ag2 0.6.0b1__tar.gz → 0.6.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ag2 might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ag2
3
- Version: 0.6.0b1
3
+ Version: 0.6.1
4
4
  Summary: Alias package for pyautogen
5
5
  Home-page: https://github.com/ag2ai/ag2
6
6
  Author: Chi Wang & Qingyun Wu
@@ -95,11 +95,11 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
95
95
 
96
96
  :tada: May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
97
97
 
98
- <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://ag2ai.github.io/ag2-for-net/) is available for .NET developers! -->
98
+ <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
99
99
 
100
100
  :tada: Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
101
101
 
102
- :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://ag2ai.github.io/ag2/blog/2024/03/03/AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
102
+ :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
103
103
 
104
104
  <!-- :tada: Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
105
105
 
@@ -107,9 +107,9 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
107
107
 
108
108
  :tada: Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
109
109
 
110
- <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://ag2ai.github.io/ag2/docs/Installation#python). -->
110
+ <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
111
111
 
112
- <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://ag2ai.github.io/ag2/blog/2023/11/13/OAI-assistants) for details and examples. -->
112
+ <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
113
113
 
114
114
  :tada: Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
115
115
 
@@ -126,7 +126,7 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
126
126
  <!--
127
127
  :fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
128
128
 
129
- :fire: [autogen](https://ag2ai.github.io/ag2/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
129
+ :fire: [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
130
130
 
131
131
  :fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
132
132
 
@@ -169,11 +169,11 @@ The easiest way to start playing is
169
169
  </a>
170
170
  </p>
171
171
 
172
- ## [Installation](https://ag2ai.github.io/ag2/docs/Installation)
172
+ ## [Installation](https://docs.ag2.ai/docs/installation/Installation)
173
173
 
174
174
  ### Option 1. Install and Run AG2 in Docker
175
175
 
176
- Find detailed instructions for users [here](https://ag2ai.github.io/ag2/docs/installation/Docker#step-1-install-docker), and for developers [here](https://ag2ai.github.io/ag2/docs/Contribute#docker-for-development).
176
+ Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/docker).
177
177
 
178
178
  ### Option 2. Install AG2 Locally
179
179
 
@@ -190,13 +190,13 @@ Minimal dependencies are installed without extra options. You can install extra
190
190
  pip install "autogen[blendsearch]"
191
191
  ``` -->
192
192
 
193
- Find more options in [Installation](https://ag2ai.github.io/ag2/docs/Installation#option-2-install-autogen-locally-using-virtual-environment).
193
+ Find more options in [Installation](https://docs.ag2.ai/docs/Installation#option-2-install-autogen-locally-using-virtual-environment).
194
194
 
195
195
  <!-- Each of the [`notebook examples`](https://github.com/ag2ai/ag2/tree/main/notebook) may require a specific option to be installed. -->
196
196
 
197
- Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://ag2ai.github.io/ag2/docs/FAQ/#code-execution) in docker. Find more instructions and how to change the default behaviour [here](https://ag2ai.github.io/ag2/docs/Installation#code-execution-with-docker-(default)).
197
+ Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-in-docker) in docker. Find more instructions and how to change the default behaviour [here](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-locally).
198
198
 
199
- For LLM inference configurations, check the [FAQs](https://ag2ai.github.io/ag2/docs/FAQ#set-your-api-endpoints).
199
+ For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints).
200
200
 
201
201
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
202
202
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -206,7 +206,7 @@ For LLM inference configurations, check the [FAQs](https://ag2ai.github.io/ag2/d
206
206
 
207
207
  ## Multi-Agent Conversation Framework
208
208
 
209
- AG2 enables the next-gen LLM applications with a generic [multi-agent conversation](https://ag2ai.github.io/ag2/docs/Use-Cases/agent_chat) framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans.
209
+ AG2 enables the next-gen LLM applications with a generic [multi-agent conversation](https://docs.ag2.ai/docs/Use-Cases/agent_chat) framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans.
210
210
  By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code.
211
211
 
212
212
  Features of this use case include:
@@ -220,7 +220,7 @@ For [example](https://github.com/ag2ai/ag2/blob/main/test/twoagent.py),
220
220
  ```python
221
221
  from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
222
222
  # Load LLM inference endpoints from an env variable or a file
223
- # See https://ag2ai.github.io/ag2/docs/FAQ#set-your-api-endpoints
223
+ # See https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints
224
224
  # and OAI_CONFIG_LIST_sample
225
225
  config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
226
226
  # You can also set config_list directly as a list, for example, config_list = [{'model': 'gpt-4o', 'api_key': '<your OpenAI API key here>'},]
@@ -243,7 +243,7 @@ The figure below shows an example conversation flow with AG2.
243
243
 
244
244
 
245
245
  Alternatively, the [sample code](https://github.com/ag2ai/build-with-ag2/blob/main/samples/simple_chat.py) here allows a user to chat with an AG2 agent in ChatGPT style.
246
- Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#automated-multi-agent-chat) for this feature.
246
+ Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-multi-agent-chat) for this feature.
247
247
 
