
+
serve(agent, port=8000)
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
"""Basic agent with tools."""
|
|
2
|
+
import asyncio
|
|
3
|
+
from agentu import Agent
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def add(x: int, y: int) -> int:
|
|
7
|
+
"""Add two numbers."""
|
|
8
|
+
return x + y
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def multiply(x: int, y: int) -> int:
|
|
12
|
+
"""Multiply two numbers."""
|
|
13
|
+
return x * y
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
async def main():
|
|
17
|
+
# Create agent and add tools
|
|
18
|
+
agent = Agent("calculator").with_tools([add, multiply])
|
|
19
|
+
|
|
20
|
+
# Direct execution (no LLM needed)
|
|
21
|
+
result = await agent.call("add", {"x": 5, "y": 3})
|
|
22
|
+
print(f"5 + 3 = {result}")
|
|
23
|
+
|
|
24
|
+
result = await agent.call("multiply", {"x": 5, "y": 3})
|
|
25
|
+
print(f"5 * 3 = {result}")
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
if __name__ == "__main__":
|
|
29
|
+
asyncio.run(main())
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
"""Agent with memory."""
|
|
2
|
+
import asyncio
|
|
3
|
+
from agentu import Agent
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
async def main():
|
|
7
|
+
agent = Agent("assistant", enable_memory=True)
|
|
8
|
+
|
|
9
|
+
# Store facts
|
|
10
|
+
agent.remember("User prefers email", memory_type="fact", importance=0.8)
|
|
11
|
+
agent.remember("Customer ordered item #12345", memory_type="conversation")
|
|
12
|
+
|
|
13
|
+
# Recall
|
|
14
|
+
memories = agent.recall(query="email", limit=5)
|
|
15
|
+
for mem in memories:
|
|
16
|
+
print(f"- {mem.content}")
|
|
17
|
+
|
|
18
|
+
# Stats
|
|
19
|
+
stats = agent.get_memory_stats()
|
|
20
|
+
print(f"\nShort-term: {stats['short_term_size']}")
|
|
21
|
+
print(f"Long-term: {stats['long_term_size']}")
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
if __name__ == "__main__":
|
|
25
|
+
asyncio.run(main())
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""Workflow composition examples."""
|
|
2
|
+
import asyncio
|
|
3
|
+
from agentu import Agent
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
def research(topic: str) -> dict:
|
|
7
|
+
"""Research a topic."""
|
|
8
|
+
return {"topic": topic, "findings": f"Findings about {topic}"}
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def analyze(data: str) -> dict:
|
|
12
|
+
"""Analyze data."""
|
|
13
|
+
return {"analysis": "Mock analysis", "confidence": 0.85}
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
async def main():
|
|
17
|
+
# Create agents
|
|
18
|
+
researcher = Agent("researcher").with_tools([research])
|
|
19
|
+
analyst = Agent("analyst").with_tools([analyze])
|
|
20
|
+
|
|
21
|
+
# Sequential workflow
|
|
22
|
+
workflow = researcher("Research AI trends") >> analyst("Analyze findings")
|
|
23
|
+
result = await workflow.run()
|
|
24
|
+
print(f"Sequential result: {result}")
|
|
25
|
+
|
|
26
|
+
# Parallel workflow
|
|
27
|
+
workflow = researcher("AI") & researcher("ML") & researcher("Crypto")
|
|
28
|
+
results = await workflow.run()
|
|
29
|
+
print(f"Parallel results: {len(results)} tasks completed")
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
if __name__ == "__main__":
|
|
33
|
+
asyncio.run(main())
|