UniTok 3.5.1__tar.gz → 4.3.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. UniTok-4.3.2/LICENSE +21 -0
  2. UniTok-4.3.2/PKG-INFO +228 -0
  3. UniTok-4.3.2/README.md +213 -0
  4. UniTok-4.3.2/UniTok.egg-info/PKG-INFO +228 -0
  5. UniTok-4.3.2/UniTok.egg-info/SOURCES.txt +70 -0
  6. UniTok-4.3.2/UniTok.egg-info/entry_points.txt +5 -0
  7. {UniTok-3.5.1 → UniTok-4.3.2}/UniTok.egg-info/requires.txt +2 -0
  8. UniTok-4.3.2/UniTok.egg-info/top_level.txt +2 -0
  9. UniTok-4.3.2/UniTokv3/__main__.py +169 -0
  10. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/bert_tok.py +1 -1
  11. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/ent_tok.py +1 -1
  12. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/id_tok.py +1 -1
  13. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/number_tok.py +1 -1
  14. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/seq_tok.py +1 -1
  15. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/split_tok.py +1 -1
  16. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/tok.py +1 -1
  17. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/unidep.py +11 -2
  18. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/unitok.py +12 -3
  19. {UniTok-3.5.1 → UniTok-4.3.2}/setup.py +9 -5
  20. UniTok-4.3.2/unitok/__init__.py +39 -0
  21. UniTok-4.3.2/unitok/__main__.py +108 -0
  22. UniTok-4.3.2/unitok/job.py +94 -0
  23. UniTok-4.3.2/unitok/meta.py +137 -0
  24. UniTok-4.3.2/unitok/selector.py +29 -0
  25. UniTok-4.3.2/unitok/status.py +44 -0
  26. UniTok-4.3.2/unitok/tokenizer/__init__.py +20 -0
  27. UniTok-4.3.2/unitok/tokenizer/base_tokenizer.py +89 -0
  28. UniTok-4.3.2/unitok/tokenizer/digit_tokenizer.py +33 -0
  29. UniTok-4.3.2/unitok/tokenizer/entity_tokenizer.py +13 -0
  30. UniTok-4.3.2/unitok/tokenizer/glove_tokenizer.py +21 -0
  31. UniTok-4.3.2/unitok/tokenizer/split_tokenizer.py +14 -0
  32. UniTok-4.3.2/unitok/tokenizer/transformers_tokenizer.py +65 -0
  33. UniTok-4.3.2/unitok/tokenizer/union_tokenizer.py +17 -0
  34. UniTok-4.3.2/unitok/tokenizer/unknown_tokenizer.py +35 -0
  35. UniTok-4.3.2/unitok/unitok.py +489 -0
  36. UniTok-4.3.2/unitok/utils/__init__.py +21 -0
  37. UniTok-4.3.2/unitok/utils/class_pool.py +107 -0
  38. UniTok-4.3.2/unitok/utils/data.py +15 -0
  39. UniTok-4.3.2/unitok/utils/function.py +6 -0
  40. UniTok-4.3.2/unitok/utils/handler/__init__.py +7 -0
  41. UniTok-4.3.2/unitok/utils/handler/json_handler.py +28 -0
  42. UniTok-4.3.2/unitok/utils/handler/pkl_handler.py +19 -0
  43. UniTok-4.3.2/unitok/utils/hub/__init__.py +4 -0
  44. UniTok-4.3.2/unitok/utils/hub/hub.py +44 -0
  45. UniTok-4.3.2/unitok/utils/hub/param_hub.py +6 -0
  46. UniTok-4.3.2/unitok/utils/index_set/__init__.py +15 -0
  47. UniTok-4.3.2/unitok/utils/index_set/index_set.py +71 -0
  48. UniTok-4.3.2/unitok/utils/index_set/job_set.py +25 -0
  49. UniTok-4.3.2/unitok/utils/index_set/tokenizer_set.py +19 -0
  50. UniTok-4.3.2/unitok/utils/index_set/vocabulary_set.py +19 -0
