Topsis-Rakshita-102303498 1.0.0__tar.gz → 1.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,23 @@
1
+ Metadata-Version: 2.4
2
+ Name: Topsis-Rakshita-102303498
3
+ Version: 1.0.1
4
+ Summary: TOPSIS implementation for MCDM problems
5
+ Author: Rakshita Garg
6
+ Description-Content-Type: text/markdown
7
+ Requires-Dist: numpy
8
+ Requires-Dist: pandas
9
+ Dynamic: author
10
+ Dynamic: description
11
+ Dynamic: description-content-type
12
+ Dynamic: requires-dist
13
+ Dynamic: summary
14
+
15
+ # Topsis-Rakshita-102303498
16
+
17
+ A Python package implementing the TOPSIS method for Multiple Criteria Decision Making (MCDM).
18
+
19
+ ## Installation
20
+ pip install Topsis-Rakshita-102303498
21
+
22
+ ## Usage
23
+ topsis input.csv "1,1,1,1" "+,+,-,+" output.csv
@@ -0,0 +1,9 @@
1
+ # Topsis-Rakshita-102303498
2
+
3
+ A Python package implementing the TOPSIS method for Multiple Criteria Decision Making (MCDM).
4
+
5
+ ## Installation
6
+ pip install Topsis-Rakshita-102303498
7
+
8
+ ## Usage
9
+ topsis input.csv "1,1,1,1" "+,+,-,+" output.csv
@@ -0,0 +1,23 @@
1
+ Metadata-Version: 2.4
2
+ Name: Topsis-Rakshita-102303498
3
+ Version: 1.0.1
4
+ Summary: TOPSIS implementation for MCDM problems
5
+ Author: Rakshita Garg
6
+ Description-Content-Type: text/markdown
7
+ Requires-Dist: numpy
8
+ Requires-Dist: pandas
9
+ Dynamic: author
10
+ Dynamic: description
11
+ Dynamic: description-content-type
12
+ Dynamic: requires-dist
13
+ Dynamic: summary
14
+
15
+ # Topsis-Rakshita-102303498
16
+
17
+ A Python package implementing the TOPSIS method for Multiple Criteria Decision Making (MCDM).
18
+
19
+ ## Installation
20
+ pip install Topsis-Rakshita-102303498
21
+
22
+ ## Usage
23
+ topsis input.csv "1,1,1,1" "+,+,-,+" output.csv
@@ -1,3 +1,4 @@
1
+ README.md
1
2
  pyproject.toml
2
3
  setup.py
3
4
  Topsis_Rakshita_102303498.egg-info/PKG-INFO
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name="Topsis-Rakshita-102303498",
5
- version="1.0.0",
5
+ version="1.0.1",
6
6
  packages=find_packages(),
7
7
  install_requires=["numpy", "pandas"],
8
8
  entry_points={
@@ -1,82 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: Topsis-Rakshita-102303498
3
- Version: 1.0.0
4
- Summary: TOPSIS implementation for MCDM problems
5
- Author: Rakshita Garg
6
- Description-Content-Type: text/markdown
7
- Requires-Dist: numpy
8
- Requires-Dist: pandas
9
- Dynamic: author
10
- Dynamic: description
11
- Dynamic: description-content-type
12
- Dynamic: requires-dist
13
- Dynamic: summary
14
-
15
- # topsis-3283
16
-
17
- ## Project Description
18
-
19
- **topsis-3283** is a Python library developed for solving **Multiple Criteria Decision Making (MCDM)** problems using the
20
- **Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)** method.
21
-
22
- This project is developed as part of academic coursework and provides a command-line interface to rank alternatives based on multiple criteria, weights, and impacts.
23
-
24
- ---
25
-
26
-
27
-
28
- ## What is TOPSIS?
29
-
30
- TOPSIS is a decision-making method based on the concept that the chosen alternative should have the **shortest distance from the ideal solution** and the **farthest distance from the negative-ideal solution**.
31
-
32
- ---
33
-
34
- ## Installation
35
-
36
- Use the Python package manager `pip` to install the package from PyPI:
37
-
38
- ```bash
39
- pip install topsis-3283
40
-
41
- Usage
42
- Run the package from the command line using the following format:
43
- topsis <input_file.csv> <weights> <impacts>
44
- Example Commands
45
- topsis sample.csv "1,1,1,1" "+,-,+,+"
46
- OR (without quotes):
47
- topsis sample.csv 1,1,1,1 +,-,+,+
48
- ⚠️ Note:
49
- If the input vectors contain spaces, they must be enclosed in double quotes " ".
