agentica 0.0.1__tar.gz → 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (97) hide show
  1. agentica-0.1.0/PKG-INFO +199 -0
  2. agentica-0.1.0/README.md +175 -0
  3. agentica-0.1.0/agentica/__init__.py +16 -0
  4. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/assistant.py +33 -35
  5. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/config.py +2 -2
  6. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/document.py +1 -1
  7. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/azure_emb.py +2 -2
  8. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/hash_emb.py +1 -1
  9. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/ollama_emb.py +2 -2
  10. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/openai_emb.py +2 -2
  11. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/text2vec_emb.py +1 -1
  12. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/together_emb.py +1 -1
  13. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/word2vec_emb.py +1 -1
  14. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/file/csv.py +2 -2
  15. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/file/txt.py +1 -1
  16. agentica-0.0.1/actionflow/documents.py → agentica-0.1.0/agentica/knowledge_base.py +199 -141
  17. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/anthropic_llm.py +5 -5
  18. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/azure_llm.py +2 -2
  19. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/base.py +4 -4
  20. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/ollama_llm.py +5 -5
  21. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/openai_llm.py +8 -10
  22. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/together_llm.py +5 -5
  23. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/memory.py +5 -5
  24. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/message.py +1 -1
  25. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/python_assistant.py +4 -4
  26. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/sqlite_storage.py +3 -3
  27. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/task.py +2 -2
  28. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tool.py +1 -1
  29. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/airflow.py +2 -2
  30. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/analyze_image.py +3 -3
  31. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/apify.py +2 -2
  32. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/create_image.py +2 -2
  33. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/duckduckgo.py +2 -2
  34. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/file.py +2 -2
  35. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/jina.py +2 -2
  36. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/ocr.py +2 -2
  37. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/run_nb_code.py +3 -3
  38. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/run_python_code.py +2 -2
  39. agentica-0.1.0/agentica/tools/search_arxiv.py +124 -0
  40. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/search_exa.py +2 -2
  41. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/search_serper.py +2 -2
  42. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/shell.py +2 -2
  43. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/sql.py +2 -2
  44. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/url_crawler.py +4 -4
  45. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/wikipedia.py +3 -3
  46. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/yfinance.py +1 -1
  47. agentica-0.1.0/agentica/utils/file_parser.py +126 -0
  48. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/utils/log.py +1 -1
  49. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/utils/misc.py +0 -42
  50. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/utils/shell.py +1 -1
  51. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/vectordb/base.py +1 -1
  52. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/vectordb/lancedb.py +9 -7
  53. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/vectordb/pgvector.py +8 -7
  54. agentica-0.1.0/agentica/version.py +1 -0
  55. agentica-0.0.1/actionflow/actionflow.py → agentica-0.1.0/agentica/workflow.py +21 -22
  56. agentica-0.1.0/agentica.egg-info/PKG-INFO +199 -0
  57. agentica-0.1.0/agentica.egg-info/SOURCES.txt +83 -0
  58. agentica-0.1.0/agentica.egg-info/top_level.txt +2 -0
  59. {agentica-0.0.1 → agentica-0.1.0}/setup.py +4 -4
  60. {agentica-0.0.1 → agentica-0.1.0}/tests/test_function_create_image.py +3 -3
  61. {agentica-0.0.1 → agentica-0.1.0}/tests/test_function_get_url.py +3 -3
  62. {agentica-0.0.1 → agentica-0.1.0}/tests/test_function_save_file.py +3 -3
  63. agentica-0.1.0/tests/test_llm.py +31 -0
  64. {agentica-0.0.1 → agentica-0.1.0}/tests/test_run_nb_code.py +1 -1