  51. UniTok-4.3.2/unitok/utils/instance.py +18 -0
  52. UniTok-4.3.2/unitok/utils/map.py +3 -0
  53. UniTok-4.3.2/unitok/utils/space.py +35 -0
  54. UniTok-4.3.2/unitok/utils/symbol.py +23 -0
  55. UniTok-4.3.2/unitok/utils/verbose.py +48 -0
  56. UniTok-4.3.2/unitok/vocabulary/__init__.py +11 -0
  57. UniTok-4.3.2/unitok/vocabulary/counter.py +85 -0
  58. UniTok-4.3.2/unitok/vocabulary/vocabulary.py +166 -0
  59. UniTok-3.5.1/PKG-INFO +0 -199
  60. UniTok-3.5.1/README.md +0 -185
  61. UniTok-3.5.1/UniTok/__main__.py +0 -14
  62. UniTok-3.5.1/UniTok.egg-info/PKG-INFO +0 -199
  63. UniTok-3.5.1/UniTok.egg-info/SOURCES.txt +0 -30
  64. UniTok-3.5.1/UniTok.egg-info/entry_points.txt +0 -3
  65. UniTok-3.5.1/UniTok.egg-info/top_level.txt +0 -1
  66. {UniTok-3.5.1 → UniTok-4.3.2}/UniTok.egg-info/dependency_links.txt +0 -0
  67. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/__init__.py +0 -0
  68. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/analysis/__init__.py +0 -0
  69. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/analysis/lengths.py +0 -0
  70. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/analysis/plot.py +0 -0
  71. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/cols.py +0 -0
  72. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/column.py +0 -0
  73. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/fut.py +0 -0
  74. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/global_setting.py +0 -0
  75. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/meta.py +0 -0
  76. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/tok/__init__.py +0 -0
  77. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/vocab.py +0 -0
  78. {UniTok-3.5.1/UniTok → UniTok-4.3.2/UniTokv3}/vocabs.py +0 -0
  79. {UniTok-3.5.1 → UniTok-4.3.2}/setup.cfg +0 -0
UniTok-4.3.2/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Jyonn
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
UniTok-4.3.2/PKG-INFO ADDED
@@ -0,0 +1,228 @@
1
+ Metadata-Version: 2.1
2
+ Name: UniTok
3
+ Version: 4.3.2
4
+ Summary: Unified Tokenizer
5
+ Home-page: https://github.com/Jyonn/UnifiedTokenizer
6
+ Author: Jyonn Liu
7
+ Author-email: liu@qijiong.work
8
+ License: MIT Licence
9
+ Keywords: token,tokenizer,NLP,transformers,glove,bert,llama
10
+ Platform: any
11
+ Description-Content-Type: text/markdown
12
+ License-File: LICENSE
13
+
14
+ # UniTok V4
15
+
16
+ The documentation for v3, old version, can be found [here](README_v3.md) in Chinese.
17
+
18
+ ## Overview
19
+
20
+ [![PyPI version](https://badge.fury.io/py/unitok.svg)](https://badge.fury.io/py/unitok)
21
+
22
+ Welcome to the UniTok v4!
23
+ This library provides a unified preprocessing solution for machine learning datasets, handling diverse data types like text, categorical features, and numerical values.
24
+
25
+ Please refer to [UniTok Handbook](https://unitok.qijiong.work) for more detailed information.
