active-vision 0.0.4__tar.gz → 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {active_vision-0.0.4 → active_vision-0.1.0}/PKG-INFO +111 -19
- {active_vision-0.0.4 → active_vision-0.1.0}/README.md +107 -18
- {active_vision-0.0.4 → active_vision-0.1.0}/pyproject.toml +4 -1
- active_vision-0.1.0/src/active_vision/__init__.py +3 -0
- active_vision-0.1.0/src/active_vision/core.py +572 -0
- {active_vision-0.0.4 → active_vision-0.1.0}/src/active_vision.egg-info/PKG-INFO +111 -19
- {active_vision-0.0.4 → active_vision-0.1.0}/src/active_vision.egg-info/requires.txt +3 -0
- active_vision-0.0.4/src/active_vision/__init__.py +0 -3
- active_vision-0.0.4/src/active_vision/core.py +0 -291
- {active_vision-0.0.4 → active_vision-0.1.0}/LICENSE +0 -0
- {active_vision-0.0.4 → active_vision-0.1.0}/setup.cfg +0 -0
- {active_vision-0.0.4 → active_vision-0.1.0}/src/active_vision.egg-info/SOURCES.txt +0 -0
- {active_vision-0.0.4 → active_vision-0.1.0}/src/active_vision.egg-info/dependency_links.txt +0 -0
- {active_vision-0.0.4 → active_vision-0.1.0}/src/active_vision.egg-info/top_level.txt +0 -0
@@ -1,10 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: active-vision
|
3
|
-
Version: 0.0
|
3
|
+
Version: 0.1.0
|
4
4
|
Summary: Active learning for edge vision.
|
5
5
|
Requires-Python: >=3.10
|
6
6
|
Description-Content-Type: text/markdown
|
7
7
|
License-File: LICENSE
|
8
|
+
Requires-Dist: accelerate>=1.2.1
|
8
9
|
Requires-Dist: datasets>=3.2.0
|
9
10
|
Requires-Dist: fastai>=2.7.18
|
10
11
|
Requires-Dist: gradio>=5.12.0
|
@@ -13,6 +14,8 @@ Requires-Dist: ipywidgets>=8.1.5
|
|
13
14
|
Requires-Dist: loguru>=0.7.3
|
14
15
|
Requires-Dist: seaborn>=0.13.2
|
15
16
|
Requires-Dist: timm>=1.0.13
|
17
|
+
Requires-Dist: transformers>=4.48.0
|
18
|
+
Requires-Dist: xinfer>=0.3.2
|
16
19
|
|
17
20
|

|
18
21
|

|
@@ -23,17 +26,38 @@ Requires-Dist: timm>=1.0.13
|
|
23
26
|
<img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/logo.png" alt="active-vision">
|
24
27
|
</p>
|
25
28
|
|
26
|
-
|
29
|
+
The goal of this project is to create a framework for the active learning loop for computer vision. The diagram below shows a general workflow of how the active learning loop works.
|
27
30
|
|
28
|
-
|
31
|
+
<p align="center">
|
32
|
+
<img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/data_flywheel.gif" alt="active-vision", width="700">
|
33
|
+
</p>
|
29
34
|
|
30
|
-
Supported tasks:
|
35
|
+
### Supported tasks:
|
31
36
|
- [X] Image classification
|
32
37
|
- [ ] Object detection
|
33
38
|
- [ ] Segmentation
|
34
39
|
|
40
|
+
### Supported models:
|
41
|
+
- [X] Fastai models
|
42
|
+
- [X] Torchvision models
|
43
|
+
- [X] Timm models
|
44
|
+
- [ ] Hugging Face models
|
45
|
+
|
46
|
+
### Supported Active Learning Strategies:
|
47
|
+
|
48
|
+
Uncertainty Sampling:
|
49
|
+
- [X] Least confidence
|
50
|
+
- [ ] Margin of confidence
|
51
|
+
- [ ] Ratio of confidence
|
52
|
+
- [ ] Entropy
|
35
53
|
|
36
|
-
|
54
|
+
Diverse Sampling:
|
55
|
+
- [X] Random sampling
|
56
|
+
- [ ] Model-based outlier
|
57
|
+
- [ ] Cluster-based
|
58
|
+
- [ ] Representative
|
59
|
+
|
60
|
+
## 📦 Installation
|
37
61
|
|
38
62
|
Get a release from PyPI
|
39
63
|
```bash
|
@@ -58,18 +82,18 @@ uv sync
|
|
58
82
|
Once the virtual environment is created, you can install the package using pip.