  65. {agentica-0.0.1 → agentica-0.1.0}/tests/test_sqlite_storage.py +2 -2
  66. {agentica-0.0.1 → agentica-0.1.0}/tests/test_write_code.py +2 -2
  67. {agentica-0.0.1 → agentica-0.1.0}/tests/test_write_plan.py +4 -4
  68. agentica-0.0.1/PKG-INFO +0 -179
  69. agentica-0.0.1/README.md +0 -155
  70. agentica-0.0.1/actionflow/__init__.py +0 -16
  71. agentica-0.0.1/actionflow/version.py +0 -1
  72. agentica-0.0.1/agentica.egg-info/PKG-INFO +0 -179
  73. agentica-0.0.1/agentica.egg-info/SOURCES.txt +0 -85
  74. agentica-0.0.1/agentica.egg-info/top_level.txt +0 -2
  75. agentica-0.0.1/tests/test_flow.py +0 -183
  76. agentica-0.0.1/tests/test_function.py +0 -31
  77. agentica-0.0.1/tests/test_function_summarize_text.py +0 -63
  78. agentica-0.0.1/tests/test_llm.py +0 -47
  79. agentica-0.0.1/tests/test_output.py +0 -49
  80. {agentica-0.0.1 → agentica-0.1.0}/LICENSE +0 -0
  81. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/__init__.py +0 -0
  82. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/emb/base.py +0 -0
  83. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/file/__init__.py +0 -0
  84. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/file/base.py +0 -0
  85. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/llm/__init__.py +0 -0
  86. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/references.py +0 -0
  87. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/run_record.py +0 -0
  88. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/tools/__init__.py +0 -0
  89. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/utils/__init__.py +0 -0
  90. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/utils/timer.py +0 -0
  91. {agentica-0.0.1/actionflow → agentica-0.1.0/agentica}/vectordb/__init__.py +0 -0
  92. {agentica-0.0.1 → agentica-0.1.0}/agentica.egg-info/dependency_links.txt +0 -0
  93. {agentica-0.0.1 → agentica-0.1.0}/agentica.egg-info/entry_points.txt +0 -0
  94. {agentica-0.0.1 → agentica-0.1.0}/agentica.egg-info/not-zip-safe +0 -0
  95. {agentica-0.0.1 → agentica-0.1.0}/agentica.egg-info/requires.txt +0 -0
  96. {agentica-0.0.1 → agentica-0.1.0}/setup.cfg +0 -0
  97. {agentica-0.0.1 → agentica-0.1.0}/tests/__init__.py +0 -0
@@ -0,0 +1,199 @@
1
+ Metadata-Version: 2.1
2
+ Name: agentica
3
+ Version: 0.1.0
4
+ Summary: LLM agents
5
+ Home-page: https://github.com/shibing624/agentica
6
+ Author: XuMing
7
+ Author-email: xuming624@qq.com
8
+ License: Apache License 2.0
9
+ Keywords: Agentica,Agent Tool,action,agent,agentica
10
+ Platform: UNKNOWN
11
+ Classifier: Development Status :: 5 - Production/Stable
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Intended Audience :: Education
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: License :: OSI Approved :: Apache Software License
16
+ Classifier: Operating System :: OS Independent
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
19
+ Requires-Python: >=3.8.0
20
+ Description-Content-Type: text/markdown
21
+ License-File: LICENSE
22
+
23
+ [**🇨🇳中文**](https://github.com/shibing624/agentica/blob/main/README.md) | [**🌐English**](https://github.com/shibing624/agentica/blob/main/README_EN.md)
24
+
25
+ <div align="center">
26
+ <a href="https://github.com/shibing624/agentica">
27
+ <img src="https://raw.githubusercontent.com/shibing624/agentica/main/docs/logo.png" height="150" alt="Logo">
28
+ </a>
29
+ </div>
30
+
31
+ -----------------
32
+
33
+ # Agentica: Build AI Agents
34
+ [![PyPI version](https://badge.fury.io/py/agentica.svg)](https://badge.fury.io/py/agentica)
35
+ [![Downloads](https://static.pepy.tech/badge/agentica)](https://pepy.tech/project/agentica)
36
+ [![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg)](CONTRIBUTING.md)
37
+ [![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
38
+ [![python_version](https://img.shields.io/badge/Python-3.5%2B-green.svg)](requirements.txt)
39
+ [![GitHub issues](https://img.shields.io/github/issues/shibing624/agentica.svg)](https://github.com/shibing624/agentica/issues)
40
+ [![Wechat Group](https://img.shields.io/badge/wechat-group-green.svg?logo=wechat)](#Contact)
41
+
42
+
43
+ **agentica**: A Human-Centric Framework for Large Language Model Agent Building.
44
+
45
+ **agentica**: 构建你自己的Agent
46
+
47
+ ## Overview
48
+
49
+ #### LLM Agent
50
+ ![llm_agnet](https://github.com/shibing624/agentica/blob/main/docs/llm_agent.png)
51
+
52
+ - **规划(Planning)**:任务拆解、生成计划、反思
53
+ - **记忆(Memory)**:短期记忆(prompt实现)、长期记忆(RAG实现)
54
+ - **工具使用(Tool use)**:function call能力,调用外部API,以获取外部信息,包括当前日期、日历、代码执行能力、对专用信息源的访问等
55
+
56
+ #### agentica架构
57
+ ![agentica_arch](https://github.com/shibing624/agentica/blob/main/docs/agent_arch.png)
58
+
59
+ - **Planner**:负责让LLM生成一个多步计划来完成复杂任务,生成相互依赖的“链式计划”,定义每一步所依赖的上一步的输出
60
+ - **Worker**:接受“链式计划”,循环遍历计划中的每个子任务,并调用工具完成任务,可以自动反思纠错以完成任务
61
+ - **Solver**:求解器将所有这些输出整合为最终答案
