active-vision 0.0.5__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,10 +1,11 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: active-vision
3
- Version: 0.0.5
3
+ Version: 0.1.1
4
4
  Summary: Active learning for edge vision.
5
5
  Requires-Python: >=3.10
6
6
  Description-Content-Type: text/markdown
7
7
  License-File: LICENSE
8
+ Requires-Dist: accelerate>=1.2.1
8
9
  Requires-Dist: datasets>=3.2.0
9
10
  Requires-Dist: fastai>=2.7.18
10
11
  Requires-Dist: gradio>=5.12.0
@@ -13,6 +14,8 @@ Requires-Dist: ipywidgets>=8.1.5
13
14
  Requires-Dist: loguru>=0.7.3
14
15
  Requires-Dist: seaborn>=0.13.2
15
16
  Requires-Dist: timm>=1.0.13
17
+ Requires-Dist: transformers>=4.48.0
18
+ Requires-Dist: xinfer>=0.3.2
16
19
 
17
20
  ![Python Version](https://img.shields.io/badge/python-3.10%2B-blue?style=for-the-badge)
18
21
  ![License](https://img.shields.io/badge/License-Apache%202.0-green.svg?style=for-the-badge)
@@ -68,17 +71,18 @@ cd active-vision
68
71
  pip install -e .
69
72
  ```
70
73
 
71
- I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
72
-
73
- If you're using uv:
74
-
75
- ```bash
76
- uv venv
77
- uv sync
78
- ```
79
- Once the virtual environment is created, you can install the package using pip.
80
74
 
81
75
  > [!TIP]
76
+ > I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
77
+ >
78
+ > If you're using uv:
79
+ >
80
+ > ```bash
81
+ > uv venv
82
+ > uv sync
83
+ > ```
84
+ > Once the virtual environment is created, you can install the package using pip.
85
+ >
82
86
  > If you're using uv add a `uv` before the pip install command to install into your virtual environment. Eg:
83
87
  > ```bash
84
88
  > uv pip install active-vision
@@ -117,12 +121,16 @@ pred_df = al.predict(filepaths)
117
121
  # Sample low confidence predictions from unlabeled set
118
122
  uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
119
123
 
120
- # Launch a Gradio UI to label the low confidence samples
124
+ # Launch a Gradio UI to label the low confidence samples, save the labeled samples to a file
121
125
  al.label(uncertain_df, output_filename="uncertain")
122
126
  ```
123
127
 
124
128
  ![Gradio UI](https://raw.githubusercontent.com/dnth/active-vision/main/assets/labeling_ui.png)
125
129
 
130
+ In the UI, you can optionally run zero-shot inference on the image. This will use a VLM to predict the label of the image. There are a dozen VLM models as supported in the [x.infer project](https://github.com/dnth/x.infer).
131
+
132
+ ![Zero-Shot Inference](https://raw.githubusercontent.com/dnth/active-vision/main/assets/zero_shot_ui.png)
133
+
126
134
  Once complete, the labeled samples will be save into a new df.
127
135
  We can now add the newly labeled data to the training set.
128
136
 
@@ -167,12 +175,12 @@ The active learning loop is a iterative process and can keep going until you hit
167
175
  For this dataset,I decided to stop the active learning loop at 275 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard.
168
176
 
169
177
 
170
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
171
- |-----------------|---------------------|--------------|----------------------|----------------|--------|
172
- | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
173
- | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
174
- | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
175
- | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
178
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
179
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |------------------------------------------------------------------------------------- |
180
+ | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
181
+ | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
182
+ | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
183
+ | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
176
184
 
177
185
  ### Dog Food
178
186
  - num classes: 2
@@ -182,11 +190,11 @@ To start the active learning loop, I labeled 20 images (10 images from each clas
182
190
 
183
191
  I decided to stop the active learning loop at 160 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
184
192
 
185
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
186
- |-----------------|---------------------|--------------|-------|----------------|--------|
187
- | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
188
- | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
189
- | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
193
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
194
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |--------------------------------------------------------------------------------------------- |
195
+ | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
196
+ | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
197
+ | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
190
198
 
