TDCRPy 0.0.6__tar.gz → 0.0.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of TDCRPy might be problematic. Click here for more details.
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/TDCRPy.py +2 -2
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/TDCR_model_lib.py +24 -15
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/test.py +3 -0
- TDCRPy-0.0.8/PKG-INFO +81 -0
- TDCRPy-0.0.8/TDCRPy.egg-info/PKG-INFO +81 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/setup.py +11 -5
- TDCRPy-0.0.6/PKG-INFO +0 -24
- TDCRPy-0.0.6/TDCRPy.egg-info/PKG-INFO +0 -24
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/Activity_TDCR.py +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/EfficiencyProfils.py +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/TDCRoptimize.py +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/__init__.py +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/decay.py +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/Code/test1.py +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/LICENCE.md +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/README.md +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/TDCRPy.egg-info/SOURCES.txt +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/TDCRPy.egg-info/dependency_links.txt +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/TDCRPy.egg-info/requires.txt +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/TDCRPy.egg-info/top_level.txt +0 -0
- {TDCRPy-0.0.6 → TDCRPy-0.0.8}/setup.cfg +0 -0
|
@@ -9,7 +9,7 @@ Bureau International des Poids et Mesures
|
|
|
9
9
|
"""
|
|
10
10
|
|
|
11
11
|
## IMPORT PYTHON MODULES
|
|
12
|
-
import TDCR_model_lib as tl
|
|
12
|
+
import TDCRPy.TDCR_model_lib as tl
|
|
13
13
|
import numpy as np
|
|
14
14
|
|
|
15
15
|
def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Display=False):
|
|
@@ -296,7 +296,7 @@ def TDCRPy(L, TD, TAB, TBC, TAC, Rad, pmf_1, N, kB, RHO, nE, mode, mode2, Displa
|
|
|
296
296
|
energy_vec.append(511)
|
|
297
297
|
|
|
298
298
|
if p == "gamma" or p == "XKA" or p == "XKB" or p == "XL":
|
|
299
|
-
energy_vec[i] = tl.energie_dep_gamma(energy_vec[i]) # sampling energy free from photon
|
|
299
|
+
energy_vec[i] = tl.energie_dep_gamma(energy_vec[i],v=10) # sampling energy free from photon
|
|
300
300
|
particle_vec[i] = "electron"
|
|
301
301
|
if p == "Auger K" or p == "Auger L":
|
|
302
302
|
particle_vec[i] = "electron"
|
|
@@ -1266,14 +1266,18 @@ def E_quench_a(e,kB,nE):
|
|
|
1266
1266
|
#========================= énergie gamma ===================================================
|
|
1267
1267
|
#'''
|
|
1268
1268
|
if absolutePath:
|
|
1269
|
-
fp1 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/
|
|
1270
|
-
fp2 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/
|
|
1271
|
-
fp3 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/
|
|
1269
|
+
fp1 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/matrice_10ml-photon_1_200k.txt' #gamma-10ml-1-200keV-niveau 0
|
|
1270
|
+
fp2 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/matrice_10ml-photon_200_2000k.txt' #gamma-10ml-200-2000keV-niveau 0
|
|
1271
|
+