248
248
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
249
249
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -253,7 +253,7 @@ Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#autom
253
253
 
254
254
  ## Enhanced LLM Inferences
255
255
 
256
- AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://ag2ai.github.io/ag2/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
256
+ AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://docs.ag2.ai/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
257
257
 
258
258
  <!-- For example, you can optimize generations by LLM with your own tuning data, success metrics, and budgets.
259
259
 
@@ -272,7 +272,7 @@ config, analysis = autogen.Completion.tune(
272
272
  response = autogen.Completion.create(context=test_instance, **config)
273
273
  ```
274
274
 
275
- Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#tune-gpt-models) for this feature. -->
275
+ Please find more [code examples](https://docs.ag2.ai/docs/Examples#tune-gpt-models) for this feature. -->
276
276
 
277
277
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
278
278
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -282,15 +282,15 @@ Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#tune-
282
282
 
283
283
  ## Documentation
284
284
 
285
- You can find detailed documentation about AG2 [here](https://ag2ai.github.io/ag2/).
285
+ You can find detailed documentation about AG2 [here](https://docs.ag2.ai/).
286
286
 
287
287
  In addition, you can find:
288
288
 
289
- - [Research](https://ag2ai.github.io/ag2/docs/Research), [blogposts](https://ag2ai.github.io/ag2/blog) around AG2, and [Transparency FAQs](https://github.com/ag2ai/ag2/blob/main/TRANSPARENCY_FAQS.md)
289
+ - [Research](https://docs.ag2.ai/docs/Research), [blogposts](https://docs.ag2.ai/blog) around AG2, and [Transparency FAQs](https://github.com/ag2ai/ag2/blob/main/TRANSPARENCY_FAQS.md)
290
290
 
291
291
  - [Discord](https://discord.gg/pAbnFJrkgZ)
292
292
 
293
- - [Contributing guide](https://ag2ai.github.io/ag2/docs/Contribute)
293
+ - [Contributing guide](https://docs.ag2.ai/docs/contributor-guide/contributing)
294
294
 
295
295
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
296
296
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -43,11 +43,11 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
43
43
 
44
44
  :tada: May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
45
45
 
46
- <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://ag2ai.github.io/ag2-for-net/) is available for .NET developers! -->
46
+ <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
47
47
 
48
48
  :tada: Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
49
49
 
50
- :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://ag2ai.github.io/ag2/blog/2024/03/03/AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
50
+ :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
51
51
 
52
52
  <!-- :tada: Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
53
53
 
@@ -55,9 +55,9 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
55
55
 
56
56
  :tada: Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
57
57
 
58
- <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://ag2ai.github.io/ag2/docs/Installation#python). -->
58
+ <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
59
59
 
60
- <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://ag2ai.github.io/ag2/blog/2023/11/13/OAI-assistants) for details and examples. -->
60
+ <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
61
61
 
62
62
  :tada: Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
63
63
 
@@ -74,7 +74,7 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
74
74
  <!--
75
75
  :fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
76
76
 
77
- :fire: [autogen](https://ag2ai.github.io/ag2/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
77
+ :fire: [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
78
78
 
79
79
  :fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
80
80
 
@@ -117,11 +117,11 @@ The easiest way to start playing is
117
117
  </a>
118
118
  </p>
119
119
 
120
- ## [Installation](https://ag2ai.github.io/ag2/docs/Installation)
120
+ ## [Installation](https://docs.ag2.ai/docs/installation/Installation)
121
121
 
122
122
  ### Option 1. Install and Run AG2 in Docker
123
123
 
124
- Find detailed instructions for users [here](https://ag2ai.github.io/ag2/docs/installation/Docker#step-1-install-docker), and for developers [here](https://ag2ai.github.io/ag2/docs/Contribute#docker-for-development).
124
+ Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/docker).
125
125
 
126
126
  ### Option 2. Install AG2 Locally
127
127
 
@@ -138,13 +138,13 @@ Minimal dependencies are installed without extra options. You can install extra
138
138
  pip install "autogen[blendsearch]"
139
139
  ``` -->
140
140
 
141
- Find more options in [Installation](https://ag2ai.github.io/ag2/docs/Installation#option-2-install-autogen-locally-using-virtual-environment).
141
+ Find more options in [Installation](https://docs.ag2.ai/docs/Installation#option-2-install-autogen-locally-using-virtual-environment).
142
142
 
143
143
  <!-- Each of the [`notebook examples`](https://github.com/ag2ai/ag2/tree/main/notebook) may require a specific option to be installed. -->
144
144
 
145
- Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://ag2ai.github.io/ag2/docs/FAQ/#code-execution) in docker. Find more instructions and how to change the default behaviour [here](https://ag2ai.github.io/ag2/docs/Installation#code-execution-with-docker-(default)).
145
+ Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-in-docker) in docker. Find more instructions and how to change the default behaviour [here](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-locally).
146
146
 
