adv-optm 1.2.dev13__tar.gz → 2.dev1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of adv-optm might be problematic. Click here for more details.

Files changed (28) hide show
  1. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/PKG-INFO +20 -20
  2. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/README.md +19 -19
  3. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/__init__.py +1 -1
  4. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/AdamW_adv.py +85 -64
  5. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/Adopt_adv.py +114 -69
  6. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/Lion_Prodigy_adv.py +79 -81
  7. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/Lion_adv.py +37 -42
  8. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/Prodigy_adv.py +105 -85
  9. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/Simplified_AdEMAMix.py +92 -51
  10. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/__init__.py +1 -1
  11. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/BF16_Stochastic_Rounding.py +1 -1
  12. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/Effective_Shape.py +1 -1
  13. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/Kourkoutas.py +11 -12
  14. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/NNMF.py +7 -2
  15. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/Newton_Schulz.py +1 -2
  16. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/One_Bit_Boolean.py +1 -1
  17. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/OrthoGrad.py +4 -3
  18. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/util/__init__.py +1 -1
  19. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm.egg-info/PKG-INFO +20 -20
  20. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/setup.py +1 -1
  21. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/LICENSE +0 -0
  22. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/AdaMuon_adv.py +0 -0
  23. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm/optim/Muon_adv.py +0 -0
  24. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm.egg-info/SOURCES.txt +0 -0
  25. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm.egg-info/dependency_links.txt +0 -0
  26. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm.egg-info/requires.txt +0 -0
  27. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/adv_optm.egg-info/top_level.txt +0 -0
  28. {adv_optm-1.2.dev13 → adv_optm-2.dev1}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: adv_optm
3
- Version: 1.2.dev13
3
+ Version: 2.dev1
4
4
  Summary: A family of highly efficient, lightweight yet powerful optimizers.
5
5
  Home-page: https://github.com/Koratahiu/Advanced_Optimizers
6
6
  Author: Koratahiu
@@ -52,7 +52,7 @@ This library integrates multiple state-of-the-art optimization techniques valida
52
52
  ### **Memory-Efficient Optimization (SMMF-inspired)**
53
53
  - **Paper**: [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
54
54
  - **Approach**: Uses rank-1 non-negative matrix factorization with reconstruction cycle (factor → reconstruct → update → factor)
55
- - **Innovation**:
55
+ - **Innovation**:
56
56
  - First moment split into **1-bit sign + absolute value**
57
57
  - Final storage: **four factored vectors + one 1-bit sign state**
58
58
  - Preserves Adam-like update quality with drastically reduced memory
@@ -110,7 +110,7 @@ This library integrates multiple state-of-the-art optimization techniques valida
110
110
 
111
111
  ## 🛠️ Comprehensive Feature Guide
112
112
 
113
- ### A. Universal Safe Features
113
+ ### A. Universal Safe Features
114
114
  *These features work with all optimizers and are generally safe to enable.*
115
115
 
116
116
  | Feature | Description | Recommended Usage | Performance Impact | Theoretical Basis | Compatibility |
@@ -165,7 +165,7 @@ This library integrates multiple state-of-the-art optimization techniques valida
165
165
  | `beta1` | 0.99 | Controls accumulator memory length:<br>• Small BS: **0.99–0.9999**<br>• Large BS: **0.9** |
166
166
  | `Grad α` | 100 | Most critical parameter:<br>• Inversely scales with batch size<br>• **100–10** for small BS (≤32)<br>• **1–0.1** for large BS (≥512) |
167
167
 
168
- > ⚠️ **Critical**: Requires **~100x smaller learning rate** than AdamW (e.g., 1e-6 vs 1e-4).
168
+ > ⚠️ **Critical**: Requires **~100x smaller learning rate** than AdamW (e.g., 1e-6 vs 1e-4).
169
169
  > For `Prodigy_Adv`, set `initial_d` to:
170
170
  > - **LoRA**: `1e-8`
171
171
  > - **Full FT**: `1e-10`
@@ -175,10 +175,10 @@ This library integrates multiple state-of-the-art optimization techniques valida
175
175
 