26
+
27
+ ## Road from V3 to V4
28
+
29
+ ### Changes and Comparisons
30
+
31
+ | Feature | UniTok v3 | UniTok v4 | Comments |
32
+ |---------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|
33
+ | `UniTok` class | Solely for tokenization | Manages the entire preprocessing lifecycle | |
34
+ | `UniDep` class | Data loading and combining | Removed | V4 combines the functionalities of `UniTok` and `UniDep` into a single class. |
35
+ | `Column` class | Column name is for both the original and tokenized datasets | N/A | V4 introduces a `Job` class. |
36
+ | `Job` class | N/A | Defines how a specific column should be tokenized | |
37
+ | `Tokenizer` class | Ambiguous return type definition | `return_list` parameter must be of type `bool` | |
38
+ | `Tokenizer` class | Only supports `BertTokenizer` for text processing | Supports all Tokenizers in the transformers library | New `TransformersTokenizer` class |
39
+ | `analyse` method | Supported | Not supported Currently | |
40
+ | `Meta` class | Only for human-friendly displaying | Manager for `Job`, `Tokenizer`, and `Vocab` | |
41
+ | `unitok` command | Visualization in the terminal | More colorful and detailed output | |
42
+ | `Vocab` class (unitok >= 4.1.0) | Save and load vocabulary using text files | Save and load vocabulary using pickle files | Avoids issues with special characters in text files |
43
+
44
+ ### How to Migrate the Processed Data
45
+
46
+ ```bash
47
+ unidep-upgrade-v4 <path>
48
+ ```
49
+
50
+ ## Installation
51
+
52
+ **Requirements**
53
+
54
+ - Python 3.7 or later
55
+ - Dependencies:
56
+ - pandas
57
+ - transformers
58
+ - tqdm
59
+ - rich
60
+
61
+ **Install UniTok via pip**
62
+
63
+ ```bash
64
+ pip install unitok
65
+ ```
66
+
67
+ ## Core Concepts
68
+
69
+ **States**
70
+
71
+ - `initialized`: The initial state after creating a UniTok instance.
72
+ - `tokenized`: Achieved after applying tokenization to the dataset.
73
+ - `organized`: Reached after combining multiple datasets via operations like union.
74
+
75
+ **Components**
76
+
77
+ - UniTok: Manages the dataset preprocessing lifecycle.
78
+ - Job: Defines how a specific column should be tokenized.
79
+ - Tokenizer: Encodes data using various methods (e.g., BERT, splitting by delimiters).
80
+ - Vocabulary: Stores and manages unique tokens across datasets.
81
+
82
+ **Primary Key (key_job)**
83
+
84
+ The `key_job` acts as the primary key for operations like `getitem` and `union`, ensuring consistency across datasets.
85
+
86
+ ## Usage Guide
87
+
88
+ ### Loading Data
89
+
90
+ Load datasets using pandas:
91
+
92
+ ```python
93
+ import pandas as pd
94
+
95
+ item = pd.read_csv(
96
+ filepath_or_buffer='news-sample.tsv',
97
+ sep='\t',
98
+ names=['nid', 'category', 'subcategory', 'title', 'abstract', 'url', 'title_entities', 'abstract_entities'],
99
+ usecols=['nid', 'category', 'subcategory', 'title', 'abstract'],
100
+ )
101
+ item['abstract'] = item['abstract'].fillna('') # Handle missing values
102
+
103
+ user = pd.read_csv(
104
+ filepath_or_buffer='user-sample.tsv',
105
+ sep='\t',
106
+ names=['uid', 'history'],
107
+ )
108
+
109
+ interaction = pd.read_csv(
110
+ filepath_or_buffer='interaction-sample.tsv',
111
+ sep='\t',
112
+ names=['uid', 'nid', 'click'],
113
+ )
114
+ ```
115
+
116
+ ### Defining and Adding Jobs
117
+
118
+ Define tokenization jobs for different columns:
119
+
120
+ ```python
121
+ from unitok import UniTok, Vocab
122
+ from unitok.tokenizer import BertTokenizer, TransformersTokenizer, EntityTokenizer, SplitTokenizer, DigitTokenizer
123
+
124
+ item_vocab = Vocab(name='nid') # will be used across datasets
125
+ user_vocab = Vocab(name='uid') # will be used across datasets
126
+
127
+ with UniTok() as item_ut:
128
+ bert_tokenizer = BertTokenizer(vocab='bert')
129
+ llama_tokenizer = TransformersTokenizer(vocab='llama', key='huggyllama/llama-7b')
130
+
131
+ item_ut.add_job(tokenizer=EntityTokenizer(vocab=item_vocab), column='nid', key=True)