147
- For LLM inference configurations, check the [FAQs](https://ag2ai.github.io/ag2/docs/FAQ#set-your-api-endpoints).
147
+ For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints).
148
148
 
149
149
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
150
150
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -154,7 +154,7 @@ For LLM inference configurations, check the [FAQs](https://ag2ai.github.io/ag2/d
154
154
 
155
155
  ## Multi-Agent Conversation Framework
156
156
 
157
- AG2 enables the next-gen LLM applications with a generic [multi-agent conversation](https://ag2ai.github.io/ag2/docs/Use-Cases/agent_chat) framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans.
157
+ AG2 enables the next-gen LLM applications with a generic [multi-agent conversation](https://docs.ag2.ai/docs/Use-Cases/agent_chat) framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans.
158
158
  By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code.
159
159
 
160
160
  Features of this use case include:
@@ -168,7 +168,7 @@ For [example](https://github.com/ag2ai/ag2/blob/main/test/twoagent.py),
168
168
  ```python
169
169
  from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
170
170
  # Load LLM inference endpoints from an env variable or a file
171
- # See https://ag2ai.github.io/ag2/docs/FAQ#set-your-api-endpoints
171
+ # See https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints
172
172
  # and OAI_CONFIG_LIST_sample
173
173
  config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
174
174
  # You can also set config_list directly as a list, for example, config_list = [{'model': 'gpt-4o', 'api_key': '<your OpenAI API key here>'},]
@@ -191,7 +191,7 @@ The figure below shows an example conversation flow with AG2.
191
191
 
192
192
 
193
193
  Alternatively, the [sample code](https://github.com/ag2ai/build-with-ag2/blob/main/samples/simple_chat.py) here allows a user to chat with an AG2 agent in ChatGPT style.
194
- Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#automated-multi-agent-chat) for this feature.
194
+ Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-multi-agent-chat) for this feature.
195
195
 
196
196
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
197
197
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -201,7 +201,7 @@ Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#autom
201
201
 
202
202
  ## Enhanced LLM Inferences
203
203
 
204
- AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://ag2ai.github.io/ag2/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
204
+ AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://docs.ag2.ai/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
205
205
 
206
206
  <!-- For example, you can optimize generations by LLM with your own tuning data, success metrics, and budgets.
207
207
 
@@ -220,7 +220,7 @@ config, analysis = autogen.Completion.tune(
220
220
  response = autogen.Completion.create(context=test_instance, **config)
221
221
  ```
222
222
 
223
- Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#tune-gpt-models) for this feature. -->
223
+ Please find more [code examples](https://docs.ag2.ai/docs/Examples#tune-gpt-models) for this feature. -->
224
224
 
225
225
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
226
226
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -230,15 +230,15 @@ Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#tune-
230
230
 
231
231
  ## Documentation
232
232
 
233
- You can find detailed documentation about AG2 [here](https://ag2ai.github.io/ag2/).
233
+ You can find detailed documentation about AG2 [here](https://docs.ag2.ai/).
234
234
 
235
235
  In addition, you can find:
236
236
 
237
- - [Research](https://ag2ai.github.io/ag2/docs/Research), [blogposts](https://ag2ai.github.io/ag2/blog) around AG2, and [Transparency FAQs](https://github.com/ag2ai/ag2/blob/main/TRANSPARENCY_FAQS.md)
237
+ - [Research](https://docs.ag2.ai/docs/Research), [blogposts](https://docs.ag2.ai/blog) around AG2, and [Transparency FAQs](https://github.com/ag2ai/ag2/blob/main/TRANSPARENCY_FAQS.md)
238
238
 
239
239
  - [Discord](https://discord.gg/pAbnFJrkgZ)
240
240
 
241
- - [Contributing guide](https://ag2ai.github.io/ag2/docs/Contribute)
241
+ - [Contributing guide](https://docs.ag2.ai/docs/contributor-guide/contributing)
242
242
 
243
243
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
244
244
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ag2
3
- Version: 0.6.0b1
3
+ Version: 0.6.1
4
4
  Summary: Alias package for pyautogen
5
5
  Home-page: https://github.com/ag2ai/ag2
6
6
  Author: Chi Wang & Qingyun Wu
@@ -95,11 +95,11 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
95
95
 
96
96
  :tada: May 11, 2024: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation](https://openreview.net/pdf?id=uAjxFFing2) received the best paper award at the [ICLR 2024 LLM Agents Workshop](https://llmagents.github.io/).
97
97
 
98
- <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://ag2ai.github.io/ag2-for-net/) is available for .NET developers! -->
98
+ <!-- :tada: Apr 26, 2024: [AutoGen.NET](https://docs.ag2.ai/ag2-for-net/) is available for .NET developers! -->
99
99
 
100
100
  :tada: Apr 17, 2024: Andrew Ng cited AutoGen in [The Batch newsletter](https://www.deeplearning.ai/the-batch/issue-245/) and [What's next for AI agentic workflows](https://youtu.be/sal78ACtGTc?si=JduUzN_1kDnMq0vF) at Sequoia Capital's AI Ascent (Mar 26).
101
101
 