176
176
  #### Performance Validation
177
177
 
178
- **Small Batch Training (SDXL, BS=2, 1.8K steps)**
178
+ **Small Batch Training (SDXL, BS=2, 1.8K steps)**
179
179
  ![Training Comparison](https://github.com/user-attachments/assets/7eff0671-cc59-47fc-8b63-d5205456d649)
180
180
 
181
- - **🟢 Prodigy_Adv** (beta1=0.9, d0=1e-5): Final LR = 2.9e-4
181
+ - **🟢 Prodigy_Adv** (beta1=0.9, d0=1e-5): Final LR = 2.9e-4
182
182
  - **🔵 Prodigy_Adv + Simplified_AdEMAMix** (beta1=0.99, α=100, d0=1e-7): Final LR = 5.8e-6
183
183
 
184
184
  **Results**:
@@ -202,8 +202,8 @@ This library integrates multiple state-of-the-art optimization techniques valida
202
202
 
203
203
  Instead of using a fixed β₂ (e.g., 0.999 or 0.95), it **dynamically modulates β₂ per layer** based on a bounded *sunspike ratio*:
204
204
 
205
- - **During gradient bursts** → β₂ ↓ toward `Lower β₂` → faster reaction
206
- - **During calm phases** → β₂ ↑ toward `The Selected β₂` → stronger smoothing
205
+ - **During gradient bursts** → β₂ ↓ toward `Lower β₂` → faster reaction
206
+ - **During calm phases** → β₂ ↑ toward `The Selected β₂` → stronger smoothing
207
207
 
208
208
  This is especially effective for **noisy training, small batch sizes, and high learning rates**, where gradient norms shift abruptly due to noise or aggressive LR schedules.
209
209
 
@@ -220,17 +220,17 @@ This is especially effective for **noisy training, small batch sizes, and high l
220
220
 
221
221
  #### 📊 Performance Validation
222
222
 
223
- **ADAMW_ADV - full SDXL finetuning (aggressive LR: 3e-5) (BS=4, 2.5K steps)**
223
+ **ADAMW_ADV - full SDXL finetuning (aggressive LR: 3e-5) (BS=4, 2.5K steps)**
224
224
  <img width="1460" height="382" alt="image" src="https://github.com/user-attachments/assets/007f278a-fbac-4f3d-9cc7-274c3b959cdd" />
225
225
 
226
- - 🟣 Fixed `beta2=0.999`
227
- - 🟠 Auto K-beta
226
+ - 🟣 Fixed `beta2=0.999`
227
+ - 🟠 Auto K-beta
228
228
 
229
- **Observations:**
229
+ **Observations:**
230
230
  - K-beta is clearly better and more robust/stable for high LRs.
231
231
 
232
- > 📚 **Reference**:
233
- > - Paper: [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
232
+ > 📚 **Reference**:
233
+ > - Paper: [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
234
234
  > - Code: [kbeta](https://github.com/sck-at-ucy/kbeta)
235
235
 
