afterthoughts 0.1.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,203 @@
1
+ Copyright 2024-2026 Nicholas Gigliotti
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright [yyyy] [name of copyright owner]
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
@@ -0,0 +1,4 @@
1
+ Afterthoughts
2
+ Copyright 2024-2026 Nicholas Gigliotti
3
+
4
+ This product includes software developed by Nicholas Gigliotti.
@@ -0,0 +1,421 @@
1
+ Metadata-Version: 2.4
2
+ Name: afterthoughts
3
+ Version: 0.1.0
4
+ Summary: Sentence-aware embeddings using late chunking with transformers.
5
+ Author-email: Nicholas Gigliotti <ndgigliotti@gmail.com>
6
+ Maintainer-email: Nicholas Gigliotti <ndgigliotti@gmail.com>
7
+ License-Expression: Apache-2.0
8
+ Project-URL: bugs, https://github.com/ndgigliotti/afterthoughts/issues
9
+ Project-URL: changelog, https://github.com/ndgigliotti/afterthoughts/blob/main/CHANGELOG.md
10
+ Project-URL: homepage, https://github.com/ndgigliotti/afterthoughts
11
+ Classifier: Development Status :: 4 - Beta
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
20
+ Classifier: Topic :: Text Processing :: Linguistic
21
+ Requires-Python: >=3.10
22
+ Description-Content-Type: text/markdown
23
+ License-File: LICENSE
24
+ License-File: NOTICE
25
+ Requires-Dist: blingfire
26
+ Requires-Dist: joblib
27
+ Requires-Dist: numpy
28
+ Requires-Dist: polars
29
+ Requires-Dist: torch
30
+ Requires-Dist: tqdm
31
+ Requires-Dist: transformers
32
+ Provides-Extra: pandas
33
+ Requires-Dist: pandas; extra == "pandas"
34
+ Provides-Extra: dev
35
+ Requires-Dist: coverage; extra == "dev"
36
+ Requires-Dist: pre-commit; extra == "dev"
37
+ Requires-Dist: pyright; extra == "dev"
38
+ Requires-Dist: pytest; extra == "dev"
39
+ Requires-Dist: ruff; extra == "dev"
40
+ Dynamic: license-file
41
+
42
+ # Afterthoughts
43
+
44
+ A Python library for late chunking ([Günther et al., 2024](https://arxiv.org/abs/2409.04701)) that preserves context across chunks for improved RAG retrieval, semantic search, clustering, and exploratory data analysis.
45
+
46
+ ## Quick Start
47
+
48
+ ```bash
49
+ pip install afterthoughts
50
+ ```
51
+
52
+ ```python
53
+ from afterthoughts import Encoder
54
+
55
+ model = Encoder("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
56
+
57
+ docs = [
58
+ "The Amazon rainforest produces 20% of Earth's oxygen. "
59
+ "Deforestation threatens its biodiversity. "
60
+ "Scientists warn of a tipping point.", # 1 document, 3 sentences
61
+ ]
62
+ df, X = model.encode(docs, num_sents=1) # 1 sentence per chunk
63
+ ```
64
+
65
+ ```python
66
+ >>> df
67
+ shape: (3, 4)
68
+ ┌──────────────┬───────────┬───────────┬─────────────────────────────────┐
69
+ │ document_idx ┆ chunk_idx ┆ num_sents ┆ chunk │
70
+ │ --- ┆ --- ┆ --- ┆ --- │
71
+ │ i64 ┆ i64 ┆ i64 ┆ str │
72
+ ╞══════════════╪═══════════╪═══════════╪═════════════════════════════════╡
73
+ │ 0 ┆ 0 ┆ 1 ┆ The Amazon rainforest produces… │
74
+ │ 0 ┆ 1 ┆ 1 ┆ Deforestation threatens its bi… │
75
+ │ 0 ┆ 2 ┆ 1 ┆ Scientists warn of a tipping p… │
76
+ └──────────────┴───────────┴───────────┴─────────────────────────────────┘
77
+
78
+ >>> X.shape
79
+ (3, 384) # 3 sentence embeddings, each with full document context
80
+ ```
81
+
82
+ ## What is Late Chunking?
83
+
84
+ Traditional RAG pipelines split documents into chunks *before* embedding, which loses contextual information. Consider a technical report that opens with "The new lithium-sulfur battery achieved 400 Wh/kg energy density" and later states "The technology could double EV range" or "Its cycle life remains a challenge." When these sentences are embedded separately, the later chunks lose their connection to lithium-sulfur batteries—a search for "lithium battery limitations" might miss the cycle life sentence entirely.