62
+
63
+ ## Features
64
+ `agentica`是一个Agent构建工具,功能:
65
+
66
+ - 简单代码快速编排Agent,支持 Reflection(反思)、Plan and Solve(计划并执行)、RAG、Agent、Multi-Agent、Multi-Role、Workflow等功能
67
+ - Agent支持prompt自定义,支持多种工具调用(tool_calls)
68
+ - 支持OpenAI/Azure/Claude/Ollama/Together API调用
69
+
70
+ ## Installation
71
+
72
+ ```bash
73
+ pip install -U agentica
74
+ ```
75
+
76
+ or
77
+
78
+ ```bash
79
+ git clone https://github.com/shibing624/agentica.git
80
+ cd agentica
81
+ pip install .
82
+ ```
83
+
84
+ ## Getting Started
85
+
86
+ 1. 复制[example.env](https://github.com/shibing624/agentica/blob/main/example.env)文件为`.env`,并粘贴OpenAI API key或者Moonshoot API key。
87
+
88
+ 2. 使用`agentica`构建Agent,拆解任务并执行:
89
+
90
+ 自动调用google搜索工具,示例[examples/web_search_demo.py](https://github.com/shibing624/agentica/blob/main/examples/web_search_demo.py)
91
+
92
+ ```python
93
+ from agentica import Assistant, OpenAILLM, AzureOpenAILLM
94
+ from agentica.tools.search_serper import SearchSerperTool
95
+
96
+ m = Assistant(
97
+ llm=AzureOpenAILLM(),
98
+ description="You are a helpful ai assistant.",
99
+ show_tool_calls=True,
100
+ # Enable the assistant to search the knowledge base
101
+ search_knowledge=False,
102
+ tools=[SearchSerperTool()],
103
+ # Enable the assistant to read the chat history
104
+ read_chat_history=True,
105
+ debug_mode=True,
106
+ )
107
+
108
+ r = m.run("一句话介绍林黛玉")
109
+ print(r, "".join(r))
110
+ r = m.run("北京最近的新闻", stream=True, print_output=True)
111
+ print(r, "".join(r))
112
+ r = m.run("总结前面的问答", stream=False, print_output=False)
113
+ print(r)
114
+ ```
115
+
116
+
117
+ ## Examples
118
+
119
+ | 示例 | 描述 |
120
+ |---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
121
+ | [examples/naive_rag_demo.py](https://github.com/shibing624/agentica/blob/main/examples/naive_rag_demo.py) | 实现了基础版RAG,基于Txt文档回答问题 |
122
+ | [examples/advanced_rag_demo.py](https://github.com/shibing624/agentica/blob/main/examples/advanced_rag_demo.py) | 实现了高级版RAG,基于PDF文档回答问题,新增功能:pdf文件解析、query改写,字面+语义多路召回,召回排序(rerank) |
123
+ | [examples/python_assistant_demo.py](https://github.com/shibing624/agentica/blob/main/examples/python_assistant_demo.py) | 实现了Code Interpreter功能,自动生成python代码,并执行 |
124
+ | [examples/research_demo.py](https://github.com/shibing624/agentica/blob/main/examples/research_demo.py) | 实现了Research功能,自动调用搜索工具,汇总信息后撰写科技报告 |
125
+ | [examples/team_news_article_demo.py](https://github.com/shibing624/agentica/blob/main/examples/team_news_article_demo.py) | 实现了写新闻稿的team协作,multi-role实现,委托不用角色完成各自任务:研究员检索分析文章,撰写员根据排版写文章,汇总多角色成果输出结果 |
126
+ | [examples/workflow_news_article_demo.py](https://github.com/shibing624/agentica/blob/main/examples/workflow_news_article_demo.py) | 实现了写新闻稿的工作流,multi-agent的实现,定义了多个Assistant和Task,多次调用搜索工具,并生成高级排版的新闻文章 |
127
+ | [examples/workflow_investment_demo.py](https://github.com/shibing624/agentica/blob/main/examples/workflow_investment_demo.py) | 实现了投资研究的工作流:股票信息收集 - 股票分析 - 撰写分析报告 - 复查报告等多个Task |
128
+ | [examples/crawl_webpage_demo.py](https://github.com/shibing624/agentica/blob/main/examples/crawl_webpage_demo.py) | 实现了网页分析工作流:从Url爬取融资快讯 - 分析网页内容和格式 - 提取核心信息 - 汇总保存为md文件 |
129
+ | [examples/find_paper_from_arxiv_demo.py](https://github.com/shibing624/agentica/blob/main/examples/find_paper_from_arxiv_demo.py) | 实现了论文推荐工作流:自动从arxiv搜索多组论文 - 相似论文去重 - 提取核心论文信息 - 保存为csv文件 |
130
+ | [examples/remove_image_background_demo.py](https://github.com/shibing624/agentica/blob/main/examples/remove_image_background_demo.py) | 实现了自动去除图片背景功能,包括自动通过pip安装库,调用库实现去除图片背景 |
131
+ | [examples/text_classification_demo.py](https://github.com/shibing624/agentica/blob/main/examples/text_classification_demo.py) | 实现了自动训练分类模型的工作流:读取训练集文件并理解格式 - 谷歌搜索pytextclassifier库 - 爬取github页面了解pytextclassifier的调用方法 - 写代码并执行fasttext模型训练 - check训练好的模型预测结果 |
132
+ | [examples/llm_os_demo.py](https://github.com/shibing624/agentica/blob/main/examples/llm_os_demo.py) | 实现了LLM OS的初步设计,基于LLM设计操作系统,可以通过LLM调用RAG、代码执行器、Shell等工具,并协同代码解释器、研究助手、投资助手等来解决问题。 |
133
+
134
+
135
+ ### LLM OS
136
+ The LLM OS design:
137
+ <img alt="LLM OS" src="https://github.com/shibing624/agentica/blob/main/docs/llmos.png" width="600" />
138
+
139
+ #### Run the LLM OS App
140
+
141
+ ```shell
142
+ cd examples
143
+ streamlit run llm_os_demo.py
144
+ ```
145
+
146
+ ![llm_os](https://github.com/shibing624/agentica/blob/main/docs/llm_os_snap.png)
147
+
148
+ ## Contact
149
+
150
+ - Issue(建议)
151
+ :[![GitHub issues](https://img.shields.io/github/issues/shibing624/agentica.svg)](https://github.com/shibing624/agentica/issues)
152
+ - 邮件我:xuming: xuming624@qq.com
153
+ - 微信我: 加我*微信号:xuming624, 备注:姓名-公司-NLP* 进NLP交流群。
154
+
155
+ <img src="https://github.com/shibing624/agentica/blob/main/docs/wechat.jpeg" width="200" />
156
+
157
+ ## Citation
158
+
159
+ 如果你在研究中使用了`agentica`,请按如下格式引用:
160
+
161
+ APA:
162
+
163
+ ```