191
199
  ### Oxford-IIIT Pet
192
200
  - num classes: 37
@@ -196,13 +204,27 @@ To start the active learning loop, I labeled 370 images (10 images from each cla
196
204
 
197
205
  I decided to stop the active learning loop at 612 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
198
206
 
199
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
200
- |-----------------|---------------------|--------------|-------|----------------|--------|
201
- | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
202
- | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
203
- | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
207
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
208
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |------------------------------------------------------------------------------------------------- |
209
+ | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
210
+ | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
211
+ | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
212
+
213
+ ### Eurosat RGB
214
+ - num classes: 10
215
+ - num images: 16100
216
+
217
+ To start the active learning loop, I labeled 100 images (10 images from each class) and iteratively labeled the most informative images until I hit 1188 labeled images.
218
+
219
+ I decided to stop the active learning loop at 1188 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
204
220
 
205
221
 
222
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
223
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |-------------------------------------------------------------------------------------------- |
224
+ | 16100 | 98.55% | 6 | vit-base-patch16-224 | ❌ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/03_train_all.ipynb) |
225
+ | 1188 | 94.59% | 6 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/02_train.ipynb) |
226
+ | 1188 | 96.57% | 13 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/02_train.ipynb) |
227
+
206
228
 
207
229
  ## ➿ Workflow
208
230
  This section describes a more detailed workflow for active learning. There are two workflows for active learning that we can use depending on the availability of labeled data.
@@ -270,55 +292,21 @@ graph TD
270
292
 
271
293
 
272
294
 
273
- <!-- ## Methodology
274
- To test out the workflows we will use the [imagenette dataset](https://huggingface.co/datasets/frgfm/imagenette). But this will be applicable to any dataset.
275
-
276
- Imagenette is a subset of the ImageNet dataset with 10 classes. We will use this dataset to test out the workflows. Additionally, Imagenette has an existing leaderboard which we can use to evaluate the performance of the models.
277
-
278
- ### Step 1: Download the dataset
279
- Download the imagenette dataset. The imagenette dataset has a train and validation split. Since the leaderboard is based on the validation set, we will evalutate the performance of our model on the validation set to make it easier to compare to the leaderboard.
280
-
281
- We will treat the imagenette train set as a unlabeled set and iteratively sample from it while monitoring the performance on the validation set. Ideally we will be able to get to a point where the performance on the validation set is close to the leaderboard with minimal number of labeled images.
295
+ ## 🧱 Sampling Approaches
282
296
 
283
- I've processed the imagenette dataset and uploaded it to the hub. You can download it from [here](https://huggingface.co/datasets/dnth/active-learning-imagenette).
297
+ Recommendation 1:
298
+ - 10% randomly selected from unlabeled items.
299
+ - 80% selected from the lowest confidence items.
300
+ - 10% selected as outliers.
284
301
 
285
- To load the dataset, you can use the following code:
286
- ```python
287
- from datasets import load_dataset
288
-
289
- unlabeled_dataset = load_dataset("dnth/active-learning-imagenette", "unlabeled")
290
- eval_dataset = load_dataset("dnth/active-learning-imagenette", "evaluation")
291
- ```
302
+ Recommendation 2:
292
303
 
293
- ### Step 2: Initial Sampling
294
- Label an initial dataset of 10 images from each class. This will give us a small proxy dataset to train our model on. The sampling will be done randomly. There are more intelligent sampling strategies but we will start with random sampling.
304
+ - Sample 100 predicted images at 10–20% confidence.
305
+ - Sample 100 predicted images at 20–30% confidence.
306
+ - Sample 100 predicted images at 30–40% confidence, and so on.
295
307
 
296
- ### Step 3: Training the proxy model
297
- Train a proxy model on the initial dataset. The proxy model will be a small model that is easy to train and deploy. We will use the fastai framework to train the model. We will use the resnet18 architecture as a starting point. Once training is complete, compute the accuracy of the proxy model on the validation set and compare it to the leaderboard.
298
308
 