85
+
86
+ **Late chunking inverts this process:**
87
+
88
+ 1. **Embed first**: Pass the entire document through the transformer model to get contextually-enriched token embeddings
89
+ 2. **Chunk second**: Pool token embeddings into chunks *after* the model has established cross-chunk context
90
+
91
+ This approach ensures that pronouns, references, and contextual cues in each chunk are informed by the full document context.
92
+
93
+ ## Why Late Chunking?
94
+
95
+ **The problem:** Document-level embeddings are too coarse for long documents. Traditional chunking loses context—pronouns like "it" or "the technology" become meaningless when separated from their referents.
96
+
97
+ **The solution:** Late chunking embeds the full document first, then pools token embeddings into chunks. Each chunk retains full document context.
98
+
99
+ **Performance:** One forward pass for the entire document, regardless of chunk count.
100
+
101
+ ## Features
102
+
103
+ * **Late chunking implementation**: Embed documents first, then pool into chunks for context-aware embeddings
104
+ * **Flexible chunk configuration**: Customize sentences per chunk and overlap between chunks
105
+ * **Sentence boundary detection**: Choice of BlingFire (default), NLTK, pysbd, or syntok for accurate sentence segmentation
106
+ * **Query embedding**: Embed queries in the same space as chunks for semantic search
107
+ * **HuggingFace integration**: Works with any transformer model from the HuggingFace Hub
108
+ * **Automatic mixed precision (AMP)**: Faster inference with reduced memory footprint
109
+ * **Dynamic batching**: Batches by total token count (not sequence count) for optimal GPU utilization
110
+ * **Structured output**: Returns chunks and metadata as Polars/pandas DataFrame for easy manipulation
111
+ * **Memory optimizations**: Optional float16 embedding conversion and dimension truncation for reduced memory
112
+
113
+ ## Usage Guide
114
+
115
+ ### Basic Usage
116
+
117
+ 1. Install the package using pip:
118
+
119
+ ```bash
120
+ pip install afterthoughts
121
+ ```
122
+
123
+ 2. Create an `Encoder` object and load a transformer model.
124
+
125
+ ```python
126
+ from afterthoughts import Encoder
127
+
128
+ # Choose a model which works well with mean-tokens pooling
129
+ model = Encoder("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
130
+ ```
131
+
132
+ 3. Prepare a list of documents `docs` (strings) from which to extract chunk embeddings.
133
+
134
+ ```python
135
+ docs = [
136
+ "I am a document. It has multiple sentences.",
137
+ "I am another document. This one also has sentences.",
138
+ "I am yet another document. Sentences are great.",
139
+ "I'm not like the others. I'm special.",
140
+ ]
141
+ ```
142
+
143
+ 4. Encode and extract chunk embeddings:
144
+
145
+ ```python
146
+ df, X = model.encode(
147
+ docs,
148
+ num_sents=[1, 2], # Extract 1-sentence and 2-sentence chunks
149
+ chunk_overlap=0.5, # Overlap between chunks (in sentences)
150
+ )
151
+ ```
152
+ The `encode` method returns a tuple containing a Polars DataFrame and a NumPy array of chunk embeddings. Pass `return_frame="pandas"` for a pandas DataFrame instead.
153
+
154
+ To use a different sentence tokenizer, pass the `sent_tokenizer` parameter:
155
+
156
+ ```python
157
+ df, X = model.encode(
158
+ docs,
159
+ num_sents=2,
160
+ sent_tokenizer="pysbd", # Options: "blingfire" (default), "nltk", "pysbd", "syntok"
161
+ )
162
+ ```
163
+
164
+ The DataFrame contains the following columns:
165
+ * `document_idx`: The index of the document from which the chunk was extracted
166
+ * `chunk_idx`: The chunk index within each document
167
+ * `num_sents`: The number of sentences in the chunk
168
+ * `chunk`: The chunk text
169
+
170
+ Additional columns are available when `debug=True`:
171
+ * `embed_idx`: The original embedding index before re-sorting
172
+ * `sequence_idx`: The index of the tokenized sequence (differs from `document_idx` when long documents are split)
173
+ * `batch_idx`: The index of the batch in which the chunk was processed
174
+
175
+ To access the chunk embeddings from the `i`-th document:
176
+
177
+ ```python
178
+ i = 10
179
+ doc_chunks = X[df["document_idx"] == i]
180
+ ```
181
+
182
+ This works identically for both Polars and pandas DataFrames.