102
- :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://ag2ai.github.io/ag2/blog/2024/03/03/AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
102
+ :tada: Mar 3, 2024: What's new in AutoGen? 📰[Blog](https://docs.ag2.ai/blog/2024-03-03-AutoGen-Update); 📺[Youtube](https://www.youtube.com/watch?v=j_mtwQiaLGU).
103
103
 
104
104
  <!-- :tada: Mar 1, 2024: the first AutoGen multi-agent experiment on the challenging [GAIA](https://huggingface.co/spaces/gaia-benchmark/leaderboard) benchmark achieved the No. 1 accuracy in all the three levels. -->
105
105
 
@@ -107,9 +107,9 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
107
107
 
108
108
  :tada: Dec 31, 2023: [AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework](https://arxiv.org/abs/2308.08155) is selected by [TheSequence: My Five Favorite AI Papers of 2023](https://thesequence.substack.com/p/my-five-favorite-ai-papers-of-2023).
109
109
 
110
- <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://ag2ai.github.io/ag2/docs/Installation#python). -->
110
+ <!-- :fire: Nov 24: pyautogen [v0.2](https://github.com/ag2ai/ag2/releases/tag/v0.2.0) is released with many updates and new features compared to v0.1.1. It switches to using openai-python v1. Please read the [migration guide](https://docs.ag2.ai/docs/installation/Installation). -->
111
111
 
112
- <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://ag2ai.github.io/ag2/blog/2023/11/13/OAI-assistants) for details and examples. -->
112
+ <!-- :fire: Nov 11: OpenAI's Assistants are available in AutoGen and interoperatable with other AutoGen agents! Checkout our [blogpost](https://docs.ag2.ai/blog/2023-11-13-OAI-assistants) for details and examples. -->
113
113
 
114
114
  :tada: Nov 8, 2023: AutoGen is selected into [Open100: Top 100 Open Source achievements](https://www.benchcouncil.org/evaluation/opencs/annual.html) 35 days after spinoff from [FLAML](https://github.com/microsoft/FLAML).
115
115
 
@@ -126,7 +126,7 @@ We adopt the Apache 2.0 license from v0.3. This enhances our commitment to open-
126
126
  <!--
127
127
  :fire: FLAML is highlighted in OpenAI's [cookbook](https://github.com/openai/openai-cookbook#related-resources-from-around-the-web).
128
128
 
129
- :fire: [autogen](https://ag2ai.github.io/ag2/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
129
+ :fire: [autogen](https://docs.ag2.ai/) is released with support for ChatGPT and GPT-4, based on [Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference](https://arxiv.org/abs/2303.04673).
130
130
 
131
131
  :fire: FLAML supports Code-First AutoML & Tuning – Private Preview in [Microsoft Fabric Data Science](https://learn.microsoft.com/en-us/fabric/data-science/). -->
132
132
 
@@ -169,11 +169,11 @@ The easiest way to start playing is
169
169
  </a>
170
170
  </p>
171
171
 
172
- ## [Installation](https://ag2ai.github.io/ag2/docs/Installation)
172
+ ## [Installation](https://docs.ag2.ai/docs/installation/Installation)
173
173
 
174
174
  ### Option 1. Install and Run AG2 in Docker
175
175
 
176
- Find detailed instructions for users [here](https://ag2ai.github.io/ag2/docs/installation/Docker#step-1-install-docker), and for developers [here](https://ag2ai.github.io/ag2/docs/Contribute#docker-for-development).
176
+ Find detailed instructions for users [here](https://docs.ag2.ai/docs/installation/Docker#step-1-install-docker), and for developers [here](https://docs.ag2.ai/docs/contributor-guide/docker).
177
177
 