132
+ item_ut.add_job(tokenizer=bert_tokenizer, column='title', name='title@bert', truncate=20)
133
+ item_ut.add_job(tokenizer=llama_tokenizer, column='title', name='title@llama', truncate=20)
134
+ item_ut.add_job(tokenizer=bert_tokenizer, column='abstract', name='abstract@bert', truncate=50)
135
+ item_ut.add_job(tokenizer=llama_tokenizer, column='abstract', name='abstract@llama', truncate=50)
136
+ item_ut.add_job(tokenizer=EntityTokenizer(vocab='category'), column='category')
137
+ item_ut.add_job(tokenizer=EntityTokenizer(vocab='subcategory'), column='subcategory')
138
+
139
+ with UniTok() as user_ut:
140
+ user_ut.add_job(tokenizer=EntityTokenizer(vocab=user_vocab), column='uid', key=True)
141
+ user_ut.add_job(tokenizer=SplitTokenizer(vocab=item_vocab, sep=','), column='history', truncate=30)
142
+
143
+ with UniTok() as inter_ut:
144
+ inter_ut.add_index_job(name='index')
145
+ inter_ut.add_job(tokenizer=EntityTokenizer(vocab=user_vocab), column='uid')
146
+ inter_ut.add_job(tokenizer=EntityTokenizer(vocab=item_vocab), column='nid')
147
+ inter_ut.add_job(tokenizer=DigitTokenizer(vocab='click', vocab_size=2), column='click')
148
+ ```
149
+
150
+ ### Tokenizing Data
151
+
152
+ Tokenize and save the processed data:
153
+
154
+ ```python
155
+ item_ut.tokenize(item).save('sample-ut/item')
156
+ item_vocab.deny_edit() # will raise an error if new items are detected in the user or interaction datasets
157
+ user_ut.tokenize(user).save('sample-ut/user')
158
+ inter_ut.tokenize(interaction).save('sample-ut/interaction')
159
+ ```
160
+
161
+ ### Combining Datasets
162
+
163
+ Combine datasets using union:
164
+
165
+ ```python
166
+ # => {'category': 0, 'nid': 0, 'title@bert': [1996, 9639, 3035, 3870, ...], 'title@llama': [450, 1771, 4167, 10470, ...], 'abstract@bert': [4497, 1996, 14960, 2015, ...], 'abstract@llama': [1383, 459, 278, 451, ...], 'subcategory': 0}
167
+ print(item_ut[0])
168
+
169
+ # => {'uid': 0, 'history': [0, 1, 2]}
170
+ print(user_ut[0])
171
+
172
+ # => {'uid': 0, 'nid': 7, 'index': 0, 'click': 1}
173
+ print(inter_ut[0])
174
+
175
+ with inter_ut:
176
+ inter_ut.union(user_ut)
177
+
178
+ # => {'index': 0, 'click': 1, 'uid': 0, 'nid': 7, 'history': [0, 1, 2]}
179
+ print(inter_ut[0])
180
+ ```
181
+
182
+ ### Glance at the Terminal
183
+
184
+ ```bash
185
+ unitok sample-ut/item
186
+ ```
187
+
188
+ ```text
189
+ UniTok (4beta)
190
+ Sample Size: 10
191
+ ID Column: nid
192
+
193
+ Jobs
194
+ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
195
+ ┃ Tokenizer ┃ Tokenizer ID ┃ Column Mapping ┃ Vocab ┃ Max Length ┃
196
+ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
197
+ │ TransformersTokenizer │ auto_2VN5Ko │ abstract -> abstract@llama │ llama (size=32024) │ 50 │
198
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
199
+ │ EntityTokenizer │ auto_C0b9Du │ subcategory -> subcategory │ subcategory (size=8) │ N/A │
200
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
201
+ │ TransformersTokenizer │ auto_2VN5Ko │ title -> title@llama │ llama (size=32024) │ 20 │
202
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
203
+ │ EntityTokenizer │ auto_4WQYxo │ category -> category │ category (size=4) │ N/A │
204
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
205
+ │ BertTokenizer │ auto_Y9tADT │ abstract -> abstract@bert │ bert (size=30522) │ 46 │
206
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
207
+ │ BertTokenizer │ auto_Y9tADT │ title -> title@bert │ bert (size=30522) │ 16 │
208
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
209
+ │ EntityTokenizer │ auto_qwQALc │ nid -> nid │ nid (size=10) │ N/A │
210
+ └──────────────────────────────────────┴───────────────────────┴──────────────────────────────────────────────┴───────────────────────────────────┴───────────────────┘
211
+ ```
212
+
213
+ ## Contributing
214
+
215
+ We welcome contributions to UniTok! We appreciate your feedback, bug reports, and pull requests.
