Topsis-Sommit-102303184 0.0.1__tar.gz → 0.0.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,89 @@
1
+ Metadata-Version: 2.4
2
+ Name: Topsis-Sommit-102303184
3
+ Version: 0.0.2
4
+ Summary: TOPSIS implementation using Python
5
+ Author: Sommit
6
+ Author-email: sommit312@gmail.com
7
+ Keywords: python,topsis,mcdm,decision making,ranking
8
+ Classifier: Development Status :: 3 - Alpha
9
+ Classifier: Intended Audience :: Education
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Operating System :: Microsoft :: Windows
12
+ Classifier: Operating System :: MacOS :: MacOS X
13
+ Classifier: Operating System :: Unix
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: pandas
17
+ Requires-Dist: numpy
18
+ Dynamic: author
19
+ Dynamic: author-email
20
+ Dynamic: classifier
21
+ Dynamic: description
22
+ Dynamic: description-content-type
23
+ Dynamic: keywords
24
+ Dynamic: license-file
25
+ Dynamic: requires-dist
26
+ Dynamic: summary
27
+
28
+ # Topsis-Sommit-102303184
29
+
30
+ A Python package to perform TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) for multi-criteria decision making using the command line.
31
+
32
+ ## Installation
33
+
34
+ Install the package from PyPI:
35
+
36
+ ```bash
37
+ pip install Topsis-Sommit-102303184
38
+ ```
39
+
40
+ ## Usage
41
+
42
+ Run TOPSIS from the command line as follows:
43
+
44
+ ```bash
45
+ topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>
46
+ ```
47
+
48
+ ### Example
49
+
50
+ ```bash
51
+ topsis data.csv "1,1,1,2" "+,+,-,+" result.csv
52
+ ```
53
+
54
+ ## Input File Format
55
+
56
+ - Input file must be a CSV file
57
+ - First column contains alternatives (names)
58
+ - Remaining columns contain numerical criteria values
59
+
60
+ ### Sample Input (`data.csv`)
61
+
62
+ ```
63
+ Model,P1,P2,P3,P4
64
+ M1,250,16,12,5
65
+ M2,200,18,8,4
66
+ M3,300,14,10,6
67
+ ```
68
+
69
+ ## Parameters
70
+
71
+ - **InputDataFile**: Path to input CSV file
72
+ - **Weights**: Comma-separated numerical weights
73
+ - **Impacts**: Comma-separated impacts (`+` for benefit, `-` for cost)
74
+ - **ResultFileName**: Name of output CSV file
75
+
76
+ ## Output
77
+
78
+ The output CSV file will contain:
79
+ - **Topsis Score**
80
+ - **Rank** (1 indicates the best alternative)
81
+
82
+ ## Author
83
+
84
+ Sommit
85
+ Roll No: 102303184
86
+
87
+ ## License
88
+
89
+ MIT License
@@ -0,0 +1,62 @@
1
+ # Topsis-Sommit-102303184
2
+
3
+ A Python package to perform TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) for multi-criteria decision making using the command line.
4
+
5
+ ## Installation
6
+
7
+ Install the package from PyPI:
8
+
9
+ ```bash
10
+ pip install Topsis-Sommit-102303184
11
+ ```
12
+
13
+ ## Usage
14
+
15
+ Run TOPSIS from the command line as follows:
16
+
17
+ ```bash
18
+ topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>
19
+ ```
20
+
21
+ ### Example
22
+
23
+ ```bash
24
+ topsis data.csv "1,1,1,2" "+,+,-,+" result.csv
25
+ ```
26
+
27
+ ## Input File Format
28
+
29
+ - Input file must be a CSV file
30
+ - First column contains alternatives (names)
31
+ - Remaining columns contain numerical criteria values
32
+
33
+ ### Sample Input (`data.csv`)
34
+
35
+ ```
36
+ Model,P1,P2,P3,P4
37
+ M1,250,16,12,5
38
+ M2,200,18,8,4
39
+ M3,300,14,10,6
40
+ ```
41
+
42
+ ## Parameters
43
+
44
+ - **InputDataFile**: Path to input CSV file
45
+ - **Weights**: Comma-separated numerical weights
46
+ - **Impacts**: Comma-separated impacts (`+` for benefit, `-` for cost)
47
+ - **ResultFileName**: Name of output CSV file
48
+
49
+ ## Output
50
+
51
+ The output CSV file will contain:
52
+ - **Topsis Score**
53
+ - **Rank** (1 indicates the best alternative)
54
+
55
+ ## Author
56
+
57
+ Sommit
58
+ Roll No: 102303184
59
+
60
+ ## License
61
+
62
+ MIT License
@@ -0,0 +1,89 @@
1
+ Metadata-Version: 2.4
2
+ Name: Topsis-Sommit-102303184
3
+ Version: 0.0.2
4
+ Summary: TOPSIS implementation using Python
5
+ Author: Sommit
6
+ Author-email: sommit312@gmail.com
7
+ Keywords: python,topsis,mcdm,decision making,ranking
8
+ Classifier: Development Status :: 3 - Alpha
9
+ Classifier: Intended Audience :: Education
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Operating System :: Microsoft :: Windows
12
+ Classifier: Operating System :: MacOS :: MacOS X
13
+ Classifier: Operating System :: Unix
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Requires-Dist: pandas
17
+ Requires-Dist: numpy
18
+ Dynamic: author
19
+ Dynamic: author-email
20
+ Dynamic: classifier
21
+ Dynamic: description
22
+ Dynamic: description-content-type
23
+ Dynamic: keywords
24
+ Dynamic: license-file
25
+ Dynamic: requires-dist
26
+ Dynamic: summary
27
+
28
+ # Topsis-Sommit-102303184
29
+
30
+ A Python package to perform TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) for multi-criteria decision making using the command line.
