ag2 0.7.2b1__tar.gz → 0.7.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ag2 might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  ## NOTICE
2
2
 
3
- Copyright (c) 2023-2025, Owners of https://github.com/ag2ai
3
+ Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
4
4
 
5
5
  This project is a fork of https://github.com/microsoft/autogen.
6
6
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ag2
3
- Version: 0.7.2b1
3
+ Version: 0.7.4
4
4
  Summary: Alias package for pyautogen
5
5
  Home-page: https://github.com/ag2ai/ag2
6
6
  Author: Chi Wang & Qingyun Wu
@@ -19,6 +19,9 @@ Provides-Extra: retrievechat-pgvector
19
19
  Provides-Extra: retrievechat-mongodb
20
20
  Provides-Extra: retrievechat-qdrant
21
21
  Provides-Extra: graph-rag-falkor-db
22
+ Provides-Extra: rag
23
+ Provides-Extra: crawl4ai
24
+ Provides-Extra: browser-use
22
25
  Provides-Extra: neo4j
23
26
  Provides-Extra: twilio
24
27
  Provides-Extra: interop-crewai
@@ -46,6 +49,9 @@ Provides-Extra: groq
46
49
  Provides-Extra: cohere
47
50
  Provides-Extra: ollama
48
51
  Provides-Extra: bedrock
52
+ Provides-Extra: commsagent-discord
53
+ Provides-Extra: commsagent-slack
54
+ Provides-Extra: commsagent-telegram
49
55
  Provides-Extra: test
50
56
  Provides-Extra: docs
51
57
  Provides-Extra: types
@@ -59,29 +65,39 @@ License-File: NOTICE.md
59
65
  ![Pypi Downloads](https://img.shields.io/pypi/dm/pyautogen?label=PyPI%20downloads)
60
66
  [![PyPI version](https://badge.fury.io/py/autogen.svg)](https://badge.fury.io/py/autogen)
61
67
  [![Build](https://github.com/ag2ai/ag2/actions/workflows/python-package.yml/badge.svg)](https://github.com/ag2ai/ag2/actions/workflows/python-package.yml)
62
- ![Python Version](https://img.shields.io/badge/3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)
68
+ ![Python Version](https://img.shields.io/pypi/pyversions/pyautogen?logoColor=blue)
63
69
  [![Discord](https://img.shields.io/discord/1153072414184452236?logo=discord&style=flat)](https://discord.gg/pAbnFJrkgZ)
64
- [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40ag2ai)](https://x.com/Chi_Wang_)
70
+ [![X](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40ag2oss)](https://x.com/ag2oss)
65
71
 
66
72
  <!-- [![NuGet version](https://badge.fury.io/nu/AutoGen.Core.svg)](https://badge.fury.io/nu/AutoGen.Core) -->
67
73
 
68
74
  # [AG2](https://github.com/ag2ai/ag2)
69
75
 
76
+ ## Key Features
77
+ - 🤖 Multi-Agent Framework - Build and orchestrate AI agent interactions
78
+ - 🔧 Flexible Integration - Support for various LLMs (OpenAI, Anthropic, Gemini, etc.)
79
+ - 🛠 Tool Usage - Agents can use external tools and execute code
80
+ - 👥 Human-in-the-Loop - Seamless human participation when needed
81
+ - 🔄 Rich Orchestration Patterns - Agents can be organized in any form you like
82
+ - 🎯 Future-Oriented - Designed for solving difficult problems and harnessing latest and future technology
83
+
84
+ [📚 Documentation](https://docs.ag2.ai/) | [💡 Examples](https://github.com/ag2ai/build-with-ag2) | [🤝 Contributing](https://docs.ag2.ai/docs/contributor-guide/contributing)
85
+
70
86
  [📚 Cite paper](#related-papers).
87
+
71
88
  <!-- <p align="center">
72
89
  <img src="https://github.com/ag2ai/ag2/blob/main/website/static/img/flaml.svg" width=200>
73
90
  <br>
74
91
  </p> -->
75
92
 
76
- > **:tada: IMPORTANT**
93
+ > **🎉 IMPORTANT**
77
94
  >
78
- > :fire: :tada: **Nov 11, 2024:** We are evolving AutoGen into **AG2**!
95
+ > 🔥 🎉 **Nov 11, 2024:** We are evolving AutoGen into **AG2**!
79
96
  > A new organization [AG2AI](https://github.com/ag2ai) is created to host the development of AG2 and related projects with open governance. Check [AG2's new look](https://ag2.ai/).
80
97
  >
81
98
  > We invite collaborators from all organizations and individuals to join the development.
82
99
 