178
178
  ### Option 2. Install AG2 Locally
179
179
 
@@ -190,13 +190,13 @@ Minimal dependencies are installed without extra options. You can install extra
190
190
  pip install "autogen[blendsearch]"
191
191
  ``` -->
192
192
 
193
- Find more options in [Installation](https://ag2ai.github.io/ag2/docs/Installation#option-2-install-autogen-locally-using-virtual-environment).
193
+ Find more options in [Installation](https://docs.ag2.ai/docs/Installation#option-2-install-autogen-locally-using-virtual-environment).
194
194
 
195
195
  <!-- Each of the [`notebook examples`](https://github.com/ag2ai/ag2/tree/main/notebook) may require a specific option to be installed. -->
196
196
 
197
- Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://ag2ai.github.io/ag2/docs/FAQ/#code-execution) in docker. Find more instructions and how to change the default behaviour [here](https://ag2ai.github.io/ag2/docs/Installation#code-execution-with-docker-(default)).
197
+ Even if you are installing and running AG2 locally outside of docker, the recommendation and default behavior of agents is to perform [code execution](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-in-docker) in docker. Find more instructions and how to change the default behaviour [here](https://docs.ag2.ai/docs/FAQ#if-you-want-to-run-code-execution-locally).
198
198
 
199
- For LLM inference configurations, check the [FAQs](https://ag2ai.github.io/ag2/docs/FAQ#set-your-api-endpoints).
199
+ For LLM inference configurations, check the [FAQs](https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints).
200
200
 
201
201
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
202
202
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -206,7 +206,7 @@ For LLM inference configurations, check the [FAQs](https://ag2ai.github.io/ag2/d
206
206
 
207
207
  ## Multi-Agent Conversation Framework
208
208
 
209
- AG2 enables the next-gen LLM applications with a generic [multi-agent conversation](https://ag2ai.github.io/ag2/docs/Use-Cases/agent_chat) framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans.
209
+ AG2 enables the next-gen LLM applications with a generic [multi-agent conversation](https://docs.ag2.ai/docs/Use-Cases/agent_chat) framework. It offers customizable and conversable agents that integrate LLMs, tools, and humans.
210
210
  By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code.
211
211
 
212
212
  Features of this use case include:
@@ -220,7 +220,7 @@ For [example](https://github.com/ag2ai/ag2/blob/main/test/twoagent.py),
220
220
  ```python
221
221
  from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
222
222
  # Load LLM inference endpoints from an env variable or a file
223
- # See https://ag2ai.github.io/ag2/docs/FAQ#set-your-api-endpoints
223
+ # See https://docs.ag2.ai/docs/FAQ#set-your-api-endpoints
224
224
  # and OAI_CONFIG_LIST_sample
225
225
  config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
226
226
  # You can also set config_list directly as a list, for example, config_list = [{'model': 'gpt-4o', 'api_key': '<your OpenAI API key here>'},]
@@ -243,7 +243,7 @@ The figure below shows an example conversation flow with AG2.
243
243
 
244
244
 
245
245
  Alternatively, the [sample code](https://github.com/ag2ai/build-with-ag2/blob/main/samples/simple_chat.py) here allows a user to chat with an AG2 agent in ChatGPT style.
246
- Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#automated-multi-agent-chat) for this feature.
246
+ Please find more [code examples](https://docs.ag2.ai/docs/Examples#automated-multi-agent-chat) for this feature.
247
247
 
248
248
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
249
249
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -253,7 +253,7 @@ Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#autom
253
253
 
254
254
  ## Enhanced LLM Inferences
255
255
 
256
- AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://ag2ai.github.io/ag2/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
256
+ AG2 also helps maximize the utility out of the expensive LLMs such as gpt-4o. It offers [enhanced LLM inference](https://docs.ag2.ai/docs/Use-Cases/enhanced_inference#api-unification) with powerful functionalities like caching, error handling, multi-config inference and templating.
257
257
 
258
258
  <!-- For example, you can optimize generations by LLM with your own tuning data, success metrics, and budgets.
259
259
 