|
59
83
|
|
60
84
|
> [!TIP]
|
61
|
-
> If you're using uv add a uv before the pip install command to install into your virtual environment. Eg:
|
85
|
+
> If you're using uv add a `uv` before the pip install command to install into your virtual environment. Eg:
|
62
86
|
> ```bash
|
63
87
|
> uv pip install active-vision
|
64
88
|
> ```
|
65
89
|
|
66
|
-
## Usage
|
90
|
+
## 🛠️ Usage
|
67
91
|
See the [notebook](./nbs/04_relabel_loop.ipynb) for a complete example.
|
68
92
|
|
69
|
-
Be sure to prepared 3
|
70
|
-
- [
|
71
|
-
- [
|
72
|
-
- [
|
93
|
+
Be sure to prepared 3 subsets of the dataset:
|
94
|
+
- [Initial samples](./nbs/initial_samples.parquet): A dataframe of a labeled images to train an initial model. If you don't have any labeled data, you can label some images yourself.
|
95
|
+
- [Unlabeled samples](./nbs/unlabeled_samples.parquet): A dataframe of *unlabeled* images. We will continuously sample from this set using active learning strategies.
|
96
|
+
- [Evaluation samples](./nbs/evaluation_samples.parquet): A dataframe of *labeled* images. We will use this set to evaluate the performance of the model. This is the test set, DO NOT use it for active learning. Split this out in the beginning.
|
73
97
|
|
74
98
|
As a toy example I created the above 3 datasets from the imagenette dataset.
|
75
99
|
|
@@ -100,7 +124,7 @@ uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
|
|
100
124
|
al.label(uncertain_df, output_filename="uncertain")
|
101
125
|
```
|
102
126
|
|
103
|
-

|
104
128
|
|
105
129
|
Once complete, the labeled samples will be save into a new df.
|
106
130
|
We can now add the newly labeled data to the training set.
|
@@ -119,11 +143,77 @@ Repeat the process until the model is good enough. Use the dataset to train a la
|
|
119
143
|
>
|
120
144
|
> But using the dataset of 200+ images, I trained a more capable model (convnext_small_in22k) and got 99.3% accuracy on the evaluation set. See the [notebook](./nbs/05_retrain_larger.ipynb) for more details.
|
121
145
|
|
122
|
-
|
123
|
-
|
146
|
+
|
147
|
+
## 📊 Benchmarks
|
148
|
+
This section contains the benchmarks I ran using the active learning loop on various datasets.
|
149
|
+
|
150
|
+
Column description:
|
151
|
+
- `#Labeled Images`: The number of labeled images used to train the model.
|
152
|
+
- `Evaluation Accuracy`: The accuracy of the model on the evaluation set.
|
153
|
+
- `Train Epochs`: The number of epochs used to train the model.
|
154
|
+
- `Model`: The model used to train.
|
155
|
+
- `Active Learning`: Whether active learning was used to train the model.
|
156
|
+
- `Source`: The source of the results.
|
157
|
+
|
158
|
+
### Imagenette
|
159
|
+
- num classes: 10
|
160
|
+
- num images: 9469
|
161
|
+
|
162
|
+
To start the active learning loop, I labeled 100 images (10 images from each class) and iteratively relabeled the most informative images until I hit 275 labeled images.
|
163
|
+
|
164
|
+
The active learning loop is a iterative process and can keep going until you hit a stopping point. You can decide your own stopping point based on your use case. It could be:
|
165
|
+
- You ran out of data to label.
|
166
|
+
- You hit a performance goal.
|
167
|
+
- You hit a budget.