216
+
217
+ Our TODO list includes:
218
+
219
+ - [ ] More detailed documentation
220
+ - [ ] More examples and tutorials
221
+ - [ ] More SQL-like operations
222
+ - [ ] Analysis and visualization tools
223
+
224
+ ## License
225
+
226
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
227
+
228
+
UniTok-4.3.2/README.md ADDED
@@ -0,0 +1,213 @@
1
+ # UniTok V4
2
+
3
+ The documentation for v3, old version, can be found [here](README_v3.md) in Chinese.
4
+
5
+ ## Overview
6
+
7
+ [![PyPI version](https://badge.fury.io/py/unitok.svg)](https://badge.fury.io/py/unitok)
8
+
9
+ Welcome to the UniTok v4!
10
+ This library provides a unified preprocessing solution for machine learning datasets, handling diverse data types like text, categorical features, and numerical values.
11
+
12
+ Please refer to [UniTok Handbook](https://unitok.qijiong.work) for more detailed information.
13
+
14
+ ## Road from V3 to V4
15
+
16
+ ### Changes and Comparisons
17
+
18
+ | Feature | UniTok v3 | UniTok v4 | Comments |
19
+ |---------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|
20
+ | `UniTok` class | Solely for tokenization | Manages the entire preprocessing lifecycle | |
21
+ | `UniDep` class | Data loading and combining | Removed | V4 combines the functionalities of `UniTok` and `UniDep` into a single class. |
22
+ | `Column` class | Column name is for both the original and tokenized datasets | N/A | V4 introduces a `Job` class. |
23
+ | `Job` class | N/A | Defines how a specific column should be tokenized | |
24
+ | `Tokenizer` class | Ambiguous return type definition | `return_list` parameter must be of type `bool` | |
25
+ | `Tokenizer` class | Only supports `BertTokenizer` for text processing | Supports all Tokenizers in the transformers library | New `TransformersTokenizer` class |
26
+ | `analyse` method | Supported | Not supported Currently | |
27
+ | `Meta` class | Only for human-friendly displaying | Manager for `Job`, `Tokenizer`, and `Vocab` | |
28
+ | `unitok` command | Visualization in the terminal | More colorful and detailed output | |
29
+ | `Vocab` class (unitok >= 4.1.0) | Save and load vocabulary using text files | Save and load vocabulary using pickle files | Avoids issues with special characters in text files |
30
+
31
+ ### How to Migrate the Processed Data
32
+
33
+ ```bash
34
+ unidep-upgrade-v4 <path>
35
+ ```
36
+
37
+ ## Installation
38
+
39
+ **Requirements**
40
+
41
+ - Python 3.7 or later
42
+ - Dependencies:
43
+ - pandas
44
+ - transformers
45
+ - tqdm
46
+ - rich
47
+
48
+ **Install UniTok via pip**
49
+
50
+ ```bash
51
+ pip install unitok
52
+ ```
53
+
54
+ ## Core Concepts
55
+
56
+ **States**
57
+
58
+ - `initialized`: The initial state after creating a UniTok instance.