@@ -272,7 +272,7 @@ config, analysis = autogen.Completion.tune(
272
272
  response = autogen.Completion.create(context=test_instance, **config)
273
273
  ```
274
274
 
275
- Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#tune-gpt-models) for this feature. -->
275
+ Please find more [code examples](https://docs.ag2.ai/docs/Examples#tune-gpt-models) for this feature. -->
276
276
 
277
277
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
278
278
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -282,15 +282,15 @@ Please find more [code examples](https://ag2ai.github.io/ag2/docs/Examples#tune-
282
282
 
283
283
  ## Documentation
284
284
 
285
- You can find detailed documentation about AG2 [here](https://ag2ai.github.io/ag2/).
285
+ You can find detailed documentation about AG2 [here](https://docs.ag2.ai/).
286
286
 
287
287
  In addition, you can find:
288
288
 
289
- - [Research](https://ag2ai.github.io/ag2/docs/Research), [blogposts](https://ag2ai.github.io/ag2/blog) around AG2, and [Transparency FAQs](https://github.com/ag2ai/ag2/blob/main/TRANSPARENCY_FAQS.md)
289
+ - [Research](https://docs.ag2.ai/docs/Research), [blogposts](https://docs.ag2.ai/blog) around AG2, and [Transparency FAQs](https://github.com/ag2ai/ag2/blob/main/TRANSPARENCY_FAQS.md)
290
290
 
291
291
  - [Discord](https://discord.gg/pAbnFJrkgZ)
292
292
 
293
- - [Contributing guide](https://ag2ai.github.io/ag2/docs/Contribute)
293
+ - [Contributing guide](https://docs.ag2.ai/docs/contributor-guide/contributing)
294
294
 
295
295
  <p align="right" style="font-size: 14px; color: #555; margin-top: 20px;">
296
296
  <a href="#readme-top" style="text-decoration: none; color: blue; font-weight: bold;">
@@ -0,0 +1,106 @@
1
+ pyautogen==0.6.1
2
+
3
+ [anthropic]
4
+ pyautogen[anthropic]==0.6.1
5
+
6
+ [autobuild]
7
+ pyautogen[autobuild]==0.6.1
8
+
9
+ [bedrock]
10
+ pyautogen[bedrock]==0.6.1
11
+
12
+ [blendsearch]
13
+ pyautogen[blendsearch]==0.6.1
14
+
15
+ [captainagent]
16
+ pyautogen[captainagent]==0.6.1
17
+
18
+ [cerebras]
19
+ pyautogen[cerebras]==0.6.1
20
+
21
+ [cohere]
22
+ pyautogen[cohere]==0.6.1
23
+
24
+ [cosmosdb]
25
+ pyautogen[cosmosdb]==0.6.1
26
+
27
+ [gemini]
28
+ pyautogen[gemini]==0.6.1
29
+
30
+ [graph]
31
+ pyautogen[graph]==0.6.1
32
+
33
+ [graph-rag-falkor-db]
34
+ pyautogen[graph-rag-falkor-db]==0.6.1
35
+
36
+ [groq]
37
+ pyautogen[groq]==0.6.1
38
+
39
+ [interop]
40
+ pyautogen[interop]==0.6.1
41
+
42
+ [interop-crewai]
43
+ pyautogen[interop-crewai]==0.6.1
44
+
45
+ [interop-langchain]
46
+ pyautogen[interop-langchain]==0.6.1
47
+
48
+ [interop-pydantic-ai]
49
+ pyautogen[interop-pydantic-ai]==0.6.1
50
+
51
+ [jupyter-executor]
52
+ pyautogen[jupyter-executor]==0.6.1
53
+
54
+ [lmm]
55
+ pyautogen[lmm]==0.6.1
56
+
57
+ [long-context]
58
+ pyautogen[long-context]==0.6.1
59
+
60
+ [mathchat]
61
+ pyautogen[mathchat]==0.6.1
62
+
63
+ [mistral]
64
+ pyautogen[mistral]==0.6.1
65
+
66
+ [neo4j]
67
+ pyautogen[neo4j]==0.6.1
68
+
69
+ [ollama]
70
+ pyautogen[ollama]==0.6.1
71
+
72
+ [redis]
73
+ pyautogen[redis]==0.6.1
74
+
75
+ [retrievechat]
76
+ pyautogen[retrievechat]==0.6.1
77
+
78
+ [retrievechat-mongodb]
79
+ pyautogen[retrievechat-mongodb]==0.6.1
80
+
81
+ [retrievechat-pgvector]
82
+ pyautogen[retrievechat-pgvector]==0.6.1
83
+
84
+ [retrievechat-qdrant]
85
+ pyautogen[retrievechat-qdrant]==0.6.1
86
+
87
+ [teachable]
88
+ pyautogen[teachable]==0.6.1
89
+
90
+ [test]
91
+ pyautogen[test]==0.6.1
92
+
93
+ [together]
94
+ pyautogen[together]==0.6.1
95
+
96
+ [twilio]
97
+ pyautogen[twilio]==0.6.1
98
+
99
+ [types]
100
+ pyautogen[types]==0.6.1
101
+
102
+ [websockets]
103
+ pyautogen[websockets]==0.6.1
104
+
105
+ [websurfer]
106
+ pyautogen[websurfer]==0.6.1
@@ -62,11 +62,13 @@ files = [
62
62
  "autogen/io",
63
63
  "autogen/tools",
64
64
  "autogen/interop",
65
+ "autogen/agentchat/realtime_agent",
65
66
  "test/test_pydantic.py",
66
67
  "test/test_function_utils.py",
67
68
  "test/io",
68
69
  "test/tools",
69
70
  "test/interop",
71
+ "test/agentchat/realtime_agent",
70
72
  ]
71
73
  exclude = [
72
74
  "autogen/math_utils\\.py",
@@ -25,7 +25,7 @@ __version__ = version["__version__"]
25
25
  current_os = platform.system()
26
26
 
27
27
  install_requires = [
28
- "openai>=1.57",
28
+ "openai>=1.58",
29
29
  "diskcache",
30
30
  "termcolor",
31
31
  "flaml",
@@ -51,6 +51,7 @@ test = [
51
51
  "pytest-asyncio",
52
52
  "pytest>=8,<9",
53
53
  "pandas",
54
+ "fastapi>=0.115.0,<1",
54
55
  ]
55
56
 
56
57
  jupyter_executor = [
@@ -82,6 +83,7 @@ neo4j = [
82
83
  "llama-index-core==0.12.5",
83
84
  ]
84
85
 
86
+ # used for agentchat_realtime_swarm notebook and realtime agent twilio demo
85
87
  twilio = ["fastapi>=0.115.0,<1", "uvicorn>=0.30.6,<1", "twilio>=9.3.2"]
86
88
 
87
89
  interop_crewai = ["crewai[tools]>=0.86,<1; python_version>='3.10' and python_version<'3.13'"]
@@ -119,7 +121,14 @@ extra_require = {
119
121
  "teachable": ["chromadb"],
120
122
  "lmm": ["replicate", "pillow"],
121
123
  "graph": ["networkx", "matplotlib"],
122
- "gemini": ["google-generativeai>=0.5,<1", "google-cloud-aiplatform", "google-auth", "pillow", "pydantic"],
124
+ "gemini": [
125
+ "google-generativeai>=0.5,<1",
126
+ "google-cloud-aiplatform",
127
+ "google-auth",
128
+ "pillow",
129
+ "pydantic",
130
+ "jsonschema",
131
+ ],
123
132
  "together": ["together>=1.2"],
124
133
  "websurfer": ["beautifulsoup4", "markdownify", "pdfminer.six", "pathvalidate"],
125
134
  "redis": ["redis"],
@@ -240,7 +240,7 @@ print(f"Text: {text}")
240
240
  codeblocks = extract_code(
241
241
  """
242
242
  Example:
243
- ``` python
243
+ ```python
244
244
  def scrape(url):
245
245
  import requests
246
246
  from bs4 import BeautifulSoup
@@ -251,7 +251,7 @@ def scrape(url):
251
251
  return title, text
252
252
  ```
253
253
  Test:
254
- ``` python
254
+ ```python
255
255
  url = "https://en.wikipedia.org/wiki/Web_scraping"
256
256
  title, text = scrape(url)
257
257
  print(f"Title: {title}")
@@ -285,7 +285,7 @@ Example:
285
285
  codeblocks = extract_code(
286
286
  """
287
287
  Example:
288
- ``` python
288
+ ```python
289
289
  def scrape(url):
290
290
  import requests
291
291
  from bs4 import BeautifulSoup
@@ -7,11 +7,10 @@
7
7
  import asyncio
8
8
  import inspect
9
9
  import unittest.mock
10
- from typing import Any, Dict, List, Literal, Optional, Tuple
10
+ from typing import Annotated, Any, Dict, List, Literal, Optional, Tuple
11
11
 