299
- > [!TIP]
300
- > With the initial model we got 91.24% accuracy on the validation set. See the [notebook](./nbs/01_initial_sampling.ipynb) for more details.
301
- > | Train Epochs | Number of Images | Validation Accuracy | Source |
302
- > |--------------|-----------------|----------------------|------------------|
303
- > | 10 | 100 | 91.24% | Initial sampling [notebook](./nbs/01_initial_sampling.ipynb) |
304
- > | 80 | 9469 | 94.90% | fastai |
305
- > | 200 | 9469 | 95.11% | fastai |
309
+ Uncertainty and diversity sampling are most effective when combined. For instance, you could first sample the most uncertain items using an uncertainty sampling method, then apply a diversity sampling method such as clustering to select a diverse set from the uncertain items.
306
310
 
311
+ Ultimately, the right ratios can depend on the specific task and dataset.
307
312
 
308
-
309
- ### Step 4: Inference on the unlabeled dataset
310
- Run inference on the unlabeled dataset (the remaining imagenette train set) and evaluate the performance of the proxy model.
311
-
312
- ### Step 5: Active learning
313
- Use active learning to select the most informative images to label from the unlabeled set. Pick the top 10 images from the unlabeled set that the proxy model is least confident about and label them.
314
-
315
- ### Step 6: Repeat
316
- Repeat step 3 - 5 until the performance on the validation set is close to the leaderboard. Note the number of labeled images vs the performance on the validation set. Ideally we want to get to a point where the performance on the validation set is close to the leaderboard with minimal number of labeled images.
317
-
318
-
319
- After the first iteration we got 94.57% accuracy on the validation set. See the [notebook](./nbs/03_retrain_model.ipynb) for more details.
320
-
321
- > [!TIP]
322
- > | Train Epochs | Number of Images | Validation Accuracy | Source |
323
- > |--------------|-----------------|----------------------|------------------|
324
- > | 10 | 200 | 94.57% | First relabeling [notebook](./nbs/03_retrain_model.ipynb) | -->
@@ -52,17 +52,18 @@ cd active-vision
52
52
  pip install -e .
53
53
  ```
54
54
 
55
- I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
56
-
57
- If you're using uv:
58
-
59
- ```bash
60
- uv venv
61
- uv sync
62
- ```
63
- Once the virtual environment is created, you can install the package using pip.
64
55
 
65
56
  > [!TIP]
57
+ > I recommend using [uv](https://docs.astral.sh/uv/) to set up a virtual environment and install the package. You can also use other virtual env of your choice.
58
+ >
59
+ > If you're using uv:
60
+ >
61
+ > ```bash
62
+ > uv venv
63
+ > uv sync
64
+ > ```
65
+ > Once the virtual environment is created, you can install the package using pip.
66
+ >
66
67
  > If you're using uv add a `uv` before the pip install command to install into your virtual environment. Eg:
67
68
  > ```bash
68
69
  > uv pip install active-vision
@@ -101,12 +102,16 @@ pred_df = al.predict(filepaths)
101
102
  # Sample low confidence predictions from unlabeled set
102
103
  uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
103
104
 
104
- # Launch a Gradio UI to label the low confidence samples
105
+ # Launch a Gradio UI to label the low confidence samples, save the labeled samples to a file
105
106
  al.label(uncertain_df, output_filename="uncertain")
106
107
  ```
107
108
 
108
109
  ![Gradio UI](https://raw.githubusercontent.com/dnth/active-vision/main/assets/labeling_ui.png)
109
110
 
111
+ In the UI, you can optionally run zero-shot inference on the image. This will use a VLM to predict the label of the image. There are a dozen VLM models as supported in the [x.infer project](https://github.com/dnth/x.infer).
112
+
113
+ ![Zero-Shot Inference](https://raw.githubusercontent.com/dnth/active-vision/main/assets/zero_shot_ui.png)
114
+
110
115
  Once complete, the labeled samples will be save into a new df.
111
116
  We can now add the newly labeled data to the training set.
112
117
 