fp3 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/matrice_10ml-photon_2000_10000k.txt' #gamma-10ml-2000-10000keV-niveau 0
|
|
1272
|
+
fp4 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/matrice_16ml-photon_1_200k.txt' #gamma-10ml-1-200keV-niveau 0
|
|
1273
|
+
fp5 = 'G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/matrice_16ml-photon_200_2000k.txt' #gamma-10ml-1-200keV-niveau 0
|
|
1272
1274
|
fe = "G:\Python_modules\Jialin\Code\\MCNP-MATRIX/matrice/fichier/E_depose.txt"
|
|
1273
1275
|
else:
|
|
1274
|
-
fp1 = 'MCNP-MATRIX/matrice/fichier/
|
|
1275
|
-
fp2 = 'MCNP-MATRIX/matrice/fichier/
|
|
1276
|
-
fp3 = 'MCNP-MATRIX/matrice/fichier/
|
|
1276
|
+
fp1 = 'MCNP-MATRIX/matrice/fichier/matrice_10ml-photon_1_200k.txt' #gamma-10ml-1-200keV-niveau 0
|
|
1277
|
+
fp2 = 'MCNP-MATRIX/matrice/fichier/matrice_10ml-photon_200_2000k.txt' #gamma-10ml-200-2000keV-niveau 0
|
|
1278
|
+
fp3 = 'MCNP-MATRIX/matrice/fichier/matrice_10ml-photon_2000_10000k.txt' #gamma-10ml-2000-10000keV-niveau 0
|
|
1279
|
+
fp4 = 'MCNP-MATRIX/matrice/fichier/matrice_16ml-photon_1_200k.txt' #gamma-10ml-1-200keV-niveau 0
|
|
1280
|
+
fp5 = 'MCNP-MATRIX/matrice/fichier/matrice_16ml-photon_200_2000k.txt' #gamma-10ml-1-200keV-niveau 0
|
|
1277
1281
|
fe = "MCNP-MATRIX/matrice/fichier/E_depose.txt"
|
|
1278
1282
|
'''
|
|
1279
1283
|
data1 = f1.readlines()
|
|
@@ -1329,9 +1333,11 @@ def read_matrice(path,niveau):
|
|
|
1329
1333
|
Matrice10_p_1 = read_matrice(fp1,0)
|
|
1330
1334
|
Matrice10_p_2 = read_matrice(fp2,1)
|
|
1331
1335
|
Matrice10_p_3 = read_matrice(fp3,2)
|
|
1336
|
+
Matrice16_p_1 = read_matrice(fp4,0)
|
|
1337
|
+
Matrice16_p_2 = read_matrice(fp5,1)
|
|
1332
1338
|
Matrice_e = read_matrice(fe,'e')
|
|
1333
1339
|
|
|
1334
|
-
def energie_dep_gamma(e_inci
|
|
1340
|
+
def energie_dep_gamma(e_inci,v,matrice10_1=Matrice10_p_1,matrice10_2=Matrice10_p_2,matrice10_3=Matrice10_p_3,matrice16_1=Matrice16_p_1,matrice16_2=Matrice16_p_2,ed=Matrice_e):
|
|
1335
1341
|
"""
|
|
1336
1342
|
----------
|
|
1337
1343
|
Parameters
|
|
@@ -1357,16 +1363,19 @@ def energie_dep_gamma(e_inci,*,matrice10_1=Matrice10_p_1,matrice10_2=Matrice10_p
|
|
|
1357
1363
|
"""
|
|
1358
1364
|
## sort keV / entrée : keV
|
|
1359
1365
|
if e_inci <= 200:
|
|
1360
|
-
index = int(e_inci) # index de colonne de la matrice de l'énergie incidente la plus proche
|
|
1361
|
-
|
|
1362
|
-
|
|
1363
|
-
|
|
1366
|
+
index = int(e_inci) # index de colonne de la matrice de l'énergie incidente la plus proche
|
|
1367
|
+
if v == 10:
|
|
1368
|
+
matrice = matrice10_1
|
|
1369
|
+
elif v == 16:
|
|
1370
|
+
matrice = matrice16_1
|
|
1364
1371
|
e = ed[:,0]
|
|
1365
1372
|
|
|
1366
1373
|
elif e_inci <= 2000:
|
|
1367
1374
|
index = int((e_inci-200)/2)
|
|
1368
|
-
|
|
1369
|
-
|
|
1375
|
+
if v == 10:
|
|
1376
|
+
matrice = matrice10_2
|
|
1377
|
+
elif v == 16:
|
|
1378
|
+
matrice = matrice16_2
|
|
1370
1379
|
#taille_x = 901
|
|
1371
1380
|
e = ed[:,1]
|
|
1372
1381
|
|
|
@@ -1395,8 +1404,8 @@ def energie_dep_gamma(e_inci,*,matrice10_1=Matrice10_p_1,matrice10_2=Matrice10_p
|
|
|
1395
1404
|
if result > e_inci: result = e_inci
|
|
1396
1405
|
return result
|