31
+
32
+ ## Installation
33
+
34
+ Install the package from PyPI:
35
+
36
+ ```bash
37
+ pip install Topsis-Sommit-102303184
38
+ ```
39
+
40
+ ## Usage
41
+
42
+ Run TOPSIS from the command line as follows:
43
+
44
+ ```bash
45
+ topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>
46
+ ```
47
+
48
+ ### Example
49
+
50
+ ```bash
51
+ topsis data.csv "1,1,1,2" "+,+,-,+" result.csv
52
+ ```
53
+
54
+ ## Input File Format
55
+
56
+ - Input file must be a CSV file
57
+ - First column contains alternatives (names)
58
+ - Remaining columns contain numerical criteria values
59
+
60
+ ### Sample Input (`data.csv`)
61
+
62
+ ```
63
+ Model,P1,P2,P3,P4
64
+ M1,250,16,12,5
65
+ M2,200,18,8,4
66
+ M3,300,14,10,6
67
+ ```
68
+
69
+ ## Parameters
70
+
71
+ - **InputDataFile**: Path to input CSV file
72
+ - **Weights**: Comma-separated numerical weights
73
+ - **Impacts**: Comma-separated impacts (`+` for benefit, `-` for cost)
74
+ - **ResultFileName**: Name of output CSV file
75
+
76
+ ## Output
77
+
78
+ The output CSV file will contain:
79
+ - **Topsis Score**
80
+ - **Rank** (1 indicates the best alternative)
81
+
82
+ ## Author
83
+
84
+ Sommit
85
+ Roll No: 102303184
86
+
87
+ ## License
88
+
89
+ MIT License
@@ -1,4 +1,5 @@
1
1
  LICENSE
2
+ README.md
2
3
  setup.py
3
4
  Topsis_Assignment/__init__.py
4
5
  Topsis_Assignment/topsis.py
@@ -1,31 +1,30 @@
1
1
  from setuptools import setup, find_packages
2
2
 
3
- VERSION = '0.0.1'
4
- DESCRIPTION = 'TOPSIS implementation using Python'
5
- LONG_DESCRIPTION = 'A Python package to perform TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) using command line.'
3
+ with open("README.md", "r", encoding="utf-8") as f:
4
+ long_description = f.read()
6
5
 
7
6
  setup(
8
7
  name="Topsis-Sommit-102303184",
9
- version=VERSION,
8
+ version="0.0.2",
10
9
  author="Sommit",
11
10
  author_email="sommit312@gmail.com",
12
- description=DESCRIPTION,
13
- long_description=LONG_DESCRIPTION,
11
+ description="TOPSIS implementation using Python",
12
+ long_description=long_description,
14
13
  long_description_content_type="text/markdown",
15
14
  packages=find_packages(),
16
- install_requires=['pandas', 'numpy'],
15
+ install_requires=["pandas", "numpy"],
17
16
  entry_points={
18
- 'console_scripts': [
19
- 'topsis=topsis.topsis:main'
17
+ "console_scripts": [
18
+ "topsis=topsis.topsis:main"
20
19
  ]
21
20
  },
22
- keywords=['python', 'topsis', 'mcdm', 'decision making', 'ranking'],
21
+ keywords=["python", "topsis", "mcdm", "decision making", "ranking"],
23
22
  classifiers=[
24
23
  "Development Status :: 3 - Alpha",
25
24
  "Intended Audience :: Education",
26
25
  "Programming Language :: Python :: 3",
27
- "Operating System :: Unix",
28
- "Operating System :: MacOS :: MacOS X",
29
26
  "Operating System :: Microsoft :: Windows",
30
- ]
27
+ "Operating System :: MacOS :: MacOS X",
28
+ "Operating System :: Unix",
29
+ ],
31
30
  )
@@ -1,28 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: Topsis-Sommit-102303184
3
- Version: 0.0.1
4
- Summary: TOPSIS implementation using Python
5
- Author: Sommit
6
- Author-email: sommit312@gmail.com
7
- Keywords: python,topsis,mcdm,decision making,ranking
8
- Classifier: Development Status :: 3 - Alpha
9
- Classifier: Intended Audience :: Education
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Operating System :: Unix
12
- Classifier: Operating System :: MacOS :: MacOS X
13
- Classifier: Operating System :: Microsoft :: Windows
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: pandas
17
- Requires-Dist: numpy
18
- Dynamic: author
19
- Dynamic: author-email
20
- Dynamic: classifier
21
- Dynamic: description
22
- Dynamic: description-content-type
23
- Dynamic: keywords
24
- Dynamic: license-file
25
- Dynamic: requires-dist
26
- Dynamic: summary
27
-
28
- A Python package to perform TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) using command line.
@@ -1,28 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: Topsis-Sommit-102303184
3
- Version: 0.0.1
4
- Summary: TOPSIS implementation using Python
5
- Author: Sommit
6
- Author-email: sommit312@gmail.com
7
- Keywords: python,topsis,mcdm,decision making,ranking
8
- Classifier: Development Status :: 3 - Alpha
9
- Classifier: Intended Audience :: Education
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Operating System :: Unix
12
- Classifier: Operating System :: MacOS :: MacOS X
13
- Classifier: Operating System :: Microsoft :: Windows
14
- Description-Content-Type: text/markdown
15
- License-File: LICENSE
16
- Requires-Dist: pandas
17
- Requires-Dist: numpy
18
- Dynamic: author
19
- Dynamic: author-email
20
- Dynamic: classifier
21
- Dynamic: description
22
- Dynamic: description-content-type
23
- Dynamic: keywords
24
- Dynamic: license-file
25
- Dynamic: requires-dist
26
- Dynamic: summary
27
-
28
- A Python package to perform TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) using command line.