164
+ Xu, M. agentica: A Human-Centric Framework for Large Language Model Agent Workflows (Version 0.0.2) [Computer software]. https://github.com/shibing624/agentica
165
+ ```
166
+
167
+ BibTeX:
168
+
169
+ ```
170
+ @misc{Xu_agentica,
171
+ title={agentica: A Human-Centric Framework for Large Language Model Agent Workflows},
172
+ author={Xu Ming},
173
+ year={2024},
174
+ howpublished={\url{https://github.com/shibing624/agentica}},
175
+ }
176
+ ```
177
+
178
+ ## License
179
+
180
+ 授权协议为 [The Apache License 2.0](/LICENSE),可免费用做商业用途。请在产品说明中附加`agentica`的链接和授权协议。
181
+ ## Contribute
182
+
183
+ 项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:
184
+
185
+ - 在`tests`添加相应的单元测试
186
+ - 使用`python -m pytest`来运行所有单元测试,确保所有单测都是通过的
187
+
188
+ 之后即可提交PR。
189
+
190
+ ## Acknowledgements
191
+
192
+ - [https://github.com/langchain-ai/langchain](https://github.com/langchain-ai/langchain)
193
+ - [https://github.com/simonmesmith/agentflow](https://github.com/simonmesmith/agentflow)
194
+ - [https://github.com/phidatahq/phidata](https://github.com/phidatahq/phidata)
195
+
196
+
197
+ Thanks for their great work!
198
+
199
+
@@ -0,0 +1,175 @@
1
+ [**🇨🇳中文**](https://github.com/shibing624/agentica/blob/main/README.md) | [**🌐English**](https://github.com/shibing624/agentica/blob/main/README_EN.md)
2
+
3
+ <div align="center">
4
+ <a href="https://github.com/shibing624/agentica">
5
+ <img src="https://raw.githubusercontent.com/shibing624/agentica/main/docs/logo.png" height="150" alt="Logo">
6
+ </a>
7
+ </div>
8
+
9
+ -----------------
10
+
11
+ # Agentica: Build AI Agents
12
+ [![PyPI version](https://badge.fury.io/py/agentica.svg)](https://badge.fury.io/py/agentica)
13
+ [![Downloads](https://static.pepy.tech/badge/agentica)](https://pepy.tech/project/agentica)
14
+ [![Contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg)](CONTRIBUTING.md)
15
+ [![License Apache 2.0](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](LICENSE)
16
+ [![python_version](https://img.shields.io/badge/Python-3.5%2B-green.svg)](requirements.txt)
17
+ [![GitHub issues](https://img.shields.io/github/issues/shibing624/agentica.svg)](https://github.com/shibing624/agentica/issues)
18
+ [![Wechat Group](https://img.shields.io/badge/wechat-group-green.svg?logo=wechat)](#Contact)
19
+
20
+
21
+ **agentica**: A Human-Centric Framework for Large Language Model Agent Building.
22
+
23
+ **agentica**: 构建你自己的Agent
24
+
25
+ ## Overview
26
+
27
+ #### LLM Agent
28
+ ![llm_agnet](https://github.com/shibing624/agentica/blob/main/docs/llm_agent.png)
29
+
30
+ - **规划(Planning)**:任务拆解、生成计划、反思
31
+ - **记忆(Memory)**:短期记忆(prompt实现)、长期记忆(RAG实现)
32
+ - **工具使用(Tool use)**:function call能力,调用外部API,以获取外部信息,包括当前日期、日历、代码执行能力、对专用信息源的访问等
33
+
34
+ #### agentica架构
35
+ ![agentica_arch](https://github.com/shibing624/agentica/blob/main/docs/agent_arch.png)
36
+
37
+ - **Planner**:负责让LLM生成一个多步计划来完成复杂任务,生成相互依赖的“链式计划”,定义每一步所依赖的上一步的输出
38
+ - **Worker**:接受“链式计划”,循环遍历计划中的每个子任务,并调用工具完成任务,可以自动反思纠错以完成任务
39
+ - **Solver**:求解器将所有这些输出整合为最终答案
40
+
41
+ ## Features
42
+ `agentica`是一个Agent构建工具,功能:
43
+
44
+ - 简单代码快速编排Agent,支持 Reflection(反思)、Plan and Solve(计划并执行)、RAG、Agent、Multi-Agent、Multi-Role、Workflow等功能
45
+ - Agent支持prompt自定义,支持多种工具调用(tool_calls)
46
+ - 支持OpenAI/Azure/Claude/Ollama/Together API调用
47
+
48
+ ## Installation
49
+
50
+ ```bash
51
+ pip install -U agentica
52
+ ```
53
+
54
+ or
55
+
56
+ ```bash
57
+ git clone https://github.com/shibing624/agentica.git
58
+ cd agentica
59
+ pip install .
60
+ ```
61
+
62
+ ## Getting Started
63
+
64
+ 1. 复制[example.env](https://github.com/shibing624/agentica/blob/main/example.env)文件为`.env`,并粘贴OpenAI API key或者Moonshoot API key。
65
+
66
+ 2. 使用`agentica`构建Agent,拆解任务并执行:
67
+
68
+ 自动调用google搜索工具,示例[examples/web_search_demo.py](https://github.com/shibing624/agentica/blob/main/examples/web_search_demo.py)
69
+
70
+ ```python
71
+ from agentica import Assistant, OpenAILLM, AzureOpenAILLM
72
+ from agentica.tools.search_serper import SearchSerperTool
73
+
74
+ m = Assistant(
75
+ llm=AzureOpenAILLM(),
76
+ description="You are a helpful ai assistant.",
77
+ show_tool_calls=True,
78
+ # Enable the assistant to search the knowledge base
79
+ search_knowledge=False,
80
+ tools=[SearchSerperTool()],
81
+ # Enable the assistant to read the chat history
82
+ read_chat_history=True,
83
+ debug_mode=True,
84
+ )
85
+
86
+ r = m.run("一句话介绍林黛玉")
87
+ print(r, "".join(r))
88
+ r = m.run("北京最近的新闻", stream=True, print_output=True)
89
+ print(r, "".join(r))
90
+ r = m.run("总结前面的问答", stream=False, print_output=False)
91
+ print(r)
92
+ ```
93
+
94
+
95
+ ## Examples
96
+
97
+ | 示例 | 描述 |
98
+ |---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
99
+ | [examples/naive_rag_demo.py](https://github.com/shibing624/agentica/blob/main/examples/naive_rag_demo.py) | 实现了基础版RAG,基于Txt文档回答问题 |
100