|
168
|
+
- Other criteria.
|
169
|
+
|
170
|
+
For this dataset,I decided to stop the active learning loop at 275 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard.
|
171
|
+
|
172
|
+
|
173
|
+
| #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
|
174
|
+
|-----------------|---------------------|--------------|----------------------|----------------|--------|
|
175
|
+
| 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
|
176
|
+
| 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
|
177
|
+
| 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
|
178
|
+
| 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
|
179
|
+
|
180
|
+
### Dog Food
|
181
|
+
- num classes: 2
|
182
|
+
- num images: 2100
|
183
|
+
|
184
|
+
To start the active learning loop, I labeled 20 images (10 images from each class) and iteratively relabeled the most informative images until I hit 160 labeled images.
|
185
|
+
|
186
|
+
I decided to stop the active learning loop at 160 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
|
187
|
+
|
188
|
+
| #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
|
189
|
+
|-----------------|---------------------|--------------|-------|----------------|--------|
|
190
|
+
| 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
|
191
|
+
| 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
|
192
|
+
| 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
|
193
|
+
|
194
|
+
### Oxford-IIIT Pet
|
195
|
+
- num classes: 37
|
196
|
+
- num images: 3680
|
197
|
+
|
198
|
+
To start the active learning loop, I labeled 370 images (10 images from each class) and iteratively relabeled the most informative images until I hit 612 labeled images.
|
199
|
+
|
200
|
+
I decided to stop the active learning loop at 612 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
|
201
|
+
|
202
|
+
| #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
|
203
|
+
|-----------------|---------------------|--------------|-------|----------------|--------|
|
204
|
+
| 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
|
205
|
+
| 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
|
206
|
+
| 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
|
207
|
+
|
208
|
+
|
209
|
+
|
210
|
+
## ➿ Workflow
|
211
|
+
This section describes a more detailed workflow for active learning. There are two workflows for active learning that we can use depending on the availability of labeled data.
|
124
212
|
|
125
213
|
### With unlabeled data
|
126
|
-
If we have no labeled data,
|
214
|
+
If we have no labeled data, the goal of the active learning loop is to build a resonably good labeled dataset to train a larger model.
|
215
|
+
|
216
|
+
Steps:
|
127
217
|
|
128
218
|
1. Load a small proxy model.
|
129
219
|
2. Label an initial dataset. If there is none, you'll have to label some images.
|
@@ -155,24 +245,25 @@ graph TD
|
|
155
245
|
```
|
156
246
|
|
157
247
|
### With labeled data
|
158
|
-
If we have a labeled dataset,
|
248
|
+
If we already have a labeled dataset, the goal of the active learning loop is to iteratively improve the dataset and the model by fixing the most important label errors.
|
249
|
+
|
250
|
+
Steps:
|
159
251
|
|
160
252
|
1. Load a small proxy model.
|
161
253
|
2. Train the proxy model on the labeled dataset.
|
162
254
|
3. Run inference on the entire labeled dataset.
|
163
|
-
4. Get the most
|
255
|
+
4. Get the most impactful label errors with active learning.
|
164
256
|
5. Fix the label errors.
|
165
257
|
6. Repeat steps 2-5 until the dataset is good enough.
|
166
258
|
7. Save the labeled dataset.
|
167
259
|
8. Train a larger model on the saved labeled dataset.
|
168
260
|
|
169
261
|
|
170
|
-
|
171
262
|
```mermaid
|
172
263
|
graph TD
|
173
264
|
A[Load a small proxy model] --> B[Train proxy model on labeled dataset]
|
174
265
|
B --> C[Run inference on labeled dataset]
|
175
|
-
C --> D[Get
|
266
|
+
C --> D[Get label errors using active learning]
|
176
267
|
D --> E[Fix label errors]
|
177
268
|
E --> F{Dataset good enough?}
|
178
269
|
F -->|No| B
|
@@ -181,6 +272,7 @@ graph TD
|
|
181
272
|
```
|
182
273
|
|
183
274
|
|
275
|
+
|
184
276
|
<!-- ## Methodology
|
185
277
|
To test out the workflows we will use the [imagenette dataset](https://huggingface.co/datasets/frgfm/imagenette). But this will be applicable to any dataset.