12
12
  import pytest
13
13
  from pydantic import BaseModel, Field
14
- from typing_extensions import Annotated
15
14
 
16
15
  from autogen._pydantic import PYDANTIC_V1, model_dump
17
16
  from autogen.function_utils import (
@@ -40,7 +39,7 @@ def g( # type: ignore[empty-body]
40
39
  b: int = 2,
41
40
  c: Annotated[float, "Parameter c"] = 0.1,
42
41
  *,
43
- d: Dict[str, Tuple[Optional[int], List[float]]],
42
+ d: dict[str, tuple[Optional[int], list[float]]],
44
43
  ) -> str:
45
44
  pass
46
45
 
@@ -50,7 +49,7 @@ async def a_g( # type: ignore[empty-body]
50
49
  b: int = 2,
51
50
  c: Annotated[float, "Parameter c"] = 0.1,
52
51
  *,
53
- d: Dict[str, Tuple[Optional[int], List[float]]],
52
+ d: dict[str, tuple[Optional[int], list[float]]],
54
53
  ) -> str:
55
54
  pass
56
55
 
@@ -89,7 +88,7 @@ def test_get_parameter_json_schema() -> None:
89
88
  b: float
90
89
  c: str
91
90
 
92
- expected: Dict[str, Any] = {
91
+ expected: dict[str, Any] = {
93
92
  "description": "b",
94
93
  "properties": {"b": {"title": "B", "type": "number"}, "c": {"title": "C", "type": "string"}},
95
94
  "required": ["b", "c"],
@@ -367,7 +366,7 @@ def test_load_basemodels_if_needed_sync() -> None:
367
366
  def f(
368
367
  base: Annotated[Currency, "Base currency"],
369
368
  quote_currency: Annotated[CurrencySymbol, "Quote currency"] = "EUR",
370
- ) -> Tuple[Currency, CurrencySymbol]:
369
+ ) -> tuple[Currency, CurrencySymbol]:
371
370
  return base, quote_currency
372
371
 
373
372
  assert not inspect.iscoroutinefunction(f)
@@ -385,7 +384,7 @@ async def test_load_basemodels_if_needed_async() -> None:
385
384
  async def f(
386
385
  base: Annotated[Currency, "Base currency"],
387
386
  quote_currency: Annotated[CurrencySymbol, "Quote currency"] = "EUR",
388
- ) -> Tuple[Currency, CurrencySymbol]:
387
+ ) -> tuple[Currency, CurrencySymbol]:
389
388
  return base, quote_currency
390
389
 
391
390
  assert inspect.iscoroutinefunction(f)
@@ -264,7 +264,7 @@ def test_to_dict():
264
264
  self.extra_key = "remove this key"
265
265
  self.path = Path("/to/something")
266
266
 
267
- class Bar(object):
267
+ class Bar:
268
268
  def init(self):
269
269
  pass
270
270
 
@@ -4,10 +4,9 @@
4
4
  #
5
5
  # Portions derived from https://github.com/microsoft/autogen are under the MIT License.
6
6
  # SPDX-License-Identifier: MIT
7
- from typing import Dict, List, Optional, Tuple, Union
7
+ from typing import Annotated, Dict, List, Optional, Tuple, Union
8
8
 