50
- To view help:
51
- topsis /h
52
- Example
53
- Sample Input File (sample.csv)
54
- A CSV file containing data for different mobile handsets:
55
- Model Storage space (GB) Camera (MP) Price ($) Looks (out of 5)
56
- M1 16 12 250 5
57
- M2 16 8 200 3
58
- M3 32 16 300 4
59
- M4 32 8 275 4
60
- M5 16 16 225 2
61
- Weights Vector
62
- [0.25, 0.25, 0.25, 0.25]
63
- Impacts Vector
64
- [+, +, -, +]
65
- Command Used
66
- topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"
67
- Output
68
- TOPSIS RESULTS
69
- -----------------------------
70
-
71
- P-Score Rank
72
- 1 0.534277 3
73
- 2 0.308368 5
74
- 3 0.691632 1
75
- 4 0.534737 2
76
- 5 0.401046 4
77
- Other Notes
78
- The first column and first row are removed automatically to eliminate indices and headers.
79
- Ensure the CSV file:
80
- Contains only numerical values (except the first column)
81
- Does not contain categorical data
82
- Follows the same structure as sample.csv
@@ -1,82 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: Topsis-Rakshita-102303498
3
- Version: 1.0.0
4
- Summary: TOPSIS implementation for MCDM problems
5
- Author: Rakshita Garg
6
- Description-Content-Type: text/markdown
7
- Requires-Dist: numpy
8
- Requires-Dist: pandas
9
- Dynamic: author
10
- Dynamic: description
11
- Dynamic: description-content-type
12
- Dynamic: requires-dist
13
- Dynamic: summary
14
-
15
- # topsis-3283
16
-
17
- ## Project Description
18
-
19
- **topsis-3283** is a Python library developed for solving **Multiple Criteria Decision Making (MCDM)** problems using the
20
- **Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)** method.
21
-
22
- This project is developed as part of academic coursework and provides a command-line interface to rank alternatives based on multiple criteria, weights, and impacts.
23
-
24
- ---
25
-
26
-
27
-
28
- ## What is TOPSIS?
29
-
30
- TOPSIS is a decision-making method based on the concept that the chosen alternative should have the **shortest distance from the ideal solution** and the **farthest distance from the negative-ideal solution**.
31
-
32
- ---
33
-
34
- ## Installation
35
-
36
- Use the Python package manager `pip` to install the package from PyPI:
37
-
38
- ```bash
39
- pip install topsis-3283
40
-
41
- Usage
42
- Run the package from the command line using the following format:
43
- topsis <input_file.csv> <weights> <impacts>
44
- Example Commands
45
- topsis sample.csv "1,1,1,1" "+,-,+,+"
46
- OR (without quotes):
47
- topsis sample.csv 1,1,1,1 +,-,+,+
48
- ⚠️ Note:
49
- If the input vectors contain spaces, they must be enclosed in double quotes " ".
50
- To view help:
51
- topsis /h
52
- Example
53
- Sample Input File (sample.csv)
54
- A CSV file containing data for different mobile handsets:
55
- Model Storage space (GB) Camera (MP) Price ($) Looks (out of 5)
56
- M1 16 12 250 5
57
- M2 16 8 200 3
58
- M3 32 16 300 4
59
- M4 32 8 275 4
60
- M5 16 16 225 2
61
- Weights Vector
62
- [0.25, 0.25, 0.25, 0.25]
63
- Impacts Vector
64
- [+, +, -, +]
65
- Command Used
66
- topsis sample.csv "0.25,0.25,0.25,0.25" "+,+,-,+"
67
- Output
68
- TOPSIS RESULTS
69
- -----------------------------
70
-
71
- P-Score Rank
72
- 1 0.534277 3
73
- 2 0.308368 5
74
- 3 0.691632 1
75
- 4 0.534737 2
76
- 5 0.401046 4
77
- Other Notes
78
- The first column and first row are removed automatically to eliminate indices and headers.
79
- Ensure the CSV file:
80
- Contains only numerical values (except the first column)
81
- Does not contain categorical data
82
- Follows the same structure as sample.csv