59
+ - `tokenized`: Achieved after applying tokenization to the dataset.
60
+ - `organized`: Reached after combining multiple datasets via operations like union.
61
+
62
+ **Components**
63
+
64
+ - UniTok: Manages the dataset preprocessing lifecycle.
65
+ - Job: Defines how a specific column should be tokenized.
66
+ - Tokenizer: Encodes data using various methods (e.g., BERT, splitting by delimiters).
67
+ - Vocabulary: Stores and manages unique tokens across datasets.
68
+
69
+ **Primary Key (key_job)**
70
+
71
+ The `key_job` acts as the primary key for operations like `getitem` and `union`, ensuring consistency across datasets.
72
+
73
+ ## Usage Guide
74
+
75
+ ### Loading Data
76
+
77
+ Load datasets using pandas:
78
+
79
+ ```python
80
+ import pandas as pd
81
+
82
+ item = pd.read_csv(
83
+ filepath_or_buffer='news-sample.tsv',
84
+ sep='\t',
85
+ names=['nid', 'category', 'subcategory', 'title', 'abstract', 'url', 'title_entities', 'abstract_entities'],
86
+ usecols=['nid', 'category', 'subcategory', 'title', 'abstract'],
87
+ )
88
+ item['abstract'] = item['abstract'].fillna('') # Handle missing values
89
+
90
+ user = pd.read_csv(
91
+ filepath_or_buffer='user-sample.tsv',
92
+ sep='\t',
93
+ names=['uid', 'history'],
94
+ )
95
+
96
+ interaction = pd.read_csv(
97
+ filepath_or_buffer='interaction-sample.tsv',
98
+ sep='\t',
99
+ names=['uid', 'nid', 'click'],
100
+ )
101
+ ```
102
+
103
+ ### Defining and Adding Jobs
104
+
105
+ Define tokenization jobs for different columns:
106
+
107
+ ```python
108
+ from unitok import UniTok, Vocab
109
+ from unitok.tokenizer import BertTokenizer, TransformersTokenizer, EntityTokenizer, SplitTokenizer, DigitTokenizer
110
+
111
+ item_vocab = Vocab(name='nid') # will be used across datasets
112
+ user_vocab = Vocab(name='uid') # will be used across datasets
113
+
114
+ with UniTok() as item_ut:
115
+ bert_tokenizer = BertTokenizer(vocab='bert')
116
+ llama_tokenizer = TransformersTokenizer(vocab='llama', key='huggyllama/llama-7b')
117
+
118
+ item_ut.add_job(tokenizer=EntityTokenizer(vocab=item_vocab), column='nid', key=True)
119
+ item_ut.add_job(tokenizer=bert_tokenizer, column='title', name='title@bert', truncate=20)
120
+ item_ut.add_job(tokenizer=llama_tokenizer, column='title', name='title@llama', truncate=20)
121
+ item_ut.add_job(tokenizer=bert_tokenizer, column='abstract', name='abstract@bert', truncate=50)
122
+ item_ut.add_job(tokenizer=llama_tokenizer, column='abstract', name='abstract@llama', truncate=50)
123
+ item_ut.add_job(tokenizer=EntityTokenizer(vocab='category'), column='category')
124
+ item_ut.add_job(tokenizer=EntityTokenizer(vocab='subcategory'), column='subcategory')
125
+
126
+ with UniTok() as user_ut:
127
+ user_ut.add_job(tokenizer=EntityTokenizer(vocab=user_vocab), column='uid', key=True)
128
+ user_ut.add_job(tokenizer=SplitTokenizer(vocab=item_vocab, sep=','), column='history', truncate=30)
129
+
130
+ with UniTok() as inter_ut:
131
+ inter_ut.add_index_job(name='index')
132
+ inter_ut.add_job(tokenizer=EntityTokenizer(vocab=user_vocab), column='uid')
133
+ inter_ut.add_job(tokenizer=EntityTokenizer(vocab=item_vocab), column='nid')
134
+ inter_ut.add_job(tokenizer=DigitTokenizer(vocab='click', vocab_size=2), column='click')