9
9
  from pydantic import BaseModel, Field
10
- from typing_extensions import Annotated
11
10
 
12
11
  from autogen._pydantic import model_dump, model_dump_json, type2schema
13
12
 
@@ -19,14 +18,14 @@ def test_type2schema() -> None:
19
18
  assert type2schema(bool) == {"type": "boolean"}
20
19
  assert type2schema(None) == {"type": "null"}
21
20
  assert type2schema(Optional[int]) == {"anyOf": [{"type": "integer"}, {"type": "null"}]}
22
- assert type2schema(List[int]) == {"items": {"type": "integer"}, "type": "array"}
23
- assert type2schema(Tuple[int, float, str]) == {
21
+ assert type2schema(list[int]) == {"items": {"type": "integer"}, "type": "array"}
22
+ assert type2schema(tuple[int, float, str]) == {
24
23
  "maxItems": 3,
25
24
  "minItems": 3,
26
25
  "prefixItems": [{"type": "integer"}, {"type": "number"}, {"type": "string"}],
27
26
  "type": "array",
28
27
  }
29
- assert type2schema(Dict[str, int]) == {"additionalProperties": {"type": "integer"}, "type": "object"}
28
+ assert type2schema(dict[str, int]) == {"additionalProperties": {"type": "integer"}, "type": "object"}
30
29
  assert type2schema(Annotated[str, "some text"]) == {"type": "string"}
31
30
  assert type2schema(Union[int, float]) == {"anyOf": [{"type": "integer"}, {"type": "number"}]}
32
31
 
@@ -1,106 +0,0 @@
1
- pyautogen==0.6.0b1
2
-
3
- [anthropic]
4
- pyautogen[anthropic]==0.6.0b1
5
-
6
- [autobuild]
7
- pyautogen[autobuild]==0.6.0b1
8
-
9
- [bedrock]
10
- pyautogen[bedrock]==0.6.0b1
11
-
12
- [blendsearch]
13
- pyautogen[blendsearch]==0.6.0b1
14
-
15
- [captainagent]
16
- pyautogen[captainagent]==0.6.0b1
17
-
18
- [cerebras]
19
- pyautogen[cerebras]==0.6.0b1
20
-
21
- [cohere]
22
- pyautogen[cohere]==0.6.0b1
23
-
24
- [cosmosdb]
25
- pyautogen[cosmosdb]==0.6.0b1
26
-
27
- [gemini]
28
- pyautogen[gemini]==0.6.0b1
29
-
30
- [graph]
31
- pyautogen[graph]==0.6.0b1
32
-
33
- [graph-rag-falkor-db]
34
- pyautogen[graph-rag-falkor-db]==0.6.0b1
35
-
36
- [groq]
37
- pyautogen[groq]==0.6.0b1
38
-
39
- [interop]
40
- pyautogen[interop]==0.6.0b1
41
-
42
- [interop-crewai]
43
- pyautogen[interop-crewai]==0.6.0b1
44
-
45
- [interop-langchain]
46
- pyautogen[interop-langchain]==0.6.0b1
47
-
48
- [interop-pydantic-ai]
49
- pyautogen[interop-pydantic-ai]==0.6.0b1
50
-
51
- [jupyter-executor]
52
- pyautogen[jupyter-executor]==0.6.0b1
53
-
54
- [lmm]
55
- pyautogen[lmm]==0.6.0b1
56
-
57
- [long-context]
58
- pyautogen[long-context]==0.6.0b1
59
-
60
- [mathchat]
61
- pyautogen[mathchat]==0.6.0b1
62
-
63
- [mistral]
64
- pyautogen[mistral]==0.6.0b1
65
-
66
- [neo4j]
67
- pyautogen[neo4j]==0.6.0b1
68
-
69
- [ollama]
70
- pyautogen[ollama]==0.6.0b1
71
-
72
- [redis]
73
- pyautogen[redis]==0.6.0b1
74
-
75
- [retrievechat]
76
- pyautogen[retrievechat]==0.6.0b1
77
-
78
- [retrievechat-mongodb]
79
- pyautogen[retrievechat-mongodb]==0.6.0b1
80
-
81
- [retrievechat-pgvector]
82
- pyautogen[retrievechat-pgvector]==0.6.0b1
83
-
84
- [retrievechat-qdrant]
85
- pyautogen[retrievechat-qdrant]==0.6.0b1
86
-
87
- [teachable]
88
- pyautogen[teachable]==0.6.0b1
89
-
90
- [test]
91
- pyautogen[test]==0.6.0b1
92
-
93
- [together]
94
- pyautogen[together]==0.6.0b1
95
-
96
- [twilio]
97
- pyautogen[twilio]==0.6.0b1
98
-
99
- [types]
100
- pyautogen[types]==0.6.0b1
101
-
102
- [websockets]
103
- pyautogen[websockets]==0.6.0b1
104
-
105
- [websurfer]
106
- pyautogen[websurfer]==0.6.0b1
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes