aek-auto-mlbuilder 0.0.1__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,6 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Alp Emre Karaahmet
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ ...
@@ -0,0 +1,60 @@
1
+ Metadata-Version: 2.4
2
+ Name: aek-auto-mlbuilder
3
+ Version: 0.1.1
4
+ Summary: Automatic ML model builder in Python
5
+ Home-page: https://github.com/alpemre8/aek-auto-mlbuilder
6
+ Author: Alp Emre Karaahmet
7
+ Author-email: alpemrekaraahmet@gmail.com
8
+ License: MIT
9
+ Requires-Python: >=3.8
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: scikit-learn>=1.0
13
+ Requires-Dist: numpy>=1.23
14
+ Requires-Dist: pandas>=1.5
15
+ Dynamic: author
16
+ Dynamic: author-email
17
+ Dynamic: description
18
+ Dynamic: description-content-type
19
+ Dynamic: home-page
20
+ Dynamic: license
21
+ Dynamic: license-file
22
+ Dynamic: requires-dist
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ <div align="center">
27
+ <img src="https://raw.githubusercontent.com/alpemre8/aek-img-trainer/main/logo.png" alt="AEK Auto ML Builder Logo" width="400"/>
28
+
29
+ # AEK Auto ML Builder
30
+
31
+ Auto ML Builder Library
32
+ </div>
33
+
34
+ # Installation
35
+
36
+
37
+ ```bash
38
+ pip install aek-auto-mlbuilder
39
+ ```
40
+ For future updates:
41
+ ```bash
42
+ pip install --upgrade aek-auto-mlbuilder
43
+ ```
44
+
45
+ # Usage
46
+
47
+
48
+ ## Create LinearRegression model
49
+
50
+ For your linear regression problems, you can use LinearRegressor class via:(for now we use syntetic data):
51
+ ```python
52
+ from aek_auto_mlbuilder import LinearRegressor
53
+ from sklearn.datasets import make_regression
54
+
55
+ X, y = make_regression(n_samples=100, n_features=5, noise=0.1, random_state=42)
56
+
57
+ lr = LinearRegressor()
58
+ lr.train(X, y)
59
+ print("Best Score:", lr.best_score)
60
+ ```
@@ -0,0 +1,35 @@
1
+ <div align="center">
2
+ <img src="https://raw.githubusercontent.com/alpemre8/aek-img-trainer/main/logo.png" alt="AEK Auto ML Builder Logo" width="400"/>
3
+
4
+ # AEK Auto ML Builder
5
+
6
+ Auto ML Builder Library
7
+ </div>
8
+
9
+ # Installation
10
+
11
+
12
+ ```bash
13
+ pip install aek-auto-mlbuilder
14
+ ```
15
+ For future updates:
16
+ ```bash
17
+ pip install --upgrade aek-auto-mlbuilder
18
+ ```
19
+
20
+ # Usage
21
+
22
+
23
+ ## Create LinearRegression model
24
+
25
+ For your linear regression problems, you can use LinearRegressor class via:(for now we use syntetic data):
26
+ ```python
27
+ from aek_auto_mlbuilder import LinearRegressor
28
+ from sklearn.datasets import make_regression
29
+
30
+ X, y = make_regression(n_samples=100, n_features=5, noise=0.1, random_state=42)
31
+
32
+ lr = LinearRegressor()
33
+ lr.train(X, y)
34
+ print("Best Score:", lr.best_score)
35
+ ```
@@ -0,0 +1,3 @@
1
+ from .base import BaseModel
2
+ from .utils import split_data
3
+ from .linear_regression import LinearRegressor
@@ -0,0 +1,12 @@
1
+ class BaseModel:
2
+ def __init__(self):
3
+ self.best_model = None
4
+ self.best_score = None
5
+
6
+ def train(self, X, y):
7
+ raise NotImplemented("Train method must be implemented by subclass.")
8
+
9
+ def evaluate(self, X, y):
10
+ if self.best_model is None:
11
+ raise Exception("Model has not been trained yet!")
12
+ return self.best_model.score(X, y)
@@ -0,0 +1,39 @@
1
+ from sklearn.linear_model import LinearRegression
2
+ from .base import BaseModel
3
+ from sklearn.preprocessing import StandardScaler
4
+ from sklearn.pipeline import make_pipeline
5
+
6
+ class LinearRegressor(BaseModel):
7
+ """
8
+ Basic Linear Regression class
9
+ Try parameters with brute-force.