|
186
278
|
|
@@ -7,17 +7,38 @@
|
|
7
7
|
<img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/logo.png" alt="active-vision">
|
8
8
|
</p>
|
9
9
|
|
10
|
-
|
10
|
+
The goal of this project is to create a framework for the active learning loop for computer vision. The diagram below shows a general workflow of how the active learning loop works.
|
11
11
|
|
12
|
-
|
12
|
+
<p align="center">
|
13
|
+
<img src="https://raw.githubusercontent.com/dnth/active-vision/main/assets/data_flywheel.gif" alt="active-vision", width="700">
|
14
|
+
</p>
|
13
15
|
|
14
|
-
Supported tasks:
|
16
|
+
### Supported tasks:
|
15
17
|
- [X] Image classification
|
16
18
|
- [ ] Object detection
|
17
19
|
- [ ] Segmentation
|
18
20
|
|
21
|
+
### Supported models:
|
22
|
+
- [X] Fastai models
|
23
|
+
- [X] Torchvision models
|
24
|
+
- [X] Timm models
|
25
|
+
- [ ] Hugging Face models
|
26
|
+
|
27
|
+
### Supported Active Learning Strategies:
|
28
|
+
|
29
|
+
Uncertainty Sampling:
|
30
|
+
- [X] Least confidence
|
31
|
+
- [ ] Margin of confidence
|
32
|
+
- [ ] Ratio of confidence
|
33
|
+
- [ ] Entropy
|
19
34
|
|
20
|
-
|
35
|
+
Diverse Sampling:
|
36
|
+
- [X] Random sampling
|
37
|
+
- [ ] Model-based outlier
|
38
|
+
- [ ] Cluster-based
|
39
|
+
- [ ] Representative
|
40
|
+
|
41
|
+
## 📦 Installation
|
21
42
|
|
22
43
|
Get a release from PyPI
|
23
44
|
```bash
|
@@ -42,18 +63,18 @@ uv sync
|
|
42
63
|
Once the virtual environment is created, you can install the package using pip.
|
43
64
|
|
44
65
|
> [!TIP]
|
45
|
-
> If you're using uv add a uv before the pip install command to install into your virtual environment. Eg:
|
66
|
+
> If you're using uv add a `uv` before the pip install command to install into your virtual environment. Eg:
|
46
67
|
> ```bash
|
47
68
|
> uv pip install active-vision
|
48
69
|
> ```
|
49
70
|
|
50
|
-
## Usage
|
71
|
+
## 🛠️ Usage
|
51
72
|
See the [notebook](./nbs/04_relabel_loop.ipynb) for a complete example.
|
52
73
|
|
53
|
-
Be sure to prepared 3
|
54
|
-
- [
|
55
|
-
- [
|
56
|
-
- [
|
74
|
+
Be sure to prepared 3 subsets of the dataset:
|
75
|
+
- [Initial samples](./nbs/initial_samples.parquet): A dataframe of a labeled images to train an initial model. If you don't have any labeled data, you can label some images yourself.
|
76
|
+
- [Unlabeled samples](./nbs/unlabeled_samples.parquet): A dataframe of *unlabeled* images. We will continuously sample from this set using active learning strategies.
|
77
|
+
- [Evaluation samples](./nbs/evaluation_samples.parquet): A dataframe of *labeled* images. We will use this set to evaluate the performance of the model. This is the test set, DO NOT use it for active learning. Split this out in the beginning.
|
57
78
|
|
58
79
|
As a toy example I created the above 3 datasets from the imagenette dataset.
|
59
80
|
|
@@ -84,7 +105,7 @@ uncertain_df = al.sample_uncertain(pred_df, num_samples=10)
|
|
84
105
|
al.label(uncertain_df, output_filename="uncertain")
|
85
106
|
```
|
86
107
|
|
87
|
-

|
88
109
|
|
89
110
|
Once complete, the labeled samples will be save into a new df.