135
+ ```
136
+
137
+ ### Tokenizing Data
138
+
139
+ Tokenize and save the processed data:
140
+
141
+ ```python
142
+ item_ut.tokenize(item).save('sample-ut/item')
143
+ item_vocab.deny_edit() # will raise an error if new items are detected in the user or interaction datasets
144
+ user_ut.tokenize(user).save('sample-ut/user')
145
+ inter_ut.tokenize(interaction).save('sample-ut/interaction')
146
+ ```
147
+
148
+ ### Combining Datasets
149
+
150
+ Combine datasets using union:
151
+
152
+ ```python
153
+ # => {'category': 0, 'nid': 0, 'title@bert': [1996, 9639, 3035, 3870, ...], 'title@llama': [450, 1771, 4167, 10470, ...], 'abstract@bert': [4497, 1996, 14960, 2015, ...], 'abstract@llama': [1383, 459, 278, 451, ...], 'subcategory': 0}
154
+ print(item_ut[0])
155
+
156
+ # => {'uid': 0, 'history': [0, 1, 2]}
157
+ print(user_ut[0])
158
+
159
+ # => {'uid': 0, 'nid': 7, 'index': 0, 'click': 1}
160
+ print(inter_ut[0])
161
+
162
+ with inter_ut:
163
+ inter_ut.union(user_ut)
164
+
165
+ # => {'index': 0, 'click': 1, 'uid': 0, 'nid': 7, 'history': [0, 1, 2]}
166
+ print(inter_ut[0])
167
+ ```
168
+
169
+ ### Glance at the Terminal
170
+
171
+ ```bash
172
+ unitok sample-ut/item
173
+ ```
174
+
175
+ ```text
176
+ UniTok (4beta)
177
+ Sample Size: 10
178
+ ID Column: nid
179
+
180
+ Jobs
181
+ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
182
+ ┃ Tokenizer ┃ Tokenizer ID ┃ Column Mapping ┃ Vocab ┃ Max Length ┃
183
+ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
184
+ │ TransformersTokenizer │ auto_2VN5Ko │ abstract -> abstract@llama │ llama (size=32024) │ 50 │
185
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
186
+ │ EntityTokenizer │ auto_C0b9Du │ subcategory -> subcategory │ subcategory (size=8) │ N/A │
187
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
188
+ │ TransformersTokenizer │ auto_2VN5Ko │ title -> title@llama │ llama (size=32024) │ 20 │
189
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
190
+ │ EntityTokenizer │ auto_4WQYxo │ category -> category │ category (size=4) │ N/A │
191
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
192
+ │ BertTokenizer │ auto_Y9tADT │ abstract -> abstract@bert │ bert (size=30522) │ 46 │
193
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
194
+ │ BertTokenizer │ auto_Y9tADT │ title -> title@bert │ bert (size=30522) │ 16 │
195
+ ├──────────────────────────────────────┼───────────────────────┼──────────────────────────────────────────────┼───────────────────────────────────┼───────────────────┤
196
+ │ EntityTokenizer │ auto_qwQALc │ nid -> nid │ nid (size=10) │ N/A │
197
+ └──────────────────────────────────────┴───────────────────────┴──────────────────────────────────────────────┴───────────────────────────────────┴───────────────────┘
198
+ ```
199
+
200
+ ## Contributing
201
+
202
+ We welcome contributions to UniTok! We appreciate your feedback, bug reports, and pull requests.
203
+
204
+ Our TODO list includes:
205
+
206
+ - [ ] More detailed documentation
207
+ - [ ] More examples and tutorials
208
+ - [ ] More SQL-like operations
209
+ - [ ] Analysis and visualization tools
210
+
211
+ ## License
212
+
213
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.