+ | [examples/advanced_rag_demo.py](https://github.com/shibing624/agentica/blob/main/examples/advanced_rag_demo.py) | 实现了高级版RAG,基于PDF文档回答问题,新增功能:pdf文件解析、query改写,字面+语义多路召回,召回排序(rerank) |
101
+ | [examples/python_assistant_demo.py](https://github.com/shibing624/agentica/blob/main/examples/python_assistant_demo.py) | 实现了Code Interpreter功能,自动生成python代码,并执行 |
102
+ | [examples/research_demo.py](https://github.com/shibing624/agentica/blob/main/examples/research_demo.py) | 实现了Research功能,自动调用搜索工具,汇总信息后撰写科技报告 |
103
+ | [examples/team_news_article_demo.py](https://github.com/shibing624/agentica/blob/main/examples/team_news_article_demo.py) | 实现了写新闻稿的team协作,multi-role实现,委托不用角色完成各自任务:研究员检索分析文章,撰写员根据排版写文章,汇总多角色成果输出结果 |
104
+ | [examples/workflow_news_article_demo.py](https://github.com/shibing624/agentica/blob/main/examples/workflow_news_article_demo.py) | 实现了写新闻稿的工作流,multi-agent的实现,定义了多个Assistant和Task,多次调用搜索工具,并生成高级排版的新闻文章 |
105
+ | [examples/workflow_investment_demo.py](https://github.com/shibing624/agentica/blob/main/examples/workflow_investment_demo.py) | 实现了投资研究的工作流:股票信息收集 - 股票分析 - 撰写分析报告 - 复查报告等多个Task |
106
+ | [examples/crawl_webpage_demo.py](https://github.com/shibing624/agentica/blob/main/examples/crawl_webpage_demo.py) | 实现了网页分析工作流:从Url爬取融资快讯 - 分析网页内容和格式 - 提取核心信息 - 汇总保存为md文件 |
107
+ | [examples/find_paper_from_arxiv_demo.py](https://github.com/shibing624/agentica/blob/main/examples/find_paper_from_arxiv_demo.py) | 实现了论文推荐工作流:自动从arxiv搜索多组论文 - 相似论文去重 - 提取核心论文信息 - 保存为csv文件 |
108
+ | [examples/remove_image_background_demo.py](https://github.com/shibing624/agentica/blob/main/examples/remove_image_background_demo.py) | 实现了自动去除图片背景功能,包括自动通过pip安装库,调用库实现去除图片背景 |
109
+ | [examples/text_classification_demo.py](https://github.com/shibing624/agentica/blob/main/examples/text_classification_demo.py) | 实现了自动训练分类模型的工作流:读取训练集文件并理解格式 - 谷歌搜索pytextclassifier库 - 爬取github页面了解pytextclassifier的调用方法 - 写代码并执行fasttext模型训练 - check训练好的模型预测结果 |
110
+ | [examples/llm_os_demo.py](https://github.com/shibing624/agentica/blob/main/examples/llm_os_demo.py) | 实现了LLM OS的初步设计,基于LLM设计操作系统,可以通过LLM调用RAG、代码执行器、Shell等工具,并协同代码解释器、研究助手、投资助手等来解决问题。 |
111
+
112
+
113
+ ### LLM OS
114
+ The LLM OS design:
115
+ <img alt="LLM OS" src="https://github.com/shibing624/agentica/blob/main/docs/llmos.png" width="600" />
116
+
117
+ #### Run the LLM OS App
118
+
119
+ ```shell
120
+ cd examples
121
+ streamlit run llm_os_demo.py
122
+ ```
123
+
124
+ ![llm_os](https://github.com/shibing624/agentica/blob/main/docs/llm_os_snap.png)
125
+
126
+ ## Contact
127
+
128
+ - Issue(建议)
129
+ :[![GitHub issues](https://img.shields.io/github/issues/shibing624/agentica.svg)](https://github.com/shibing624/agentica/issues)
130
+ - 邮件我:xuming: xuming624@qq.com
131
+ - 微信我: 加我*微信号:xuming624, 备注:姓名-公司-NLP* 进NLP交流群。
132
+
133
+ <img src="https://github.com/shibing624/agentica/blob/main/docs/wechat.jpeg" width="200" />
134
+
135
+ ## Citation
136
+
137
+ 如果你在研究中使用了`agentica`,请按如下格式引用:
138
+
139
+ APA:
140
+
141
+ ```
142
+ Xu, M. agentica: A Human-Centric Framework for Large Language Model Agent Workflows (Version 0.0.2) [Computer software]. https://github.com/shibing624/agentica
143
+ ```
144
+
145
+ BibTeX:
146
+
147
+ ```
148
+ @misc{Xu_agentica,
149
+ title={agentica: A Human-Centric Framework for Large Language Model Agent Workflows},
150
+ author={Xu Ming},
151
+ year={2024},
152
+ howpublished={\url{https://github.com/shibing624/agentica}},
153
+ }
154
+ ```
155
+
156
+ ## License
157
+
158
+ 授权协议为 [The Apache License 2.0](/LICENSE),可免费用做商业用途。请在产品说明中附加`agentica`的链接和授权协议。
159
+ ## Contribute
160
+
161
+ 项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:
162
+
163
+ - 在`tests`添加相应的单元测试
164
+ - 使用`python -m pytest`来运行所有单元测试,确保所有单测都是通过的
165
+
166
+ 之后即可提交PR。
167
+
168
+ ## Acknowledgements
169
+
170
+ - [https://github.com/langchain-ai/langchain](https://github.com/langchain-ai/langchain)
171
+ - [https://github.com/simonmesmith/agentflow](https://github.com/simonmesmith/agentflow)
172
+ - [https://github.com/phidatahq/phidata](https://github.com/phidatahq/phidata)
173
+
174
+
175
+ Thanks for their great work!
@@ -0,0 +1,16 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ @author:XuMing(xuming624@qq.com)
4
+ @description:
5
+ """
6
+ from agentica.version import __version__ # noqa, isort: skip
7
+ from agentica.config import DOTENV_PATH, SMART_LLM, FAST_LLM # noqa, isort: skip
8
+ from agentica.assistant import Assistant
9
+ from agentica.python_assistant import PythonAssistant
10
+ from agentica.document import Document
11
+ from agentica.knowledge_base import KnowledgeBase
12
+ from agentica.llm.openai_llm import OpenAILLM
13
+ from agentica.llm.azure_llm import AzureOpenAILLM
14
+ from agentica.task import Task
15
+ from agentica.workflow import Workflow
16
+
@@ -28,18 +28,18 @@ from uuid import uuid4
28
28
 