183
+
184
+ ### Using Pandas Instead of Polars
185
+
186
+ Afterthoughts uses Polars by default for its speed and memory efficiency, but pandas is fully supported for users who prefer it or need compatibility with existing code. Simply set `return_frame="pandas"`:
187
+
188
+ ```python
189
+ df, X = model.encode(
190
+ docs,
191
+ num_sents=2,
192
+ return_frame="pandas", # Return a pandas DataFrame
193
+ )
194
+
195
+ # Use familiar pandas operations
196
+ df.groupby("document_idx").size()
197
+ df[df["num_sents"] == 2]
198
+ ```
199
+
200
+ The pandas integration requires pandas to be installed (`pip install pandas`). The DataFrame schema and all functionality remain identical—only the return type changes.
201
+
202
+ ### Memory Optimizations
203
+
204
+ The `Encoder` class supports two memory optimization parameters:
205
+
206
+ #### Dimension Truncation (`truncate_dims`)
207
+
208
+ For models trained with Matryoshka Representation Learning (MRL), you can truncate embeddings to smaller dimensions with minimal quality loss. No retraining required—just slice the first N dimensions.
209
+
210
+ ```python
211
+ from afterthoughts import Encoder
212
+
213
+ # This model was trained with MRL at dimensions [768, 512, 256, 128, 64]
214
+ model = Encoder(
215
+ "tomaarsen/mpnet-base-nli-matryoshka",
216
+ truncate_dims=256, # Truncate to 256 dimensions
217
+ )
218
+ ```
219
+
220
+ Truncation is applied to token embeddings *before* pooling, which saves both memory and compute during inference.
221
+
222
+ Note: Truncation also works on non-MRL models, but may degrade embedding quality since they weren't trained to preserve information in leading dimensions.
223
+
224
+ #### Float16 Embeddings (`half_embeds`)
225
+
226
+ Convert chunk embeddings to float16 for 2x memory reduction:
227
+
228
+ ```python
229
+ from afterthoughts import Encoder
230
+
231
+ model = Encoder(
232
+ "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
233
+ half_embeds=True, # Convert embeddings to float16
234
+ )
235
+ ```
236
+
237
+ These options can be combined for additional savings.
238
+
239
+ ### Performance Optimizations
240
+
241
+ #### Using Automatic Mixed Precision (AMP)
242
+
243
+ To enable automatic mixed precision, set the `amp` parameter to `True` during initialization. This will automatically lower the numerical precision of the most numerically stable layers, reducing the memory footprint of the model and increasing inference speed. Using AMP generally lets you increase the batch size.
244
+
245
+ ```python
246
+ import torch
247
+ from afterthoughts import Encoder
248
+
249
+ model = Encoder(
250
+ "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
251
+ amp=True,
252
+ amp_dtype=torch.float16, # Choose the lower-precision data type
253
+ )
254
+ ```
255
+
256
+ #### Running the Model in 16-Bit Precision
257
+
258
+ To run the model in 16-bit precision, set the `torch_dtype` parameter to `torch.float16` or `torch.bfloat16` during initialization. This will reduce the memory footprint of the model and increase inference speed. Using 16-bit precision also generally lets you increase the batch size. This is similar to using AMP, but it is a cruder and more aggressive approach.
259
+
260
+ ```python
261
+ import torch
262
+ from afterthoughts import Encoder
263
+ model = Encoder(
264
+ "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
265
+ torch_dtype=torch.float16, # Run the model in 16-bit precision
266
+ )
267
+ ```
268
+
269
+ Alternatively, you can convert the model to 16-bit precision after it has been loaded:
270
+
271
+ ```python
272
+ from afterthoughts import Encoder
273
+
274
+ model = Encoder("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
275
+ model.half() # Convert the model to 16-bit precision
276
+ ```
277
+
278
+ ### Logging
279
+
280
+ Afterthoughts uses Python's standard logging module for diagnostic output. By default, logging is silent. To enable logging:
281
+
282
+ ```python
283
+ import afterthoughts
284
+
285
+ # Quick setup with configure_logging
286
+ afterthoughts.configure_logging(level="INFO") # INFO, DEBUG, WARNING, etc.
287
+ ```
288
+
289
+ Or use Python's logging module directly for more control:
290
+
291
+ ```python
292
+ import logging
293
+
294
+ # Enable debug output from Afterthoughts
295
+ logging.getLogger("afterthoughts").setLevel(logging.DEBUG)
296
+ logging.basicConfig()
297
+ ```
298
+
299
+ **Log levels:**
300
+ - `INFO`: Model loading, compilation, preprocessing time
301
+ - `DEBUG`: Batch sizes, token counts, and other diagnostic details
302
+
303
+ ### Instruct-Style Embedding Models
304
+
305
+ Many modern embedding models require instruction prefixes to achieve optimal performance. Afterthoughts supports these models through `query_prompt` and `document_prompt` parameters.