|
90
111
|
We can now add the newly labeled data to the training set.
|
@@ -103,11 +124,77 @@ Repeat the process until the model is good enough. Use the dataset to train a la
|
|
103
124
|
>
|
104
125
|
> But using the dataset of 200+ images, I trained a more capable model (convnext_small_in22k) and got 99.3% accuracy on the evaluation set. See the [notebook](./nbs/05_retrain_larger.ipynb) for more details.
|
105
126
|
|
106
|
-
|
107
|
-
|
127
|
+
|
128
|
+
## 📊 Benchmarks
|
129
|
+
This section contains the benchmarks I ran using the active learning loop on various datasets.
|
130
|
+
|
131
|
+
Column description:
|
132
|
+
- `#Labeled Images`: The number of labeled images used to train the model.
|
133
|
+
- `Evaluation Accuracy`: The accuracy of the model on the evaluation set.
|
134
|
+
- `Train Epochs`: The number of epochs used to train the model.
|
135
|
+
- `Model`: The model used to train.
|
136
|
+
- `Active Learning`: Whether active learning was used to train the model.
|
137
|
+
- `Source`: The source of the results.
|
138
|
+
|
139
|
+
### Imagenette
|
140
|
+
- num classes: 10
|
141
|
+
- num images: 9469
|
142
|
+
|
143
|
+
To start the active learning loop, I labeled 100 images (10 images from each class) and iteratively relabeled the most informative images until I hit 275 labeled images.
|
144
|
+
|
145
|
+
The active learning loop is a iterative process and can keep going until you hit a stopping point. You can decide your own stopping point based on your use case. It could be:
|
146
|
+
- You ran out of data to label.
|
147
|
+
- You hit a performance goal.
|
148
|
+
- You hit a budget.
|
149
|
+
- Other criteria.
|
150
|
+
|
151
|
+
For this dataset,I decided to stop the active learning loop at 275 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard.
|
152
|
+
|
153
|
+
|
154
|
+
| #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
|
155
|
+
|-----------------|---------------------|--------------|----------------------|----------------|--------|
|
156
|
+
| 9469 | 94.90% | 80 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
|
157
|
+
| 9469 | 95.11% | 200 | xse_resnext50 | ❌ | [Link](https://github.com/fastai/imagenette) |
|
158
|
+
| 275 | 99.33% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/05_retrain_larger.ipynb) |
|
159
|
+
| 275 | 93.40% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/04_relabel_loop.ipynb) |
|
160
|
+
|
161
|
+
### Dog Food
|
162
|
+
- num classes: 2
|
163
|
+
- num images: 2100
|
164
|
+
|
165
|
+
To start the active learning loop, I labeled 20 images (10 images from each class) and iteratively relabeled the most informative images until I hit 160 labeled images.
|
166
|
+
|
167
|
+
I decided to stop the active learning loop at 160 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
|
168
|
+
|
169
|
+
| #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
|
170
|
+
|-----------------|---------------------|--------------|-------|----------------|--------|
|
171
|
+
| 2100 | 99.70% | ? | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/abhishek/autotrain-dog-vs-food) |
|
172
|
+
| 160 | 100.00% | 6 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/02_train.ipynb) |
|
173
|
+
| 160 | 97.60% | 4 | resnet18 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/dog_food_dataset/01_label.ipynb) |
|
174
|
+
|
175
|
+
### Oxford-IIIT Pet
|
176
|
+
- num classes: 37
|
177
|
+
- num images: 3680
|
178
|
+
|
179
|
+
To start the active learning loop, I labeled 370 images (10 images from each class) and iteratively relabeled the most informative images until I hit 612 labeled images.
|
180
|
+
|
181
|
+
I decided to stop the active learning loop at 612 labeled images because the performance on the evaluation set is close to the top performing model on the leaderboard. You can decide your own stopping point based on your use case.