29
29
  from pydantic import BaseModel, ConfigDict, field_validator, ValidationError
30
30
 
31
- from actionflow.document import Document
32
- from actionflow.documents import Documents
33
- from actionflow.llm.base import LLM
34
- from actionflow.memory import AssistantMemory, Memory
35
- from actionflow.message import Message
36
- from actionflow.references import References
37
- from actionflow.run_record import RunRecord
38
- from actionflow.sqlite_storage import SqliteStorage
39
- from actionflow.tool import Tool, Toolkit, Function
40
- from actionflow.utils.log import logger, set_log_level_to_debug, print_llm_stream
41
- from actionflow.utils.misc import merge_dictionaries, remove_indent
42
- from actionflow.utils.timer import Timer
31
+ from agentica.document import Document
32
+ from agentica.knowledge_base import KnowledgeBase
33
+ from agentica.llm.base import LLM
34
+ from agentica.memory import AssistantMemory, Memory
35
+ from agentica.message import Message
36
+ from agentica.references import References
37
+ from agentica.run_record import RunRecord
38
+ from agentica.sqlite_storage import SqliteStorage
39
+ from agentica.tool import Tool, Toolkit, Function
40
+ from agentica.utils.log import logger, set_log_level_to_debug, print_llm_stream
41
+ from agentica.utils.misc import merge_dictionaries, remove_indent
42
+ from agentica.utils.timer import Timer
43
43
 