10
+ """
11
+
12
+ def __init__(self, param_grid=None):
13
+ super().__init__()
14
+ self.param_grid = param_grid or {
15
+ "fit_intercept": [True, False],
16
+ "normalize": [True, False]
17
+ }
18
+
19
+ def train(self, X, y):
20
+ best_score = -float("inf")
21
+ best_model = None
22
+
23
+ for fit_intercept in self.param_grid["fit_intercept"]:
24
+ for normalize in self.param_grid["normalize"]:
25
+
26
+ if normalize:
27
+ model = make_pipeline(StandardScaler(), LinearRegression(fit_intercept=fit_intercept))
28
+ else:
29
+ model = LinearRegression(fit_intercept=fit_intercept)
30
+
31
+ model.fit(X, y)
32
+ score = model.score(X, y)
33
+ if score > best_score:
34
+ best_score = score
35
+ best_model = model
36
+
37
+ self.best_model = best_model
38
+ self.best_score = best_score
39
+ return self.best_model
@@ -0,0 +1,4 @@
1
+ from sklearn.model_selection import train_test_split
2
+
3
+ def split_data(X, y, test_size=0.2, random_state=42):
4
+ return train_test_split(X, y, test_size=test_size, random_state=random_state)
@@ -0,0 +1,60 @@
1
+ Metadata-Version: 2.4
2
+ Name: aek-auto-mlbuilder
3
+ Version: 0.1.1
4
+ Summary: Automatic ML model builder in Python
5
+ Home-page: https://github.com/alpemre8/aek-auto-mlbuilder
6
+ Author: Alp Emre Karaahmet
7
+ Author-email: alpemrekaraahmet@gmail.com
8
+ License: MIT
9
+ Requires-Python: >=3.8
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE
12
+ Requires-Dist: scikit-learn>=1.0
13
+ Requires-Dist: numpy>=1.23
14
+ Requires-Dist: pandas>=1.5
15
+ Dynamic: author
16
+ Dynamic: author-email
17
+ Dynamic: description
18
+ Dynamic: description-content-type
19
+ Dynamic: home-page
20
+ Dynamic: license
21
+ Dynamic: license-file
22
+ Dynamic: requires-dist
23
+ Dynamic: requires-python
24
+ Dynamic: summary
25
+
26
+ <div align="center">
27
+ <img src="https://raw.githubusercontent.com/alpemre8/aek-img-trainer/main/logo.png" alt="AEK Auto ML Builder Logo" width="400"/>
28
+
29
+ # AEK Auto ML Builder
30
+
31
+ Auto ML Builder Library
32
+ </div>
33
+
34
+ # Installation
35
+
36
+
37
+ ```bash
38
+ pip install aek-auto-mlbuilder
39
+ ```
40
+ For future updates:
41
+ ```bash
42
+ pip install --upgrade aek-auto-mlbuilder
43
+ ```
44
+
45
+ # Usage
46
+
47
+
48
+ ## Create LinearRegression model
49
+
50
+ For your linear regression problems, you can use LinearRegressor class via:(for now we use syntetic data):
51
+ ```python
52
+ from aek_auto_mlbuilder import LinearRegressor
53
+ from sklearn.datasets import make_regression
54
+
55
+ X, y = make_regression(n_samples=100, n_features=5, noise=0.1, random_state=42)
56
+
57
+ lr = LinearRegressor()
58
+ lr.train(X, y)
59
+ print("Best Score:", lr.best_score)
60
+ ```
@@ -4,8 +4,10 @@ pyproject.toml
4
4
  setup.py
5
5
  aek_auto_mlbuilder/__init__.py
6
6
  aek_auto_mlbuilder/base.py
7
+ aek_auto_mlbuilder/linear_regression.py
7
8
  aek_auto_mlbuilder/utils.py
8
9
  aek_auto_mlbuilder.egg-info/PKG-INFO
9
10
  aek_auto_mlbuilder.egg-info/SOURCES.txt
10
11
  aek_auto_mlbuilder.egg-info/dependency_links.txt
12
+ aek_auto_mlbuilder.egg-info/requires.txt
11
13
  aek_auto_mlbuilder.egg-info/top_level.txt
@@ -0,0 +1,3 @@
1
+ scikit-learn>=1.0
2
+ numpy>=1.23
3
+ pandas>=1.5
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="aek-auto-mlbuilder", # PyPI dağıtım adı
5
- version="0.0.1",
5
+ version="0.1.1",
6
6
  description="Automatic ML model builder in Python",
7
7
  long_description=open("README.md", encoding="utf-8").read(),
8
8
  long_description_content_type="text/markdown",
@@ -12,5 +12,9 @@ setup(
12
12
  license="MIT",
13
13
  packages=find_packages(),
14
14
  python_requires=">=3.8",
15
- install_requires=[], # bağımlılıkları buraya eklersin
15
+ install_requires=[
16
+ "scikit-learn>=1.0",
17
+ "numpy>=1.23",
18
+ "pandas>=1.5"
19
+ ], # bağımlılıkları buraya eklersin
16
20
  )
File without changes
@@ -1,19 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: aek-auto-mlbuilder
3
- Version: 0.0.1
4
- Summary: Automatic ML model builder in Python
5
- Home-page: https://github.com/alpemre8/aek-auto-mlbuilder
6
- Author: Alp Emre Karaahmet
7
- Author-email: alpemrekaraahmet@gmail.com
8
- License: MIT
9
- Requires-Python: >=3.8
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
- Dynamic: author
13
- Dynamic: author-email
14
- Dynamic: description-content-type
15
- Dynamic: home-page
16
- Dynamic: license
17
- Dynamic: license-file
18
- Dynamic: requires-python
19
- Dynamic: summary
File without changes
File without changes
File without changes
File without changes
@@ -1,19 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: aek-auto-mlbuilder
3
- Version: 0.0.1
4
- Summary: Automatic ML model builder in Python
5
- Home-page: https://github.com/alpemre8/aek-auto-mlbuilder
6
- Author: Alp Emre Karaahmet
7
- Author-email: alpemrekaraahmet@gmail.com
8
- License: MIT
9
- Requires-Python: >=3.8
10
- Description-Content-Type: text/markdown
11
- License-File: LICENSE
12
- Dynamic: author
13
- Dynamic: author-email
14
- Dynamic: description-content-type
15
- Dynamic: home-page
16
- Dynamic: license
17
- Dynamic: license-file
18
- Dynamic: requires-python
19
- Dynamic: summary