|
182
|
+
|
183
|
+
| #Labeled Images | Evaluation Accuracy | Train Epochs | Model | Active Learning | Source |
|
184
|
+
|-----------------|---------------------|--------------|-------|----------------|--------|
|
185
|
+
| 3680 | 95.40% | 5 | vit-base-patch16-224 | ❌ | [Link](https://huggingface.co/walterg777/vit-base-oxford-iiit-pets) |
|
186
|
+
| 612 | 90.26% | 11 | convnext_small_in22k | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/02_train.ipynb) |
|
187
|
+
| 612 | 91.38% | 11 | vit-base-patch16-224 | ✓ | [Link](https://github.com/dnth/active-vision/blob/main/nbs/oxford_iiit_pets/03_train_vit.ipynb) |
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
## ➿ Workflow
|
192
|
+
This section describes a more detailed workflow for active learning. There are two workflows for active learning that we can use depending on the availability of labeled data.
|
108
193
|
|
109
194
|
### With unlabeled data
|
110
|
-
If we have no labeled data,
|
195
|
+
If we have no labeled data, the goal of the active learning loop is to build a resonably good labeled dataset to train a larger model.
|
196
|
+
|
197
|
+
Steps:
|
111
198
|
|
112
199
|
1. Load a small proxy model.
|
113
200
|
2. Label an initial dataset. If there is none, you'll have to label some images.
|
@@ -139,24 +226,25 @@ graph TD
|
|
139
226
|
```
|
140
227
|
|
141
228
|
### With labeled data
|
142
|
-
If we have a labeled dataset,
|
229
|
+
If we already have a labeled dataset, the goal of the active learning loop is to iteratively improve the dataset and the model by fixing the most important label errors.
|
230
|
+
|
231
|
+
Steps:
|
143
232
|
|
144
233
|
1. Load a small proxy model.
|
145
234
|
2. Train the proxy model on the labeled dataset.
|
146
235
|
3. Run inference on the entire labeled dataset.
|
147
|
-
4. Get the most
|
236
|
+
4. Get the most impactful label errors with active learning.
|
148
237
|
5. Fix the label errors.
|
149
238
|
6. Repeat steps 2-5 until the dataset is good enough.
|
150
239
|
7. Save the labeled dataset.
|
151
240
|
8. Train a larger model on the saved labeled dataset.
|
152
241
|
|
153
242
|
|
154
|
-
|
155
243
|
```mermaid
|
156
244
|
graph TD
|
157
245
|
A[Load a small proxy model] --> B[Train proxy model on labeled dataset]
|
158
246
|
B --> C[Run inference on labeled dataset]
|
159
|
-
C --> D[Get
|
247
|
+
C --> D[Get label errors using active learning]
|
160
248
|
D --> E[Fix label errors]
|
161
249
|
E --> F{Dataset good enough?}
|
162
250
|
F -->|No| B
|
@@ -165,6 +253,7 @@ graph TD
|
|
165
253
|
```
|
166
254
|
|
167
255
|
|
256
|
+
|
168
257
|
<!-- ## Methodology
|
169
258
|
To test out the workflows we will use the [imagenette dataset](https://huggingface.co/datasets/frgfm/imagenette). But this will be applicable to any dataset.
|
170
259
|
|
@@ -1,10 +1,11 @@
|
|
1
1
|
[project]
|
2
2
|
name = "active-vision"
|
3
|
-
version = "0.0
|
3
|
+
version = "0.1.0"
|
4
4
|
description = "Active learning for edge vision."
|
5
5
|
readme = "README.md"
|
6
6
|
requires-python = ">=3.10"
|
7
7
|
dependencies = [
|
8
|
+
"accelerate>=1.2.1",
|
8
9
|
"datasets>=3.2.0",
|
9
10
|
"fastai>=2.7.18",
|
10
11
|
"gradio>=5.12.0",
|
@@ -13,4 +14,6 @@ dependencies = [
|
|
13
14
|
"loguru>=0.7.3",
|
14
15
|
"seaborn>=0.13.2",
|
15
16
|
"timm>=1.0.13",
|
17
|
+
"transformers>=4.48.0",
|
18
|
+
"xinfer>=0.3.2",
|
16
19
|
]
|