44
44
 
45
45
  class Assistant(BaseModel):
@@ -81,7 +81,7 @@ class Assistant(BaseModel):
81
81
  update_memory_after_run: bool = True
82
82
 
83
83
  # -*- Assistant Knowledge Base
84
- knowledge_base: Optional[Documents] = None
84
+ knowledge_base: Optional[KnowledgeBase] = None
85
85
  # Enable RAG by adding references from the knowledge base to the prompt.
86
86
  add_references_to_prompt: bool = False
87
87
 
@@ -269,7 +269,7 @@ class Assistant(BaseModel):
269
269
  def update_llm(self) -> None:
270
270
  if self.llm is None:
271
271
  try:
272
- from actionflow.llm.openai_llm import OpenAILLM
272
+ from agentica.llm.openai_llm import OpenAILLM
273
273
  except ModuleNotFoundError as e:
274
274
  logger.exception(e)
275
275
  logger.error("use `openai` as the default LLM. ")
@@ -790,6 +790,7 @@ class Assistant(BaseModel):
790
790
  *,
791
791
  stream: bool = True,
792
792
  messages: Optional[List[Union[Dict, Message]]] = None,
793
+ print_output: bool = True,
793
794
  **kwargs: Any,
794
795
  ) -> Iterator[str]:
795
796
  logger.debug(f"*********** Assistant Run Start: {self.run_id} ***********")
@@ -865,6 +866,8 @@ class Assistant(BaseModel):
865
866
  self.llm = cast(LLM, self.llm)
866
867
  if stream and self.streamable:
867
868
  for response_chunk in self.llm.response_stream(messages=llm_messages):
869
+ if print_output:
870
+ print_llm_stream(response_chunk)
868
871
  llm_response += response_chunk
869
872
  yield response_chunk
870
873
  else:
@@ -922,6 +925,8 @@ class Assistant(BaseModel):
922
925
 
923
926
  # -*- Yield final response if not streaming
924
927
  if not stream:
928
+ if print_output:
929
+ print(llm_response)
925
930
  yield llm_response
926
931
 
927
932
  def run(
@@ -929,8 +934,8 @@ class Assistant(BaseModel):
929
934
  message: Optional[Union[List, Dict, str]] = None,
930
935
  *,
931
936
  stream: bool = True,
932
- print_output: bool = True,
933
937
  messages: Optional[List[Union[Dict, Message]]] = None,
938
+ print_output: bool = True,
934
939
  **kwargs: Any,
935
940
  ) -> Union[Iterator[str], str, BaseModel]:
936
941
  # Convert response to structured output if output_model is set
@@ -959,16 +964,11 @@ class Assistant(BaseModel):
959
964
  return self.output or json_resp
960
965
  else:
961
966
  if stream and self.streamable:
962
- resp = self._run(message=message, messages=messages, stream=True, **kwargs)
963
- if print_output:
964
- for chunk in resp:
965
- print_llm_stream(chunk)
967
+ resp = self._run(message=message, messages=messages, stream=True, print_output=print_output, **kwargs)
966
968
  return resp
967
969
  else:
968
- resp = self._run(message=message, messages=messages, stream=False, **kwargs)
970
+ resp = self._run(message=message, messages=messages, stream=False, print_output=print_output, **kwargs)
969
971
  resp = next(resp)
970
- if print_output:
971
- print(resp)
972
972
  return resp
973
973
 
974
974
  async def _arun(
@@ -977,6 +977,7 @@ class Assistant(BaseModel):
977
977
  *,
978
978
  stream: bool = True,
979
979
  messages: Optional[List[Union[Dict, Message]]] = None,
980
+ print_output: bool = True,
980
981
  **kwargs: Any,
981
982
  ) -> AsyncIterator[str]:
982
983
  logger.debug(f"*********** Run Start: {self.run_id} ***********")
@@ -1055,6 +1056,8 @@ class Assistant(BaseModel):
1055
1056
  response_stream = self.llm.aresponse_stream(messages=llm_messages)
1056
1057
  async for response_chunk in response_stream: # type: ignore
1057
1058
  llm_response += response_chunk
1059
+ if print_output:
1060
+ print_llm_stream(response_chunk)
1058
1061
  yield response_chunk
1059
1062
  else:
1060
1063
  llm_response = await self.llm.aresponse(messages=llm_messages)
@@ -1089,6 +1092,8 @@ class Assistant(BaseModel):
1089
1092
 
1090
1093
  # -*- Yield final response if not streaming
1091
1094
  if not stream:
1095
+ if print_output:
1096
+ print(llm_response)
1092
1097
  yield llm_response
1093
1098
 
1094
1099
  async def arun(
@@ -1096,8 +1101,8 @@ class Assistant(BaseModel):
1096
1101
  message: Optional[Union[List, Dict, str]] = None,
1097
1102
  *,
1098
1103
  stream: bool = True,
1099
- print_output: bool = True,
1100
1104
  messages: Optional[List[Union[Dict, Message]]] = None,
1105
+ print_output: bool = True,
1101
1106
  **kwargs: Any,
1102
1107
  ) -> Union[AsyncIterator[str], str, BaseModel]:
1103
1108
  # Convert response to structured output if output_model is set
@@ -1127,17 +1132,11 @@ class Assistant(BaseModel):
1127
1132
  return self.output or json_resp
1128
1133
  else:
1129
1134
  if stream and self.streamable:
1130
- resp = self._arun(message=message, messages=messages, stream=True, **kwargs)
1131
- if print_output:
1132
- async for chunk in resp:
1133
- print_llm_stream(chunk)
1135
+ resp = self._arun(message=message, messages=messages, stream=True, print_output=print_output, **kwargs)
1134
1136
  return resp
1135
1137
  else:
1136
- resp = self._arun(message=message, messages=messages, stream=False, **kwargs)
1137
- r = await resp.__anext__()
1138
- if print_output:
1139
- print(r)
1140
- return r
1138
+ resp = self._arun(message=message, messages=messages, stream=False, print_output=print_output, **kwargs)
1139
+ return await resp.__anext__()
1141
1140
 