@@ -151,12 +156,12 @@ The active learning loop is a iterative process and can keep going until you hit
151
156
  For this dataset,I decided to stop the active learning loop at 275 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard.
152
157
 
153
158
 
154
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
155
- |-----------------|---------------------|--------------|----------------------|----------------|--------|
156
- | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
157
- | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
158
- | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
159
- | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
159
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
160
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |------------------------------------------------------------------------------------- |
161
+ | 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
162
+ | 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
163
+ | 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
164
+ | 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
160
165
 
161
166
  ### Dog Food
162
167
  - num classes: 2
@@ -166,11 +171,11 @@ To start the active learning loop, I labeled 20 images (10 images from each clas
166
171
 
167
172
  I decided to stop the active learning loop at 160 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
168
173
 
169
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
170
- |-----------------|---------------------|--------------|-------|----------------|--------|
171
- | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
172
- | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
173
- | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
174
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
175
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |--------------------------------------------------------------------------------------------- |
176
+ | 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
177
+ | 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
178
+ | 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
174
179
 
175
180
  ### Oxford-IIIT Pet
176
181
  - num classes: 37
@@ -180,13 +185,27 @@ To start the active learning loop, I labeled 370 images (10 images from each cla
180
185
 
181
186
  I decided to stop the active learning loop at 612 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
182
187
 
183
- | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
184
- |-----------------|---------------------|--------------|-------|----------------|--------|
185
- | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
186
- | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
187
- | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
188
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
189
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |------------------------------------------------------------------------------------------------- |
190
+ | 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
191
+ | 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
192
+ | 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
193
+
194
+ ### Eurosat RGB
195
+ - num classes: 10
196
+ - num images: 16100
197
+
198
+ To start the active learning loop, I labeled 100 images (10 images from each class) and iteratively labeled the most informative images until I hit 1188 labeled images.
199
+
200
+ I decided to stop the active learning loop at 1188 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
188
201
 
189
202
 
203
+ | #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
204
+ |----------------: |--------------------: |-------------: |---------------------- |:---------------: |-------------------------------------------------------------------------------------------- |
205
+ | 16100 | 98.55% | 6 | vit-base-patch16-224 | ❌ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/03_train_all.ipynb) |
206
+ | 1188 | 94.59% | 6 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/02_train.ipynb) |
207
+ | 1188 | 96.57% | 13 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/eurosat_rgb/02_train.ipynb) |
208
+
190
209
 
191
210
  ## ➿ Workflow
192
211
  This section describes a more detailed workflow for active learning. There are two workflows for active learning that we can use depending on the availability of labeled data.
@@ -254,55 +273,21 @@ graph TD
254
273
 
255
274
 
256
275
 
257
- <!-- ## Methodology
258
- To test out the workflows we will use the [imagenette dataset](https://huggingface.co/datasets/frgfm/imagenette). But this will be applicable to any dataset.
259
-
260
- Imagenette is a subset of the ImageNet dataset with 10 classes. We will use this dataset to test out the workflows. Additionally, Imagenette has an existing leaderboard which we can use to evaluate the performance of the models.
261
-
262
- ### Step 1: Download the dataset
263
- Download the imagenette dataset. The imagenette dataset has a train and validation split. Since the leaderboard is based on the validation set, we will evalutate the performance of our model on the validation set to make it easier to compare to the leaderboard.
264
-
265
- We will treat the imagenette train set as a unlabeled set and iteratively sample from it while monitoring the performance on the validation set. Ideally we will be able to get to a point where the performance on the validation set is close to the leaderboard with minimal number of labeled images.
276
+ ## 🧱 Sampling Approaches
266
277
 
267
- I've processed the imagenette dataset and uploaded it to the hub. You can download it from [here](https://huggingface.co/datasets/dnth/active-learning-imagenette).
278
+ Recommendation 1:
279
+ - 10% randomly selected from unlabeled items.
280
+ - 80% selected from the lowest confidence items.
281
+ - 10% selected as outliers.
268
282
 