236
236
  ---
@@ -258,7 +258,7 @@ settings:
258
258
  - factored: False # Can be true or false, quality should not degrade due to Simplified_AdEMAMix’s high tolerance to 1-bit factorization.
259
259
  ```
260
260
 
261
- > ✅ **Why it works**:
261
+ > ✅ **Why it works**:
262
262
  > - `Kourkoutas-β` handles beta2 values
263
263
  > - `Simplified_AdEMAMix` ensures responsiveness in small-batch noise
264
264
  > - `OrthoGrad` prevents overfitting without weight decay
@@ -267,9 +267,9 @@ settings:
267
267
 
268
268
  ## 📚 References
269
269
 
270
- 1. [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192)
271
- 2. [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
272
- 3. [The AdEMAMix Optimizer](https://arxiv.org/abs/2409.03137)
273
- 4. [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD](https://arxiv.org/abs/2502.02431)
274
- 5. [AdaMeM: Memory Efficient Momentum for Adafactor](https://openreview.net/forum?id=fZqMVTz7K5)
270
+ 1. [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192)
271
+ 2. [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
272
+ 3. [The AdEMAMix Optimizer](https://arxiv.org/abs/2409.03137)
273
+ 4. [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD](https://arxiv.org/abs/2502.02431)
274
+ 5. [AdaMeM: Memory Efficient Momentum for Adafactor](https://openreview.net/forum?id=fZqMVTz7K5)
275
275
  6. [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
@@ -21,7 +21,7 @@ This library integrates multiple state-of-the-art optimization techniques valida
21
21
  ### **Memory-Efficient Optimization (SMMF-inspired)**
22
22
  - **Paper**: [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
23
23
  - **Approach**: Uses rank-1 non-negative matrix factorization with reconstruction cycle (factor → reconstruct → update → factor)
24
- - **Innovation**:
24
+ - **Innovation**:
25
25
  - First moment split into **1-bit sign + absolute value**
26
26
  - Final storage: **four factored vectors + one 1-bit sign state**
27
27
  - Preserves Adam-like update quality with drastically reduced memory
@@ -79,7 +79,7 @@ This library integrates multiple state-of-the-art optimization techniques valida
79
79
 
80
80
  ## 🛠️ Comprehensive Feature Guide
81
81
 
82
- ### A. Universal Safe Features
82
+ ### A. Universal Safe Features
83
83
  *These features work with all optimizers and are generally safe to enable.*
84
84
 
85
85
  | Feature | Description | Recommended Usage | Performance Impact | Theoretical Basis | Compatibility |
@@ -134,7 +134,7 @@ This library integrates multiple state-of-the-art optimization techniques valida
134
134
  | `beta1` | 0.99 | Controls accumulator memory length:<br>• Small BS: **0.99–0.9999**<br>• Large BS: **0.9** |
135
135
  | `Grad α` | 100 | Most critical parameter:<br>• Inversely scales with batch size<br>• **100–10** for small BS (≤32)<br>• **1–0.1** for large BS (≥512) |
136
136
 
137
- > ⚠️ **Critical**: Requires **~100x smaller learning rate** than AdamW (e.g., 1e-6 vs 1e-4).
137
+ > ⚠️ **Critical**: Requires **~100x smaller learning rate** than AdamW (e.g., 1e-6 vs 1e-4).
138
138
  > For `Prodigy_Adv`, set `initial_d` to:
139
139
  > - **LoRA**: `1e-8`
140
140
  > - **Full FT**: `1e-10`
@@ -144,10 +144,10 @@ This library integrates multiple state-of-the-art optimization techniques valida
144
144
 
145
145
  #### Performance Validation
146
146
 
147
- **Small Batch Training (SDXL, BS=2, 1.8K steps)**
147
+ **Small Batch Training (SDXL, BS=2, 1.8K steps)**
148
148
  ![Training Comparison](https://github.com/user-attachments/assets/7eff0671-cc59-47fc-8b63-d5205456d649)
149
149
 
150
- - **🟢 Prodigy_Adv** (beta1=0.9, d0=1e-5): Final LR = 2.9e-4
150
+ - **🟢 Prodigy_Adv** (beta1=0.9, d0=1e-5): Final LR = 2.9e-4
151
151
  - **🔵 Prodigy_Adv + Simplified_AdEMAMix** (beta1=0.99, α=100, d0=1e-7): Final LR = 5.8e-6
152
152
 
153
153
  **Results**:
@@ -171,8 +171,8 @@ This library integrates multiple state-of-the-art optimization techniques valida
171
171
 
172
172
  Instead of using a fixed β₂ (e.g., 0.999 or 0.95), it **dynamically modulates β₂ per layer** based on a bounded *sunspike ratio*:
173
173
 
174
- - **During gradient bursts** → β₂ ↓ toward `Lower β₂` → faster reaction
175
- - **During calm phases** → β₂ ↑ toward `The Selected β₂` → stronger smoothing
174
+ - **During gradient bursts** → β₂ ↓ toward `Lower β₂` → faster reaction
175
+ - **During calm phases** → β₂ ↑ toward `The Selected β₂` → stronger smoothing
176
176
 
177
177
  This is especially effective for **noisy training, small batch sizes, and high learning rates**, where gradient norms shift abruptly due to noise or aggressive LR schedules.
178
178
 
@@ -189,17 +189,17 @@ This is especially effective for **noisy training, small batch sizes, and high l
189
189
 
190
190
  #### 📊 Performance Validation
191
191
 
192
- **ADAMW_ADV - full SDXL finetuning (aggressive LR: 3e-5) (BS=4, 2.5K steps)**
192
+ **ADAMW_ADV - full SDXL finetuning (aggressive LR: 3e-5) (BS=4, 2.5K steps)**
193
193
  <img width="1460" height="382" alt="image" src="https://github.com/user-attachments/assets/007f278a-fbac-4f3d-9cc7-274c3b959cdd" />
194
194
 
195
- - 🟣 Fixed `beta2=0.999`
196
- - 🟠 Auto K-beta
195
+ - 🟣 Fixed `beta2=0.999`
196
+ - 🟠 Auto K-beta
197
197
 
198
- **Observations:**
198
+ **Observations:**
199
199
  - K-beta is clearly better and more robust/stable for high LRs.
200
200
 
201
- > 📚 **Reference**:
202
- > - Paper: [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
201
+ > 📚 **Reference**:
202
+ > - Paper: [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
203
203
  > - Code: [kbeta](https://github.com/sck-at-ucy/kbeta)
204
204
 
205
205
  ---
@@ -227,7 +227,7 @@ settings:
227
227
  - factored: False # Can be true or false, quality should not degrade due to Simplified_AdEMAMix’s high tolerance to 1-bit factorization.
228
228
  ```
229
229
 
230
- > ✅ **Why it works**:
230
+ > ✅ **Why it works**:
231
231
  > - `Kourkoutas-β` handles beta2 values
232
232
  > - `Simplified_AdEMAMix` ensures responsiveness in small-batch noise
233
233
  > - `OrthoGrad` prevents overfitting without weight decay
@@ -236,9 +236,9 @@ settings:
236
236
 
237
237
  ## 📚 References
238
238
 
239
- 1. [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192)
240
- 2. [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
241
- 3. [The AdEMAMix Optimizer](https://arxiv.org/abs/2409.03137)
242
- 4. [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD](https://arxiv.org/abs/2502.02431)
243
- 5. [AdaMeM: Memory Efficient Momentum for Adafactor](https://openreview.net/forum?id=fZqMVTz7K5)
239
+ 1. [Revisiting BFloat16 Training](https://arxiv.org/abs/2010.06192)
240
+ 2. [SMMF: Square-Matricized Momentum Factorization](https://arxiv.org/abs/2412.08894)
241
+ 3. [The AdEMAMix Optimizer](https://arxiv.org/abs/2409.03137)
242
+ 4. [Connections between Schedule-Free Optimizers, AdEMAMix, and Accelerated SGD](https://arxiv.org/abs/2502.02431)
243
+ 5. [AdaMeM: Memory Efficient Momentum for Adafactor](https://openreview.net/forum?id=fZqMVTz7K5)
244
244
  6. [Kourkoutas-β: A Sunspike-Driven Adam Optimizer with Desert Flair](https://arxiv.org/abs/2508.12996)
@@ -20,4 +20,4 @@ __all__ = [
20
20
  "AdaMuon_adv",
21
21
  ]
22
22
 
23
- __version__ = "1.2.dev13"
23
+ __version__ = "2.dev1"
@@ -49,12 +49,6 @@ class AdamW_adv(torch.optim.Optimizer):
49
49
  before it is added to the fast momentum term (`update = mt + alpha * mt_slow`).
50
50
  A higher value increases the stabilizing influence of the slow
51
51
  momentum. (default: 5.0)
52
- t_alpha (Optional[int]): The number of steps for a linear warmup of the
53
- `alpha` parameter (only used when `use_AdEMAMix` is `True`). This is
54
- highly recommended to prevent instability at the beginning of training,
55
- as it gradually introduces the stabilizing slow momentum term. During
56
- the warmup, `alpha` ramps from 0 to its target value. If `None`,
57
- the scheduler is disabled. (default: None)
58
52
  kourkoutas_beta (bool): whether to enable the layer-wise dynamic β₂ logic.
59
53
  If `False`, the optimizer behaves as standard AdamW. (default: False)
60
54
  beta2_min (float): The minimum value for dynamic β₂, used during periods of
@@ -72,11 +66,7 @@ class AdamW_adv(torch.optim.Optimizer):
72
66
  k_logging (int): if > 0 and kourkoutas_beta=True, enables periodic console
73
67
  logging of Kourkoutas-β statistics (min, max, mean of `β₂` across layers)
74
68
  every logging steps. Useful for debugging and tuning. Set to 0 to disable
75
- logging (default: 0).
76
- layer_key_fn (Optional[Callable]): A function that takes a parameter `p`
77
- and returns a unique, hashable key representing its "layer" or "bucket".
78
- If `None`, parameters are bucketed by their memory ID (tensor-wise).
79
- (default: None)
69
+ logging (default: 0).
80
70
  nnmf_factor (bool): whether to use the factorization or disable it to use
81
71
  the uncompressed optimizer. (default: False)
82
72
  """
@@ -89,7 +79,7 @@ class AdamW_adv(torch.optim.Optimizer):
89
79
  eps: float = 1e-8,
90
80
  weight_decay: float = 0.0,
91
81
  use_bias_correction: bool = True,
92
- vector_reshape: bool = True,
82
+ vector_reshape: bool = False,
93
83
  stochastic_rounding: bool = True,
94
84
  use_atan2: bool = False,
95
85
  cautious_mask: bool = False,
@@ -98,15 +88,15 @@ class AdamW_adv(torch.optim.Optimizer):
98
88
  use_AdEMAMix: bool = False,
99
89
  beta3_ema: float = 0.9999,
100
90
  alpha: float = 5.0,
101
- t_alpha: int | None = None,
102
91
  kourkoutas_beta: bool = False,
103
92
  beta2_min: float = 0.9,
104
93
  ema_alpha: float = 0.95,
105
94
  tiny_spike: float = 1e-9,
106
95
  k_warmup_steps: int = 0,
107
96
  k_logging: int = 0,
108
- layer_key_fn: Optional[Callable] = None,
109
97
  nnmf_factor: bool = False,
98
+ # Compiled
99
+ compiled_optimizer: bool = False,
110
100
  ):
111
101
  if not (lr >= 0.0):
112
102
  raise ValueError(f"Learning-rate should be >= 0.0. Got {lr}")
@@ -116,7 +106,8 @@ class AdamW_adv(torch.optim.Optimizer):
116
106
  raise ValueError(f"Epsilon should be >= 0.0. Got {eps}")
117
107
  if not (weight_decay >= 0.0):
118
108
  raise ValueError(f"Weight-decay should be >= 0.0. Got {weight_decay}")
119
- if kourkoutas_beta and not (betas[1] > beta2_min): raise ValueError(f"For Kourkoutas-β, betas[1] (as beta2_max) must be > beta2_min. Got {betas[1]} and {beta2_min}")
109
+ if kourkoutas_beta and not (betas[1] > beta2_min):
110
+ raise ValueError(f"For Kourkoutas-β, betas[1] (as beta2_max) must be > beta2_min. Got {betas[1]} and {beta2_min}")
120
111
 
121
112
  if cautious_mask and grams_moment:
122
113
  print("Warning: cautious is incompatible with grams, Disabling cautious.")
@@ -126,9 +117,10 @@ class AdamW_adv(torch.optim.Optimizer):
126
117
  "lr": lr, "betas": betas, "eps": eps, "weight_decay": weight_decay,
127
118
  "vector_reshape": vector_reshape, "use_atan2": use_atan2,
128
119
  "orthogonal_gradient": orthogonal_gradient, "use_bias_correction": use_bias_correction,
129
- "beta3_ema": beta3_ema, "alpha": alpha, "t_alpha": t_alpha,
120
+ "beta3_ema": beta3_ema, "alpha": alpha,
130
121
  "kourkoutas_beta": kourkoutas_beta, "beta2_min": beta2_min, "ema_alpha": ema_alpha,
131
122
  "tiny_spike": tiny_spike, "k_warmup_steps": k_warmup_steps, "k_logging": k_logging,
123
+ "compiled_optimizer": compiled_optimizer,
132
124
  }
133
125
  self.stochastic_rounding = stochastic_rounding
134
126
  self.cautious_mask = cautious_mask
@@ -136,12 +128,20 @@ class AdamW_adv(torch.optim.Optimizer):
136
128
  self.use_AdEMAMix = use_AdEMAMix
137
129
  self.factored = nnmf_factor
138
130
  self.kourkoutas_beta = kourkoutas_beta
139
- self.layer_key_fn = layer_key_fn
131
+
140
132
  super().__init__(params, defaults)
141
133
 
134
+ self.init_step()
135
+
142
136
  if self.kourkoutas_beta:
143
137
  self.kourkoutas_helper = KourkoutasHelper(self)
144
138
 
139
+ self.global_step = 0
140
+
141
+ if compiled_optimizer:
142
+ torch._dynamo.config.cache_size_limit = 8192
143
+ self.compile(fullgraph=True)
144
+
145
145
  @property
146
146
  def supports_fused_back_pass(self):
147
147
  return True
@@ -154,29 +154,22 @@ class AdamW_adv(torch.optim.Optimizer):
154
154
  def supports_flat_params(self):
155
155
  return False
156
156
 
157
- @torch.no_grad()
158
- def step_parameter(self, p: torch.Tensor, group: dict, i: int | None = None):
159
- if p.grad is None:
160
- return
157
+ def init_step(self):
158
+ for group in self.param_groups:
159
+ for p in group['params']:
160
+ self.__init_state(p, group)
161
161
 
162
- grad = p.grad
163
- if grad.dtype != torch.float32 and self.factored:
164
- grad = grad.float()
165
- if group["orthogonal_gradient"]:
166
- grad = _orthogonalize_gradient(p, grad)
162
+ @torch.no_grad()
163
+ def __init_state(self, p, group):
167
164
  state = self.state[p]
168
165
 
169
- # State Initialization
170
- if 'step' not in state:
171
- state['step'] = 0
166
+ if len(state) == 0:
172
167
 
173
- should_factor = (
168
+ state['factored'] = (
174
169
  self.factored and
175
170
  not (len(p.shape) == 1 and not group['vector_reshape'])
176
171
  )
177
172
 
178
- state['factored'] = should_factor
179
-
180
173
  dtype = torch.float32 if self.factored else p.dtype
181
174
  device = p.device
182
175
 
@@ -186,18 +179,18 @@ class AdamW_adv(torch.optim.Optimizer):
186
179
 
187
180
  # First moment (m)
188
181
  if group['betas'][0] > 0:
189
- state['mu_m_nmf'] = torch.zeros(d1, device=device, dtype=dtype)
182
+ state['mu_m_nmf'] = torch.zeros(d1, device=device, dtype=dtype)
190
183
  state['mv_m_nmf'] = torch.zeros(d2, device=device, dtype=dtype)
191
184
  if not self.grams_moment:
192
185
  packed_d2 = (d2 + 7) // 8
193
186
  state['sign'] = torch.zeros((d1, packed_d2), dtype=torch.uint8, device=device)
194
187
  if self.use_AdEMAMix:
195
- state['mu_m_slow_nmf'] = torch.zeros(d1, device=p.device, dtype=dtype)
188
+ state['mu_m_slow_nmf'] = torch.zeros(d1, device=p.device, dtype=dtype)
196
189
  state['mv_m_slow_nmf'] = torch.zeros(d2, device=p.device, dtype=dtype)
197
190
  packed_d2 = (d2 + 7) // 8
198
191
  state['sign_slow'] = torch.zeros((d1, packed_d2), dtype=torch.uint8, device=p.device)
199
192
  # Second moment (v)
200
- state['mu_v_nmf'] = torch.zeros(d1, device=device, dtype=dtype)
193
+ state['mu_v_nmf'] = torch.zeros(d1, device=device, dtype=dtype)
201
194
  state['mv_v_nmf'] = torch.zeros(d2, device=device, dtype=dtype)
202
195
  else: # Fallback to standard AdamW for non-factored tensors
203
196
  if group['betas'][0] > 0:
@@ -206,37 +199,32 @@ class AdamW_adv(torch.optim.Optimizer):
206
199
  state['exp_avg_slow'] = torch.zeros_like(p, device=device, dtype=dtype)
207
200
  state['exp_avg_sq'] = torch.zeros_like(p, device=device, dtype=dtype)
208
201
 
202
+ @torch.no_grad()
203
+ def __step_parameter(self, p: torch.Tensor, group: dict, lr: torch.Tensor | float, bias_correction1: torch.Tensor | float, bias_correction2: torch.Tensor | float):
204
+ if p.grad is None:
205
+ return
206
+
207
+ grad = p.grad
208
+ if grad.dtype != torch.float32 and self.factored:
209
+ grad = grad.float()
210
+ if group["orthogonal_gradient"]:
211
+ grad = _orthogonalize_gradient(p, grad)
212
+ state = self.state[p]
213
+
214
+
209
215
  beta1, beta2 = group['betas']
210
216
 
211
- current_step = state['step']
212
217
  if group.get('kourkoutas_beta', False):
213
- # Call prepare_step() once at the beginning of the step for all params
214
- self.kourkoutas_helper.maybe_prepare_step(current_step)
215
218
  # Accumulate current grad's norm for the *next* step
216
219
  self.kourkoutas_helper.accumulate_gradient_sq_norm(p, grad)
217
220
  # Get the dynamic beta2 calculated in prepare_step()
218
- beta2 = self.kourkoutas_helper.get_beta2(p, group, current_step)
221
+ beta2 = self.kourkoutas_helper.get_beta2(p, group)
219
222
 
220
- step = state['step'] + 1
221
- if group['use_bias_correction']:
222
- bias_correction1 = 1.0 - beta1 ** step
223
- if group.get('kourkoutas_beta', False):
224
- bias_correction2 = 1.0 - group['betas'][1] ** step
225
- # Use beta2_max for bias correction
226
- else:
227
- bias_correction2 = 1.0 - beta2 ** step
228
- else:
229
- bias_correction1 = 1
230
- bias_correction2 = 1
231
- step_size = group['lr'] / bias_correction1
223
+ step_size = lr / bias_correction1
232
224
 
233
225
  if self.use_AdEMAMix:
234
226
  beta3_ema = group['beta3_ema']
235
227
  alpha = group['alpha']
236
- t_alpha = group['t_alpha']
237
- alpha_t = alpha
238
- if t_alpha is not None and t_alpha > 0 and step < t_alpha:
239
- alpha_t = min(step * alpha / t_alpha, alpha)
240
228
 
241
229
  if state['factored']:
242
230
  d1, d2 = state['effective_shape']
@@ -252,7 +240,7 @@ class AdamW_adv(torch.optim.Optimizer):
252
240
  # Update momentum in full-size
253
241
  mt.mul_(beta1).add_(grad_reshaped, alpha=1.0 - beta1)
254
242
  if self.grams_moment:
255
- mt.copy_(grad_reshaped.sign() * mt.abs())
243
+ mt = (grad_reshaped.sign().mul_(mt.abs()))
256
244
  elif self.cautious_mask:
257
245
  mask = (mt * grad_reshaped > 0).to(grad_reshaped.dtype)
258
246
  mask.div_(mask.mean().clamp_(min=1e-3))
@@ -272,9 +260,9 @@ class AdamW_adv(torch.optim.Optimizer):
272
260
 
273
261
  mt_slow.mul_(beta3_ema).add_(grad_reshaped, alpha=1.0 - beta3_ema)
274
262
  if beta1 > 0:
275
- update = torch.add(mt, mt_slow, alpha=alpha_t)
263
+ update = torch.add(mt, mt_slow, alpha=alpha)
276
264
  else:
277
- update = torch.add(grad_reshaped, mt_slow, alpha=alpha_t)
265
+ update = torch.add(grad_reshaped, mt_slow, alpha=alpha)
278
266
  else:
279
267
  update = mt.clone() if beta1 > 0 else grad_reshaped.clone()
280
268
  del grad_reshaped
@@ -310,7 +298,7 @@ class AdamW_adv(torch.optim.Optimizer):
310
298
  exp_avg = state['exp_avg']
311
299
  exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
312
300
  if self.grams_moment:
313
- exp_avg = grad.sign() * exp_avg.abs()
301
+ exp_avg = grad.sign().mul_(exp_avg.abs())
314
302
  elif self.cautious_mask:
315
303
  mask = (exp_avg * grad > 0).to(grad.dtype)
316
304
  mask.div_(mask.mean().clamp_(min=1e-3))
@@ -321,9 +309,9 @@ class AdamW_adv(torch.optim.Optimizer):
321
309
  exp_avg_slow = state['exp_avg_slow']
322
310
  exp_avg_slow.mul_(beta3_ema).add_(grad, alpha=1 - beta3_ema)
323
311
  if beta1 > 0:
324
- update = torch.add(exp_avg, exp_avg_slow, alpha=alpha_t)
312
+ update = torch.add(exp_avg, exp_avg_slow, alpha=alpha)
325
313
  else:
326
- update = torch.add(grad, exp_avg_slow, alpha=alpha_t)
314
+ update = torch.add(grad, exp_avg_slow, alpha=alpha)
327
315
  else:
328
316
  update = exp_avg.clone() if beta1 > 0 else grad.clone()
329
317
 
@@ -343,9 +331,9 @@ class AdamW_adv(torch.optim.Optimizer):
343
331
  # Decoupled weight decay
344
332
  if group["weight_decay"] != 0:
345
333
  if p.dtype == torch.bfloat16 and self.stochastic_rounding:
346
- add_stochastic_(p.data, p.data, alpha=-group["weight_decay"] * group["lr"])
334
+ add_stochastic_(p.data, p.data, alpha=-group["weight_decay"] * lr)
347
335
  else:
348
- p.data.add_(p.data, alpha=-group["weight_decay"] * group["lr"])
336
+ p.data.add_(p.data, alpha=-group["weight_decay"] * lr)
349
337
 
350
338
  if p.dtype == torch.bfloat16 and self.stochastic_rounding:
351
339
  add_stochastic_(p.data, -update)
@@ -353,7 +341,38 @@ class AdamW_adv(torch.optim.Optimizer):
353
341
  p.data.add_(-update)
354
342
  del update
355
343
 
356
- state['step'] += 1
344
+ @torch.no_grad()
345
+ def step_parameter(self, p: torch.Tensor, group: dict, i: int | None = None):
346
+ # if 'exp_avg_sq' not in self.state[p] and 'mu_v_nmf' not in self.state[p]:
347
+ # return
348
+
349
+ if self.global_step is None and 'step' in self.state[p]:
350
+ # For backward compatibility
351
+ self.global_step = self.state[p]['step']
352
+
353
+ if group['use_bias_correction']:
354
+ current_step = self.global_step + 1
355
+ beta1, beta2 = group['betas']
356
+ bias_correction1 = 1.0 - beta1 ** current_step
357
+ bias_correction2 = 1.0 - beta2 ** current_step
358
+ else:
359
+ bias_correction1 = 1.0
360
+ bias_correction2 = 1.0
361
+
362
+ if group.get('kourkoutas_beta', False):
363
+ # Prepare Kourkoutas-β once per step using the global step counter.
364
+ self.kourkoutas_helper.maybe_prepare_step(self.global_step)
365
+
366
+ if not group.get('compiled_optimizer', False):
367
+ self.__step_parameter(p, group, group['lr'], bias_correction1, bias_correction2)
368
+ else:
369
+ lr_tensor = torch.tensor(group['lr'], device=p.device)
370
+ bias_correction1_tensor = torch.tensor(bias_correction1, device=p.device)
371
+ bias_correction2_tensor = torch.tensor(bias_correction2, device=p.device)
372
+ self._compiled_step_parameter(p, group, lr_tensor, bias_correction1_tensor, bias_correction2_tensor)
373
+
374
+ def compile(self, *args, **kwargs):
375
+ self._compiled_step_parameter = torch.compile(self.__step_parameter, *args, **kwargs)
357
376
 
358
377
  @torch.no_grad()
359
378
  def step(self, closure=None):
@@ -367,4 +386,6 @@ class AdamW_adv(torch.optim.Optimizer):
367
386
  for i, p in enumerate(group['params']):
368
387
  self.step_parameter(p, group, i)
369
388
 
389
+ self.global_step += 1
390
+
370
391
  return loss