1142
1141
  def chat(
1143
1142
  self, message: Union[List, Dict, str], stream: bool = True, **kwargs: Any
@@ -1334,7 +1333,6 @@ class Assistant(BaseModel):
1334
1333
  user: str = "User",
1335
1334
  emoji: str = ":sunglasses:",
1336
1335
  stream: bool = True,
1337
- markdown: bool = False,
1338
1336
  exit_on: Optional[List[str]] = None,
1339
1337
  **kwargs: Any,
1340
1338
  ) -> None:
@@ -1342,11 +1340,11 @@ class Assistant(BaseModel):
1342
1340
  _exit_on = exit_on or ["exit", "quit", "bye"]
1343
1341
  logger.debug(f"Enable cli, exit with {_exit_on[0]}")
1344
1342
  if message:
1345
- self.run(message=message, stream=stream, markdown=markdown, **kwargs)
1343
+ self.run(message=message, stream=stream, **kwargs)
1346
1344
 
1347
1345
  while True:
1348
1346
  message = Prompt.ask(f"[bold] {emoji} {user} [/bold]")
1349
1347
  if message in _exit_on:
1350
1348
  break
1351
1349
 
1352
- self.run(message=message, stream=stream, markdown=markdown, **kwargs)
1350
+ self.run(message=message, stream=stream, **kwargs)
@@ -19,10 +19,10 @@ try:
19
19
  except ImportError:
20
20
  logger.debug("dotenv not installed, skipping...")
21
21
 
22
- ACTIONFLOW_HOME = os.environ.get("ACTIONFLOW_HOME", os.path.realpath(os.path.curdir))
22
+ AGENTICA_HOME = os.environ.get("AGENTICA_HOME", os.path.realpath(os.path.curdir))
23
23
  current_date = datetime.now()
24
24
  formatted_date = current_date.strftime("%Y%m%d")
25
- LOG_FILE = os.environ.get("LOG_FILE", f"{ACTIONFLOW_HOME}/logs/{formatted_date}.log")
25
+ LOG_FILE = os.environ.get("LOG_FILE", f"{AGENTICA_HOME}/logs/{formatted_date}.log")
26
26
  LOG_LEVEL = os.environ.get("LOG_LEVEL", "INFO")
27
27
  SMART_LLM = os.environ.get("SMART_LLM")
28
28
  FAST_LLM = os.environ.get("FAST_LLM")
@@ -9,7 +9,7 @@ from typing import Optional, Dict, Any, List
9
9
 
10
10
  from pydantic import BaseModel, ConfigDict
11
11
 
12
- from actionflow.emb.base import Emb
12
+ from agentica.emb.base import Emb
13
13
 
14
14
 
15
15
  class Document(BaseModel):
@@ -8,8 +8,8 @@ from os import getenv
8
8
  from typing import Optional, Dict, List, Tuple, Any
9
9
  from typing_extensions import Literal
10
10
 
11
- from actionflow.emb.base import Emb
12
- from actionflow.utils.log import logger
11
+ from agentica.emb.base import Emb
12
+ from agentica.utils.log import logger
13
13
 
14
14
  try:
15
15
  from openai import AzureOpenAI as AzureOpenAIClient
@@ -6,7 +6,7 @@
6
6
  import hashlib
7
7
  from typing import List
8
8
 
9
- from actionflow.emb.base import Emb
9
+ from agentica.emb.base import Emb
10
10
 
11
11
 
12
12
  class HashEmb(Emb):
@@ -6,8 +6,8 @@ part of the code from https://github.com/phidatahq/phidata
6
6
  """
7
7
  from typing import Optional, Dict, List, Any
8
8
 
9
- from actionflow.emb.base import Emb
10
- from actionflow.utils.log import logger
9
+ from agentica.emb.base import Emb
10
+ from agentica.utils.log import logger
11
11
 
12
12
  try:
13
13
  from ollama import Client as OllamaClient
@@ -9,8 +9,8 @@ from typing import Optional, Dict, List, Tuple, Any
9
9
 
10
10
  from typing_extensions import Literal
11
11
 
12
- from actionflow.emb.base import Emb
13
- from actionflow.utils.log import logger
12
+ from agentica.emb.base import Emb
13
+ from agentica.utils.log import logger
14
14
 
15
15
  try:
16
16
  from openai import OpenAI as OpenAIClient
@@ -11,7 +11,7 @@ except ImportError:
11
11
  raise ImportError(
12
12
  "`text2vec` not installed. Please install it with `pip install text2vec`"
13
13
  )
14
- from actionflow.emb.base import Emb
14
+ from agentica.emb.base import Emb
15
15
 
16
16
 
17
17
  class Text2VecEmb(Emb):