269
- To load the dataset, you can use the following code:
270
- ```python
271
- from datasets import load_dataset
272
-
273
- unlabeled_dataset = load_dataset("dnth/active-learning-imagenette", "unlabeled")
274
- eval_dataset = load_dataset("dnth/active-learning-imagenette", "evaluation")
275
- ```
283
+ Recommendation 2:
276
284
 
277
- ### Step 2: Initial Sampling
278
- Label an initial dataset of 10 images from each class. This will give us a small proxy dataset to train our model on. The sampling will be done randomly. There are more intelligent sampling strategies but we will start with random sampling.
285
+ - Sample 100 predicted images at 10–20% confidence.
286
+ - Sample 100 predicted images at 20–30% confidence.
287
+ - Sample 100 predicted images at 30–40% confidence, and so on.
279
288
 
280
- ### Step 3: Training the proxy model
281
- Train a proxy model on the initial dataset. The proxy model will be a small model that is easy to train and deploy. We will use the fastai framework to train the model. We will use the resnet18 architecture as a starting point. Once training is complete, compute the accuracy of the proxy model on the validation set and compare it to the leaderboard.
282
289
 
283
- > [!TIP]
284
- > With the initial model we got 91.24% accuracy on the validation set. See the [notebook](./nbs/01_initial_sampling.ipynb) for more details.
285
- > | Train Epochs | Number of Images | Validation Accuracy | Source |
286
- > |--------------|-----------------|----------------------|------------------|
287
- > | 10 | 100 | 91.24% | Initial sampling [notebook](./nbs/01_initial_sampling.ipynb) |
288
- > | 80 | 9469 | 94.90% | fastai |
289
- > | 200 | 9469 | 95.11% | fastai |
290
+ Uncertainty and diversity sampling are most effective when combined. For instance, you could first sample the most uncertain items using an uncertainty sampling method, then apply a diversity sampling method such as clustering to select a diverse set from the uncertain items.
290
291
 
292
+ Ultimately, the right ratios can depend on the specific task and dataset.
291
293
 
292
-
293
- ### Step 4: Inference on the unlabeled dataset
294
- Run inference on the unlabeled dataset (the remaining imagenette train set) and evaluate the performance of the proxy model.
295
-
296
- ### Step 5: Active learning
297
- Use active learning to select the most informative images to label from the unlabeled set. Pick the top 10 images from the unlabeled set that the proxy model is least confident about and label them.
298
-
299
- ### Step 6: Repeat
300
- Repeat step 3 - 5 until the performance on the validation set is close to the leaderboard. Note the number of labeled images vs the performance on the validation set. Ideally we want to get to a point where the performance on the validation set is close to the leaderboard with minimal number of labeled images.
301
-
302
-
303
- After the first iteration we got 94.57% accuracy on the validation set. See the [notebook](./nbs/03_retrain_model.ipynb) for more details.
304
-
305
- > [!TIP]
306
- > | Train Epochs | Number of Images | Validation Accuracy | Source |
307
- > |--------------|-----------------|----------------------|------------------|
308
- > | 10 | 200 | 94.57% | First relabeling [notebook](./nbs/03_retrain_model.ipynb) | -->
@@ -1,10 +1,11 @@
1
1
  [project]
2
2
  name = "active-vision"
3
- version = "0.0.5"
3
+ version = "0.1.1"
4
4
  description = "Active learning for edge vision."
5
5
  readme = "README.md"
6
6
  requires-python = ">=3.10"
7
7
  dependencies = [
8
+ "accelerate>=1.2.1",
8
9
  "datasets>=3.2.0",
9
10
  "fastai>=2.7.18",
10
11
  "gradio>=5.12.0",
@@ -13,4 +14,6 @@ dependencies = [
13
14
  "loguru>=0.7.3",
14
15
  "seaborn>=0.13.2",
15
16
  "timm>=1.0.13",
17
+ "transformers>=4.48.0",
18
+ "xinfer>=0.3.2",
16
19
  ]
@@ -0,0 +1,3 @@
1
+ __version__ = "0.1.1"
2
+
3
+ from .core import *