306
+
307
+ #### E5-Instruct Models
308
+
309
+ E5-instruct models (e5-mistral-7b-instruct, multilingual-e5-large-instruct) require a task instruction for queries but not for documents:
310
+
311
+ ```python
312
+ from afterthoughts import Encoder
313
+
314
+ model = Encoder(
315
+ "intfloat/multilingual-e5-large-instruct",
316
+ query_prompt="Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: ",
317
+ )
318
+
319
+ # Queries use the prompt automatically
320
+ query_embeds = model.encode_queries(["how much protein should a female eat"])
321
+
322
+ # Documents are encoded without any prompt
323
+ df, X = model.encode(docs, num_sents=2)
324
+ ```
325
+
326
+ #### BGE Models
327
+
328
+ BGE models use a simpler prefix for queries:
329
+
330
+ ```python
331
+ model = Encoder(
332
+ "BAAI/bge-large-en-v1.5",
333
+ query_prompt="Represent this sentence for searching relevant passages: ",
334
+ )
335
+ ```
336
+
337
+ #### Nomic Embed
338
+
339
+ Nomic requires task prefixes for both queries and documents:
340
+
341
+ ```python
342
+ model = Encoder(
343
+ "nomic-ai/nomic-embed-text-v1.5",
344
+ query_prompt="search_query: ",
345
+ document_prompt="search_document: ",
346
+ )
347
+ ```
348
+
349
+ #### Instructor Models
350
+
351
+ Instructor models use domain-specific instructions for both queries and documents:
352
+
353
+ ```python
354
+ model = Encoder(
355
+ "hkunlp/instructor-large",
356
+ query_prompt="Represent the Wikipedia question for retrieving supporting documents: ",
357
+ document_prompt="Represent the Wikipedia document for retrieval: ",
358
+ )
359
+ ```
360
+
361
+ #### Per-Call Prompt Override
362
+
363
+ You can override the default prompt for specific calls:
364
+
365
+ ```python
366
+ # Use a different task for this specific query
367
+ query_embeds = model.encode_queries(
368
+ queries,
369
+ prompt="Represent the sentence for clustering: ",
370
+ )
371
+
372
+ # Override document prompt for a specific encoding
373
+ df, X = model.encode(
374
+ docs,
375
+ prompt="Represent the scientific abstract: ",
376
+ )
377
+ ```
378
+
379
+ #### How Prompts Work with Late Chunking
380
+
381
+ When a document prompt is provided:
382
+ 1. The prompt is prepended to each document before tokenization
383
+ 2. Sentence boundaries are detected on the original text (without prompt)
384
+ 3. Prompt tokens are included in the model input for attention context
385
+ 4. Prompt tokens are excluded from chunk mean-pooling (they get `sentence_id=-1`)
386
+
387
+ This ensures that document token embeddings benefit from attending to the prompt during the forward pass, while the final chunk embeddings represent only the actual document content.
388
+
389
+ ## Differences from the Late Chunking Paper
390
+
391
+ Afterthoughts implements the core late chunking approach from [Günther et al., 2024](https://arxiv.org/abs/2409.04701) with some implementation choices that differ from the paper's recommendations. For details on special token handling, deduplication strategy, and chunk definitions, see [docs/gunther-et-al-2024-differences.md](docs/gunther-et-al-2024-differences.md).
392
+
393
+ ## Known Limitations
394
+
395
+ #### Memory Requirements
396
+
397
+ Since each document can contain many chunks, the memory requirements for this approach can be quite high. Use `half_embeds=True` and `truncate_dims` for reduced memory footprint.
398
+
399
+ #### Sequence Length
400
+
401
+ Late chunking's contextual benefits are bounded by the model's maximum sequence length. Documents exceeding this limit are split into overlapping sequences at sentence boundaries, which can reduce cross-chunk context at the boundaries. For best results, use long-context embedding models (e.g., models supporting 8K+ tokens) with documents that fit within the context window.
402
+
403
+ ## Future Work
404
+
405
+ * Add paragraph segmentation
406
+ * Support for additional chunking strategies (e.g., semantic chunking)
407
+ * Support task-specific LoRA adapters (e.g., jina-embeddings-v3)
408
+
409
+ ## References
410
+
411
+ Late chunking technique:
412
+
413
+ > Günther, M., Milliken, I., Geuter, J., Mastrapas, G., Wang, B., & Xiao, H. (2024). *Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models*. arXiv:2409.04701. https://arxiv.org/abs/2409.04701
414
+
415
+ ## License
416
+
417
+ This project is licensed under the Apache License 2.0.
418
+
419
+ Copyright 2024-2026 Nicholas Gigliotti.
420
+
421
+ You may use, distribute, and modify this project under the terms of the Apache License 2.0. For detailed information, see the [LICENSE](LICENSE) file included in this repository or visit the official [Apache License website](http://www.apache.org/licenses/LICENSE-2.0).