83
-
84
- :fire: :tada: AG2 is available via `pyautogen` (or its alias `autogen` or `ag2`) on PyPI!
100
+ 🔥 🎉 AG2 is available via `pyautogen` (or its alias `autogen` or `ag2`) on PyPI!
85
101
 
86
102
  ```
87
103
  pip install pyautogen
@@ -90,62 +106,63 @@ pip install pyautogen
90
106
  📄 **License:**
91
107
  We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-source collaboration while providing additional protections for contributors and users alike.
92
108
 
109
+ 🎉 May 29, 2024: DeepLearning.ai launched a new short course [AI Agentic Design Patterns with AutoGen](https://www.deeplearning.ai/short-courses/ai-agentic-design-patterns-with-autogen), made in collaboration with Microsoft and Penn State University, and taught by AutoGen creators [Chi Wang](https://github.com/sonichi) and [Qingyun Wu](https://github.com/qingyun-wu).
93
110
 
94
- :tada: May 29, 2024: DeepLearning.ai launched a new short course [AI Agentic Design Patterns with AutoGen](https://www.deeplearning.ai/short-courses/ai-agentic-design-patterns-with-autogen), made in collaboration with Microsoft and Penn State University, and taught by AutoGen creators [Chi Wang](https://github.com/sonichi) and [Qingyun Wu](https://github.com/qingyun-wu).
111
+ 🎉 May 24, 2024: Foundation Capital published an article on [Forbes: The Promise of Multi-Agent AI](https://www.forbes.com/sites/joannechen/2024/05/24/the-promise-of-multi-agent-ai/?sh=2c1e4f454d97) and a video [AI in the Real World Episode 2: Exploring Multi-Agent AI and AutoGen with Chi Wang](https://www.youtube.com/watch?v=RLwyXRVvlNk).
95
112
 
96
- :tada: May 24, 2024: Foundation Capital published an article on [Forbes: The Promise of Multi-Agent AI](https://www.forbes.com/sites/joannechen/2024/05/24/the-promise-of-multi-agent-ai/?sh=2c1e4f454d97) and a video [AI in the Real World Episode 2: Exploring Multi-Agent AI and AutoGen with Chi Wang](https://www.youtube.com/watch?v=RLwyXRVvlNk).
113
+ 🎉 May 13, 2024: [The Economist](https://www.economist.com/science-and-technology/2024/05/13/todays-ai-models-are-impressive-teams-of-them-will-be-formidable) published an article about multi-agent systems (MAS) following a January 2024 interview with [Chi Wang](https://github.com/sonichi).
97
114
 
98
- :tada: May 13, 2024: [The Economist](https://www.economist.com/science-and-technology/2024/05/13/todays-ai-models-are-impressive-teams-of-them-will-be-formidable) published an article about multi-agent systems (MAS) following a January 2024 interview with [Chi Wang](https://github.com/sonichi).
115
+ 🎉 May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
99
116
 
100
- :tada: May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
117
+ <!-- 🎉 Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
101
118
 
102
- <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
119
+ 🎉 Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
103
120
 
104
- :tada: Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
121
+ 🎉 Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
105
122
 
106
- :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
123
+ <!-- 🎉 Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
107
124
 
108
- <!-- :tada: Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
125
+ <!-- 🎉 Jan 30, 2024: AutoGen is highlighted by Peter Lee in Microsoft Research Forum [Keynote](https://t.co/nUBSjPDjqD). -->
109
126
 
110
- <!-- :tada: Jan 30, 2024: AutoGen is highlighted by Peter Lee in Microsoft Research Forum [Keynote](https://t.co/nUBSjPDjqD). -->
127
+ 🎉 Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
111
128
 
112
- :tada: Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
129
+ <!-- 🔥 Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
113
130
 
114
- <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
131
+ <!-- 🔥 Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
115
132
 
116
- <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
133
+ 🎉 Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
117
134
 
118
- :tada: Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
135
+ <!-- 🎉 Nov 6, 2023: AutoGen is mentioned by Satya Nadella in a [fireside chat](https://youtu.be/0pLBvgYtv6U). -->
119
136
 
120
- <!-- :tada: Nov 6, 2023: AutoGen is mentioned by Satya Nadella in a [fireside chat](https://youtu.be/0pLBvgYtv6U). -->
137
+ <!-- 🎉 Nov 1, 2023: AutoGen is the top trending repo on GitHub in October 2023. -->
121
138
 
122
- <!-- :tada: Nov 1, 2023: AutoGen is the top trending repo on GitHub in October 2023. -->
139
+ <!-- 🎉 Oct 03, 2023: AutoGen spins off from [FLAML](https://github.com/microsoft/FLAML) on GitHub. -->
123
140
 
124
- <!-- :tada: Oct 03, 2023: AutoGen spins off from [FLAML](https://github.com/microsoft/FLAML) on GitHub. -->
141
+ <!-- 🎉 Aug 16: Paper about AutoGen on [arxiv](https://arxiv.org/abs/2308.08155). -->
125
142
 
126
- <!-- :tada: Aug 16: Paper about AutoGen on [arxiv](https://arxiv.org/abs/2308.08155). -->
127
-
128
- :tada: Mar 29, 2023: AutoGen is first created in [FLAML](https://github.com/microsoft/FLAML).
143
+ 🎉 Mar 29, 2023: AutoGen is first created in [FLAML](https://github.com/microsoft/FLAML).
129
144
 
130
145
  <!--
131
- :fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
146
+ 🔥 FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
132
147
 
133
- :fire: [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
148
+ 🔥 [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
134
149
 
135
- :fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
150
+ 🔥 FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
136
151
 
137
152
  ## What is AG2
138
153
 
139
- AG2 (formerly AutoGen) is an open-source programming framework for building AI agents and facilitating cooperation among multiple agents to solve tasks. AG2 aims to streamline the development and research of agentic AI, much like PyTorch does for Deep Learning. It offers features such as agents capable of interacting with each other, facilitates the use of various large language models (LLMs) and tool use support, autonomous and human-in-the-loop workflows, and multi-agent conversation patterns.
154
+ AG2 (formerly AutoGen) is an open-source AgentOS for building AI agents and facilitating cooperation among multiple agents to solve tasks. AG2 provides fundamental building blocks needed to create, deploy, and manage AI agents that can work together to solve complex problems.
155
+
156
+ ### Core Concepts
157
+ - **Agents**: Stateful entities that can send messages, receive messages, and generate replies using underlying capabilities powered by LLMs, non-LLM tools, or human inputs. Depending on the underlying capability, an agent may reason, plan, execute tasks or involve other agents before generating a reply.
158
+ - **Conversations**: Structured communication patterns between agents.
140
159
 
141
160
  **Open Source Statement**: The project welcomes contributions from developers and organizations worldwide. Our goal is to foster a collaborative and inclusive community where diverse perspectives and expertise can drive innovation and enhance the project's capabilities. Whether you are an individual contributor or represent an organization, we invite you to join us in shaping the future of this project. Together, we can build something truly remarkable.
142
161
 
143
162
  The project is currently maintained by a [dynamic group of volunteers](MAINTAINERS.md) from several organizations. Contact project administrators Chi Wang and Qingyun Wu via [support@ag2.ai](mailto:support@ag2.ai) if you are interested in becoming a maintainer.
144
163
 
145
-
146
164
  ![AG2 Overview](https://media.githubusercontent.com/media/ag2ai/ag2/refs/heads/main/website/static/img/autogen_agentchat.png)
147
165
 
148
-
149
166
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
150
167
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
151
168
  ↑ Back to Top ↑
@@ -157,15 +174,17 @@ The project is currently maintained by a [dynamic group of volunteers](MAINTAINE
157
174
  -->
158
175
 
159
176
  ## Quickstart
177
+
160
178
  The easiest way to start playing is
179
+
161
180
  1. Click below to use the GitHub Codespace
162
181
 
163
- [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/ag2ai/ag2?quickstart=1)
182
+ [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/ag2ai/ag2?quickstart=1)
164
183
 
165
- 2. Copy OAI_CONFIG_LIST_sample to ./notebook folder, name to OAI_CONFIG_LIST, and set the correct configuration.
166
- 3. Start playing with the notebooks!
184
+ 2. Copy OAI_CONFIG_LIST_sample to ./notebook folder, name to OAI_CONFIG_LIST, and set the correct configuration.
185
+ 3. Start playing with the notebooks!
167
186
 
168
- *NOTE*: OAI_CONFIG_LIST_sample lists gpt-4o as the default model. If you use a different model, you may need to revise various system prompts (especially if using weaker models like gpt-4o-mini). Proceed with caution when updating this default and be aware of additional risks related to alignment and safety.
187
+ _NOTE_: OAI_CONFIG_LIST_sample lists gpt-4o as the default model. If you use a different model, you may need to revise various system prompts (especially if using weaker models like gpt-4o-mini). Proceed with caution when updating this default and be aware of additional risks related to alignment and safety.
169
188
 
170
189
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
171
190
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -177,7 +196,7 @@ The easiest way to start playing is
177
196
 
178
197
  ### Option 1. Install and Run AG2 in Docker
179
198
 
180
- Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/docker).
199
+ Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/setup-development-environment).
181
200
 
182
201
  ### Option 2. Install AG2 Locally
183
202
 
@@ -200,7 +219,7 @@ Find more options in [Installation](https://docs.ag2.ai/docs/Installation#option
200
219
 
201
220
  Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-in-docker) in docker. Find more instructions and how to change the default behaviour [here](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-locally).
202
221
 
203
- For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints).
222
+ For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/user-guide/advanced-concepts/llm-configuration-deep-dive#llm-configuration).
204
223
 
205
224
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
206
225
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -224,7 +243,7 @@ For [example](https://github.com/ag2ai/ag2/blob/main/test/twoagent.py),
224
243
  ```python
225
244
  from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
226
245
  # Load LLM inference endpoints from an env variable or a file
227
- # See https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints
246
+ # See https://docs.ag2.ai/docs/user-guide/advanced-concepts/llm-configuration-deep-dive#llm-configuration
228
247
  # and OAI_CONFIG_LIST_sample
229
248
  config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
230
249
  # You can also set config_list directly as a list, for example, config_list = [{'model': 'gpt-4o', 'api_key': '<your OpenAI API key here>'},]
@@ -245,7 +264,6 @@ The figure below shows an example conversation flow with AG2.
245
264
 
246
265
  ![Agent Chat Example](https://media.githubusercontent.com/media/ag2ai/ag2/refs/heads/main/website/static/img/chat_example.png)
247
266
 
248
-
249
267
  Alternatively, the [sample code](https://github.com/ag2ai/build-with-ag2/blob/main/samples/simple_chat.py) here allows a user to chat with an AG2 agent in ChatGPT style.
250
268
  Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-multi-agent-chat) for this feature.
251
269
 
@@ -257,7 +275,7 @@ Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-mul
257
275
 
258
276
  ## Enhanced LLM Inferences
259
277
 
260
- AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://docs.ag2.ai/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
278
+ AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers enhanced LLM inference with powerful functionalities like caching, error handling, multi-config inference and templating.
261
279
 
262
280
  <!-- For example, you can optimize generations by LLM with your own tuning data, success metrics, and budgets.
263
281
 
@@ -307,7 +325,6 @@ In addition, you can find:
307
325
  Explore detailed implementations with sample code and applications to help you get started with AG2.
308
326
  [Cookbook](https://github.com/ag2ai/build-with-ag2)
309
327
 
310
-
311
328
  ## Related Papers
312
329
 
313
330
  [AutoGen](https://arxiv.org/abs/2308.08155)
@@ -357,6 +374,7 @@ Explore detailed implementations with sample code and applications to help you g
357
374
  ```
358
375
 
359
376
  [StateFlow](https://arxiv.org/abs/2403.11322)
377
+
360
378
  ```
361
379
  @article{wu2024stateflow,
362
380
  title={StateFlow: Enhancing LLM Task-Solving through State-Driven Workflows},
@@ -373,6 +391,7 @@ Explore detailed implementations with sample code and applications to help you g
373
391
  </p>
374
392
 
375
393
  ## Contributors Wall
394
+
376
395
  <a href="https://github.com/ag2ai/ag2/graphs/contributors">
377
396
  <img src="https://contrib.rocks/image?repo=ag2ai/ag2&max=204" />
378
397
  </a>
@@ -384,13 +403,14 @@ Explore detailed implementations with sample code and applications to help you g
384
403
  </p>
385
404
 
386
405
  ## License
406
+
387
407
  This project is licensed under the [Apache License, Version 2.0 (Apache-2.0)](./LICENSE).
388
408
 
389
409
  This project is a spin-off of [AutoGen](https://github.com/microsoft/autogen) and contains code under two licenses:
390
410
 
391
- - The original code from https://github.com/microsoft/autogen is licensed under the MIT License. See the [LICENSE_original_MIT](./license_original/LICENSE_original_MIT) file for details.
411
+ - The original code from https://github.com/microsoft/autogen is licensed under the MIT License. See the [LICENSE_original_MIT](./license_original/LICENSE_original_MIT) file for details.
392
412
 
393
- - Modifications and additions made in this fork are licensed under the Apache License, Version 2.0. See the [LICENSE](./LICENSE) file for the full license text.
413
+ - Modifications and additions made in this fork are licensed under the Apache License, Version 2.0. See the [LICENSE](./LICENSE) file for the full license text.
394
414
 
395
415
  We have documented these changes for clarity and to ensure transparency with our user and contributor community. For more details, please see the [NOTICE](./NOTICE.md) file.
396
416
 
@@ -3,29 +3,39 @@
3
3
  ![Pypi Downloads](https://img.shields.io/pypi/dm/pyautogen?label=PyPI%20downloads)
4
4
  [![PyPI version](https://badge.fury.io/py/autogen.svg)](https://badge.fury.io/py/autogen)
5
5
  [![Build](https://github.com/ag2ai/ag2/actions/workflows/python-package.yml/badge.svg)](https://github.com/ag2ai/ag2/actions/workflows/python-package.yml)
6
- ![Python Version](https://img.shields.io/badge/3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)
6
+ ![Python Version](https://img.shields.io/pypi/pyversions/pyautogen?logoColor=blue)
7
7
  [![Discord](https://img.shields.io/discord/1153072414184452236?logo=discord&style=flat)](https://discord.gg/pAbnFJrkgZ)
8
- [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40ag2ai)](https://x.com/Chi_Wang_)
8
+ [![X](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40ag2oss)](https://x.com/ag2oss)
9
9
 
10
10
  <!-- [![NuGet version](https://badge.fury.io/nu/AutoGen.Core.svg)](https://badge.fury.io/nu/AutoGen.Core) -->
11
11
 
12
12
  # [AG2](https://github.com/ag2ai/ag2)
13
13
 
14
+ ## Key Features
15
+ - 🤖 Multi-Agent Framework - Build and orchestrate AI agent interactions
16
+ - 🔧 Flexible Integration - Support for various LLMs (OpenAI, Anthropic, Gemini, etc.)
17
+ - 🛠 Tool Usage - Agents can use external tools and execute code
18
+ - 👥 Human-in-the-Loop - Seamless human participation when needed
19
+ - 🔄 Rich Orchestration Patterns - Agents can be organized in any form you like
20
+ - 🎯 Future-Oriented - Designed for solving difficult problems and harnessing latest and future technology
21
+
22
+ [📚 Documentation](https://docs.ag2.ai/) | [💡 Examples](https://github.com/ag2ai/build-with-ag2) | [🤝 Contributing](https://docs.ag2.ai/docs/contributor-guide/contributing)
23
+
14
24
  [📚 Cite paper](#related-papers).
25
+
15
26
  <!-- <p align="center">
16
27
  <img src="https://github.com/ag2ai/ag2/blob/main/website/static/img/flaml.svg" width=200>
17
28
  <br>
18
29
  </p> -->
19
30
 
20
- > **:tada: IMPORTANT**
31
+ > **🎉 IMPORTANT**
21
32
  >
22
- > :fire: :tada: **Nov 11, 2024:** We are evolving AutoGen into **AG2**!
33
+ > 🔥 🎉 **Nov 11, 2024:** We are evolving AutoGen into **AG2**!
23
34
  > A new organization [AG2AI](https://github.com/ag2ai) is created to host the development of AG2 and related projects with open governance. Check [AG2's new look](https://ag2.ai/).
24
35
  >
25
36
  > We invite collaborators from all organizations and individuals to join the development.
26
37
 
27
-
28
- :fire: :tada: AG2 is available via `pyautogen` (or its alias `autogen` or `ag2`) on PyPI!
38
+ 🔥 🎉 AG2 is available via `pyautogen` (or its alias `autogen` or `ag2`) on PyPI!
29
39
 
30
40
  ```
31
41
  pip install pyautogen
@@ -34,62 +44,63 @@ pip install pyautogen
34
44
  📄 **License:**
35
45
  We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-source collaboration while providing additional protections for contributors and users alike.
36
46
 
47
+ 🎉 May 29, 2024: DeepLearning.ai launched a new short course [AI Agentic Design Patterns with AutoGen](https://www.deeplearning.ai/short-courses/ai-agentic-design-patterns-with-autogen), made in collaboration with Microsoft and Penn State University, and taught by AutoGen creators [Chi Wang](https://github.com/sonichi) and [Qingyun Wu](https://github.com/qingyun-wu).
37
48
 
38
- :tada: May 29, 2024: DeepLearning.ai launched a new short course [AI Agentic Design Patterns with AutoGen](https://www.deeplearning.ai/short-courses/ai-agentic-design-patterns-with-autogen), made in collaboration with Microsoft and Penn State University, and taught by AutoGen creators [Chi Wang](https://github.com/sonichi) and [Qingyun Wu](https://github.com/qingyun-wu).
49
+ 🎉 May 24, 2024: Foundation Capital published an article on [Forbes: The Promise of Multi-Agent AI](https://www.forbes.com/sites/joannechen/2024/05/24/the-promise-of-multi-agent-ai/?sh=2c1e4f454d97) and a video [AI in the Real World Episode 2: Exploring Multi-Agent AI and AutoGen with Chi Wang](https://www.youtube.com/watch?v=RLwyXRVvlNk).
39
50
 
40
- :tada: May 24, 2024: Foundation Capital published an article on [Forbes: The Promise of Multi-Agent AI](https://www.forbes.com/sites/joannechen/2024/05/24/the-promise-of-multi-agent-ai/?sh=2c1e4f454d97) and a video [AI in the Real World Episode 2: Exploring Multi-Agent AI and AutoGen with Chi Wang](https://www.youtube.com/watch?v=RLwyXRVvlNk).
51
+ 🎉 May 13, 2024: [The Economist](https://www.economist.com/science-and-technology/2024/05/13/todays-ai-models-are-impressive-teams-of-them-will-be-formidable) published an article about multi-agent systems (MAS) following a January 2024 interview with [Chi Wang](https://github.com/sonichi).
41
52
 
42
- :tada: May 13, 2024: [The Economist](https://www.economist.com/science-and-technology/2024/05/13/todays-ai-models-are-impressive-teams-of-them-will-be-formidable) published an article about multi-agent systems (MAS) following a January 2024 interview with [Chi Wang](https://github.com/sonichi).
53
+ 🎉 May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
43
54
 
44
- :tada: May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
55
+ <!-- 🎉 Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
45
56
 
46
- <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
57
+ 🎉 Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
47
58
 
48
- :tada: Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
59
+ 🎉 Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
49
60
 
50
- :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
61
+ <!-- 🎉 Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
51
62
 
52
- <!-- :tada: Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
63
+ <!-- 🎉 Jan 30, 2024: AutoGen is highlighted by Peter Lee in Microsoft Research Forum [Keynote](https://t.co/nUBSjPDjqD). -->
53
64
 
54
- <!-- :tada: Jan 30, 2024: AutoGen is highlighted by Peter Lee in Microsoft Research Forum [Keynote](https://t.co/nUBSjPDjqD). -->
65
+ 🎉 Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
55
66
 
56
- :tada: Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
67
+ <!-- 🔥 Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
57
68
 
58
- <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
69
+ <!-- 🔥 Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
59
70
 
60
- <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
71
+ 🎉 Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
61
72
 
62
- :tada: Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
73
+ <!-- 🎉 Nov 6, 2023: AutoGen is mentioned by Satya Nadella in a [fireside chat](https://youtu.be/0pLBvgYtv6U). -->
63
74
 
64
- <!-- :tada: Nov 6, 2023: AutoGen is mentioned by Satya Nadella in a [fireside chat](https://youtu.be/0pLBvgYtv6U). -->
75
+ <!-- 🎉 Nov 1, 2023: AutoGen is the top trending repo on GitHub in October 2023. -->
65
76
 
66
- <!-- :tada: Nov 1, 2023: AutoGen is the top trending repo on GitHub in October 2023. -->
77
+ <!-- 🎉 Oct 03, 2023: AutoGen spins off from [FLAML](https://github.com/microsoft/FLAML) on GitHub. -->
67
78
 
68
- <!-- :tada: Oct 03, 2023: AutoGen spins off from [FLAML](https://github.com/microsoft/FLAML) on GitHub. -->
79
+ <!-- 🎉 Aug 16: Paper about AutoGen on [arxiv](https://arxiv.org/abs/2308.08155). -->
69
80
 
70
- <!-- :tada: Aug 16: Paper about AutoGen on [arxiv](https://arxiv.org/abs/2308.08155). -->
71
-
72
- :tada: Mar 29, 2023: AutoGen is first created in [FLAML](https://github.com/microsoft/FLAML).
81
+ 🎉 Mar 29, 2023: AutoGen is first created in [FLAML](https://github.com/microsoft/FLAML).
73
82
 
74
83
  <!--
75
- :fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
84
+ 🔥 FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
76
85
 
77
- :fire: [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
86
+ 🔥 [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
78
87
 
79
- :fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
88
+ 🔥 FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
80
89
 
81
90
  ## What is AG2
82
91
 
83
- AG2 (formerly AutoGen) is an open-source programming framework for building AI agents and facilitating cooperation among multiple agents to solve tasks. AG2 aims to streamline the development and research of agentic AI, much like PyTorch does for Deep Learning. It offers features such as agents capable of interacting with each other, facilitates the use of various large language models (LLMs) and tool use support, autonomous and human-in-the-loop workflows, and multi-agent conversation patterns.
92
+ AG2 (formerly AutoGen) is an open-source AgentOS for building AI agents and facilitating cooperation among multiple agents to solve tasks. AG2 provides fundamental building blocks needed to create, deploy, and manage AI agents that can work together to solve complex problems.
93
+
94
+ ### Core Concepts
95
+ - **Agents**: Stateful entities that can send messages, receive messages, and generate replies using underlying capabilities powered by LLMs, non-LLM tools, or human inputs. Depending on the underlying capability, an agent may reason, plan, execute tasks or involve other agents before generating a reply.
96
+ - **Conversations**: Structured communication patterns between agents.
84
97
 
85
98
  **Open Source Statement**: The project welcomes contributions from developers and organizations worldwide. Our goal is to foster a collaborative and inclusive community where diverse perspectives and expertise can drive innovation and enhance the project's capabilities. Whether you are an individual contributor or represent an organization, we invite you to join us in shaping the future of this project. Together, we can build something truly remarkable.
86
99
 
87
100
  The project is currently maintained by a [dynamic group of volunteers](MAINTAINERS.md) from several organizations. Contact project administrators Chi Wang and Qingyun Wu via [support@ag2.ai](mailto:support@ag2.ai) if you are interested in becoming a maintainer.
88
101
 
89
-
90
102
  ![AG2 Overview](https://media.githubusercontent.com/media/ag2ai/ag2/refs/heads/main/website/static/img/autogen_agentchat.png)
91
103
 
92
-
93
104
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
94
105
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
95
106
  ↑ Back to Top ↑
@@ -101,15 +112,17 @@ The project is currently maintained by a [dynamic group of volunteers](MAINTAINE
101
112
  -->
102
113
 
103
114
  ## Quickstart
115
+
104
116
  The easiest way to start playing is
117
+
105
118
  1. Click below to use the GitHub Codespace
106
119
 
107
- [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/ag2ai/ag2?quickstart=1)
120
+ [![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/ag2ai/ag2?quickstart=1)
108
121
 
109
- 2. Copy OAI_CONFIG_LIST_sample to ./notebook folder, name to OAI_CONFIG_LIST, and set the correct configuration.
110
- 3. Start playing with the notebooks!
122
+ 2. Copy OAI_CONFIG_LIST_sample to ./notebook folder, name to OAI_CONFIG_LIST, and set the correct configuration.
123
+ 3. Start playing with the notebooks!
111
124
 
112
- *NOTE*: OAI_CONFIG_LIST_sample lists gpt-4o as the default model. If you use a different model, you may need to revise various system prompts (especially if using weaker models like gpt-4o-mini). Proceed with caution when updating this default and be aware of additional risks related to alignment and safety.
125
+ _NOTE_: OAI_CONFIG_LIST_sample lists gpt-4o as the default model. If you use a different model, you may need to revise various system prompts (especially if using weaker models like gpt-4o-mini). Proceed with caution when updating this default and be aware of additional risks related to alignment and safety.
113
126
 
114
127
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
115
128
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -121,7 +134,7 @@ The easiest way to start playing is
121
134
 
122
135
  ### Option 1. Install and Run AG2 in Docker
123
136
 
124
- Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/docker).
137
+ Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/setup-development-environment).
125
138
 
126
139
  ### Option 2. Install AG2 Locally
127
140
 
@@ -144,7 +157,7 @@ Find more options in [Installation](https://docs.ag2.ai/docs/Installation#option
144
157
 
145
158
  Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-in-docker) in docker. Find more instructions and how to change the default behaviour [here](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-locally).
146
159
 
147
- For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints).
160
+ For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/user-guide/advanced-concepts/llm-configuration-deep-dive#llm-configuration).
148
161
 
149
162
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
150
163
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -168,7 +181,7 @@ For [example](https://github.com/ag2ai/ag2/blob/main/test/twoagent.py),
168
181
  ```python
169
182
  from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
170
183
  # Load LLM inference endpoints from an env variable or a file
171
- # See https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints
184
+ # See https://docs.ag2.ai/docs/user-guide/advanced-concepts/llm-configuration-deep-dive#llm-configuration
172
185
  # and OAI_CONFIG_LIST_sample
173
186
  config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
174
187
  # You can also set config_list directly as a list, for example, config_list = [{'model': 'gpt-4o', 'api_key': '<your OpenAI API key here>'},]
@@ -189,7 +202,6 @@ The figure below shows an example conversation flow with AG2.
189
202
 
190
203
  ![Agent Chat Example](https://media.githubusercontent.com/media/ag2ai/ag2/refs/heads/main/website/static/img/chat_example.png)
191
204
 
192
-
193
205
  Alternatively, the [sample code](https://github.com/ag2ai/build-with-ag2/blob/main/samples/simple_chat.py) here allows a user to chat with an AG2 agent in ChatGPT style.
194
206
  Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-multi-agent-chat) for this feature.
195
207
 
@@ -201,7 +213,7 @@ Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-mul
201
213
 
202
214
  ## Enhanced LLM Inferences
203
215
 
204
- AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://docs.ag2.ai/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
216
+ AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers enhanced LLM inference with powerful functionalities like caching, error handling, multi-config inference and templating.
205
217
 
206
218
  <!-- For example, you can optimize generations by LLM with your own tuning data, success metrics, and budgets.
207
219
 
@@ -251,7 +263,6 @@ In addition, you can find:
251
263
  Explore detailed implementations with sample code and applications to help you get started with AG2.
252
264
  [Cookbook](https://github.com/ag2ai/build-with-ag2)
253
265
 
254
-
255
266
  ## Related Papers
256
267
 
257
268
  [AutoGen](https://arxiv.org/abs/2308.08155)
@@ -301,6 +312,7 @@ Explore detailed implementations with sample code and applications to help you g
301
312
  ```
302
313
 
303
314
  [StateFlow](https://arxiv.org/abs/2403.11322)
315
+
304
316
  ```
305
317
  @article{wu2024stateflow,
306
318
  title={StateFlow: Enhancing LLM Task-Solving through State-Driven Workflows},
@@ -317,6 +329,7 @@ Explore detailed implementations with sample code and applications to help you g
317
329
  </p>
318
330
 
319
331
  ## Contributors Wall
332
+
320
333
  <a href="https://github.com/ag2ai/ag2/graphs/contributors">
321
334
  <img src="https://contrib.rocks/image?repo=ag2ai/ag2&max=204" />
322
335
  </a>
@@ -328,12 +341,13 @@ Explore detailed implementations with sample code and applications to help you g
328
341
  </p>
329
342
 
330
343
  ## License
344
+
331
345
  This project is licensed under the [Apache License, Version 2.0 (Apache-2.0)](./LICENSE).
332
346
 
333
347
  This project is a spin-off of [AutoGen](https://github.com/microsoft/autogen) and contains code under two licenses:
334
348
 
335
- - The original code from https://github.com/microsoft/autogen is licensed under the MIT License. See the [LICENSE_original_MIT](./license_original/LICENSE_original_MIT) file for details.
349
+ - The original code from https://github.com/microsoft/autogen is licensed under the MIT License. See the [LICENSE_original_MIT](./license_original/LICENSE_original_MIT) file for details.
336
350
 
337
- - Modifications and additions made in this fork are licensed under the Apache License, Version 2.0. See the [LICENSE](./LICENSE) file for the full license text.
351
+ - Modifications and additions made in this fork are licensed under the Apache License, Version 2.0. See the [LICENSE](./LICENSE) file for the full license text.
338
352
 
339
353
  We have documented these changes for clarity and to ensure transparency with our user and contributor community. For more details, please see the [NOTICE](./NOTICE.md) file.