|
1397
1406
|
|
|
1398
|
-
#for i in range(
|
|
1399
|
-
|
|
1407
|
+
#for i in range(10):
|
|
1408
|
+
# print(energie_dep_gamma(511,16))
|
|
1400
1409
|
|
|
1401
1410
|
|
|
1402
1411
|
if absolutePath:
|
TDCRPy-0.0.8/PKG-INFO
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: TDCRPy
|
|
3
|
+
Version: 0.0.8
|
|
4
|
+
Summary: TDCR model
|
|
5
|
+
Home-page: https://github.com/RomainCoulon/TDCRPy
|
|
6
|
+
Author: RomainCoulon (Romain Coulon)
|
|
7
|
+
Author-email: <romain.coulon@bipm.org>
|
|
8
|
+
License: UNKNOWN
|
|
9
|
+
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
+
Platform: UNKNOWN
|
|
11
|
+
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Natural Language :: English
|
|
15
|
+
Classifier: Natural Language :: French
|
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
|
17
|
+
Classifier: Operating System :: Unix
|
|
18
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
|
19
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
20
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
21
|
+
Description-Content-Type: text/markdown
|
|
22
|
+
License-File: LICENCE.md
|
|
23
|
+
|
|
24
|
+
# TDCRPy
|
|
25
|
+
|
|
26
|
+
TDCRPy is a Python code to calculate detection efficiency of a liquide scintillation counter using 3-photomultiplier tubes.
|
|
27
|
+
The calculation is based on the photo-physical model called of the Triple-to-Double-Coincidence-Ratio method (TDCR) [[1]](#1) and a Monte-Carlo sampling allowing to adress complexe decay schemes and radionuclide mixtures. The process is summarized in the figure below.
|
|
28
|
+
|
|
29
|
+
<img src="./FlowChart.jpg" alt="drawing" width="500"/>
|
|
30
|
+
|
|
31
|
+
## Nuclear decay
|
|
32
|
+
|
|
33
|
+
The code directly reads decay data from the Decay Data Evaluation Project (DDEP) web interface [[2]](#2) that is recommanded to be used by the radionuclide metrology community. The PenNuc format [[3]](#3) is used to simulate decays and the $\beta$ spectra from the BetaShape code [[4]](#4) are used. The BetaShape code estimates accurate $\beta$ spectra by taking the atomic exchange effect and also simulate accurately electron capture decay [[5]](#5). It has been demonstrated to offer significant improvement in the context of liquid scintillation counting [[6]](#6).
|
|
34
|
+
|
|
35
|
+
## Atomic relaxation
|
|
36
|
+
|
|
37
|
+
The atomic relaxation from missing electrons in the inner-shell following electron capture and internal conversion is simulated by ENSDF data on the DDEP web interface.
|
|
38
|
+
|
|
39
|
+
## Interaction
|
|
40
|
+
|
|
41
|
+
The interaction of $\gamma$ rays, electrons and positrons are simulated using response kernels calculated by the Monte-Carlo code MCNP6 developped by Los Alamos [[13]](#13).
|
|
42
|
+
|
|
43
|
+
## Scintillation
|
|
44
|
+
|
|
45
|
+
The stopping power of electrons between 20 keV and 1000 keV is a mixture of a radiative loss model [[7]](#7) and a collision model [[8]](#8) that has been validated agaisnt the NIST model ESTAR [[9]](#9) recommanded by the ICRU Report 37 [[10]](#10). At low energy - between 10 eV and 20 keV - the model from Tan and Xia [[11]](#11) is implemented.
|
|
46
|
+
|
|
47
|
+
The stopping power of $\alpha$ particles of energy comprises between 1 keV and 8 MeV comes from the NIST code ASTAR [[9]](#9) recommanded in the ICRU Report 49 [[12]](#12). For energy below 1 keV, an extrapolation is made.
|
|
48
|
+
|
|
49
|
+
## Statistical model
|
|
50
|
+
|
|
51
|
+
...
|
|
52
|
+
|
|
53
|
+
## References
|
|
54
|
+
|
|
55
|
+
<a id="1">[1]</a> Ryszard Broda, Krzysztof Pochwalski, Tomasz Radoszewski, Calculation of liquid-scintillation detector efficiency, *Applied Radiation and Isotopes* **39**:2, 1988, 159-164, https://doi.org/10.1016/0883-2889(88)90161-X
|
|
56
|
+
|
|
57
|
+
<b id="2">[2]</b> http://www.lnhb.fr/ddep_wg/
|
|
58
|
+
|
|
59
|
+
<c id="3">[3]</c> E. GarcÃa-Toraño, V. Peyres, F. Salvat, PenNuc: Monte Carlo simulation of the decay of radionuclides, *Computer Physics Communications* **245**, 2019, 106849 https://doi.org/10.1016/j.cpc.2019.08.002
|
|
60
|
+
|
|
61
|
+
<c id="4">[4]</c> X. Mougeot, Erratum: Reliability of usual assumptions in the calculation of $\beta$ and $\bar{\mu}$ spectra, *Physical Review C* **91**, 2015, 055504, https://doi.org/10.1103/PhysRevC.92.059902
|
|
62
|
+
|
|
63
|
+
<c id="5">[5]</c> X. Mougeot, Towards high-precision calculation of electron capture decays, *Applied Radiation and Isotopes* **154**, 2019, 108884, https://doi.org/10.1016/j.apradiso.2019.108884
|
|
64
|
+
|
|
65
|
+
<c id="6">[6]</c> K. Kossert, X. Mougeot, Improved activity standardization of <sup>90</sup>Sr/<sup>90</sup>Y by means of liquid scintillation counting, *Applied Radiation and Isotopes* **168**, 2021, 109478, https://doi.org/10.1016/j.apradiso.2020.109478
|
|
66
|
+
|
|
67
|
+
<c id="7">[7]</c> S.M. Seltzer, M.R. Berger, M. R., Evaluation of the collision stopping power of elements and compounds for electrons and positrons, *Applied Radiation and Isotopes* **33**:11, 1982, 1189-1218, https://doi.org/10.1016/0020-708x(82)90244-7
|
|
68
|
+
|
|
69
|
+
<c id="8">[8]</c> M.O. El-Ghossain, Calculations Of Stopping Power, And Range Of Electrons Interaction With Different Material And Human Body Parts, *International Journal of Scientific & Technology Research* **6**:1 2017. https://www.ijstr.org/final-print/jan2017/Calculations-Of-Stopping-Power-And-Range-Of-Electrons-Interaction-With-Different-Material-And-Human-Body-Parts.pdf
|
|
70
|
+
|
|
71
|
+
<c id="9">[9]</c> M.J. Berger, J.S. Coursey, M.A. Zucker and J. Chang,Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions, *NIST Standard Reference Database 124*, 2017, https://dx.doi.org/10.18434/T4NC7P
|
|
72
|
+
|
|
73
|
+
<c id="10">[10]</c> ICRU Report 37, *Stopping Powers for Electrons and Positrons*
|
|
74
|
+
|
|
75
|
+
<c id="11">[11]</c> Z. Tan, Y. Xia, Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20–20,000 eV, *Applied Radiation and Isotopes* **70**, 2012, 296-300, https://doi.org/10.1016/j.apradiso.2011.08.012
|
|
76
|
+
|
|
77
|
+
<c id="12">[12]</c> ICRU Report 49, *Stopping Power and Ranges for Protons and Alpha Particles*, https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/
|
|
78
|
+
|
|
79
|
+
<c id="13">[13]</c> https://mcnp.lanl.gov/
|
|
80
|
+
|
|
81
|
+
|
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: TDCRPy
|
|
3
|
+
Version: 0.0.8
|
|
4
|
+
Summary: TDCR model
|
|
5
|
+
Home-page: https://github.com/RomainCoulon/TDCRPy
|
|
6
|
+
Author: RomainCoulon (Romain Coulon)
|
|
7
|
+
Author-email: <romain.coulon@bipm.org>
|
|
8
|
+
License: UNKNOWN
|
|
9
|
+
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
+
Platform: UNKNOWN
|
|
11
|
+
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
|
+
Classifier: Intended Audience :: Science/Research
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Natural Language :: English
|
|
15
|
+
Classifier: Natural Language :: French
|
|
16
|
+
Classifier: Programming Language :: Python :: 3
|
|
17
|
+
Classifier: Operating System :: Unix
|
|
18
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
|
19
|
+
Classifier: Operating System :: Microsoft :: Windows
|
|
20
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
21
|
+
Description-Content-Type: text/markdown
|
|
22
|
+
License-File: LICENCE.md
|
|
23
|
+
|
|
24
|
+
# TDCRPy
|
|
25
|
+
|
|
26
|
+
TDCRPy is a Python code to calculate detection efficiency of a liquide scintillation counter using 3-photomultiplier tubes.
|
|
27
|
+
The calculation is based on the photo-physical model called of the Triple-to-Double-Coincidence-Ratio method (TDCR) [[1]](#1) and a Monte-Carlo sampling allowing to adress complexe decay schemes and radionuclide mixtures. The process is summarized in the figure below.
|
|
28
|
+
|
|
29
|
+
<img src="./FlowChart.jpg" alt="drawing" width="500"/>
|
|
30
|
+
|
|
31
|
+
## Nuclear decay
|
|
32
|
+
|
|
33
|
+
The code directly reads decay data from the Decay Data Evaluation Project (DDEP) web interface [[2]](#2) that is recommanded to be used by the radionuclide metrology community. The PenNuc format [[3]](#3) is used to simulate decays and the $\beta$ spectra from the BetaShape code [[4]](#4) are used. The BetaShape code estimates accurate $\beta$ spectra by taking the atomic exchange effect and also simulate accurately electron capture decay [[5]](#5). It has been demonstrated to offer significant improvement in the context of liquid scintillation counting [[6]](#6).
|
|
34
|
+
|
|
35
|
+
## Atomic relaxation
|
|
36
|
+
|
|
37
|
+
The atomic relaxation from missing electrons in the inner-shell following electron capture and internal conversion is simulated by ENSDF data on the DDEP web interface.
|
|
38
|
+
|
|
39
|
+
## Interaction
|
|
40
|
+
|
|
41
|
+
The interaction of $\gamma$ rays, electrons and positrons are simulated using response kernels calculated by the Monte-Carlo code MCNP6 developped by Los Alamos [[13]](#13).
|
|
42
|
+
|
|
43
|
+
## Scintillation
|
|
44
|
+
|
|
45
|
+
The stopping power of electrons between 20 keV and 1000 keV is a mixture of a radiative loss model [[7]](#7) and a collision model [[8]](#8) that has been validated agaisnt the NIST model ESTAR [[9]](#9) recommanded by the ICRU Report 37 [[10]](#10). At low energy - between 10 eV and 20 keV - the model from Tan and Xia [[11]](#11) is implemented.
|
|
46
|
+
|
|
47
|
+
The stopping power of $\alpha$ particles of energy comprises between 1 keV and 8 MeV comes from the NIST code ASTAR [[9]](#9) recommanded in the ICRU Report 49 [[12]](#12). For energy below 1 keV, an extrapolation is made.
|
|
48
|
+
|
|
49
|
+
## Statistical model
|
|
50
|
+
|
|
51
|
+
...
|
|
52
|
+
|
|
53
|
+
## References
|
|
54
|
+
|
|
55
|
+
<a id="1">[1]</a> Ryszard Broda, Krzysztof Pochwalski, Tomasz Radoszewski, Calculation of liquid-scintillation detector efficiency, *Applied Radiation and Isotopes* **39**:2, 1988, 159-164, https://doi.org/10.1016/0883-2889(88)90161-X
|
|
56
|
+
|
|
57
|
+
<b id="2">[2]</b> http://www.lnhb.fr/ddep_wg/
|
|
58
|
+
|
|
59
|
+
<c id="3">[3]</c> E. GarcÃa-Toraño, V. Peyres, F. Salvat, PenNuc: Monte Carlo simulation of the decay of radionuclides, *Computer Physics Communications* **245**, 2019, 106849 https://doi.org/10.1016/j.cpc.2019.08.002
|
|
60
|
+
|
|
61
|
+
<c id="4">[4]</c> X. Mougeot, Erratum: Reliability of usual assumptions in the calculation of $\beta$ and $\bar{\mu}$ spectra, *Physical Review C* **91**, 2015, 055504, https://doi.org/10.1103/PhysRevC.92.059902
|
|
62
|
+
|
|
63
|
+
<c id="5">[5]</c> X. Mougeot, Towards high-precision calculation of electron capture decays, *Applied Radiation and Isotopes* **154**, 2019, 108884, https://doi.org/10.1016/j.apradiso.2019.108884
|
|
64
|
+
|
|
65
|
+
<c id="6">[6]</c> K. Kossert, X. Mougeot, Improved activity standardization of <sup>90</sup>Sr/<sup>90</sup>Y by means of liquid scintillation counting, *Applied Radiation and Isotopes* **168**, 2021, 109478, https://doi.org/10.1016/j.apradiso.2020.109478
|
|
66
|
+
|
|
67
|
+
<c id="7">[7]</c> S.M. Seltzer, M.R. Berger, M. R., Evaluation of the collision stopping power of elements and compounds for electrons and positrons, *Applied Radiation and Isotopes* **33**:11, 1982, 1189-1218, https://doi.org/10.1016/0020-708x(82)90244-7
|
|
68
|
+
|
|
69
|
+
<c id="8">[8]</c> M.O. El-Ghossain, Calculations Of Stopping Power, And Range Of Electrons Interaction With Different Material And Human Body Parts, *International Journal of Scientific & Technology Research* **6**:1 2017. https://www.ijstr.org/final-print/jan2017/Calculations-Of-Stopping-Power-And-Range-Of-Electrons-Interaction-With-Different-Material-And-Human-Body-Parts.pdf
|
|
70
|
+
|
|
71
|
+
<c id="9">[9]</c> M.J. Berger, J.S. Coursey, M.A. Zucker and J. Chang,Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions, *NIST Standard Reference Database 124*, 2017, https://dx.doi.org/10.18434/T4NC7P
|
|
72
|
+
|
|
73
|
+
<c id="10">[10]</c> ICRU Report 37, *Stopping Powers for Electrons and Positrons*
|
|
74
|
+
|
|
75
|
+
<c id="11">[11]</c> Z. Tan, Y. Xia, Stopping power and mean free path for low-energy electrons in ten scintillators over energy range of 20–20,000 eV, *Applied Radiation and Isotopes* **70**, 2012, 296-300, https://doi.org/10.1016/j.apradiso.2011.08.012
|
|
76
|
+
|
|
77
|
+
<c id="12">[12]</c> ICRU Report 49, *Stopping Power and Ranges for Protons and Alpha Particles*, https://www.icru.org/report/stopping-power-and-ranges-for-protons-and-alpha-particles-report-49/
|
|
78
|
+
|
|
79
|
+
<c id="13">[13]</c> https://mcnp.lanl.gov/
|
|
80
|
+
|
|
81
|
+
|
|
@@ -2,28 +2,34 @@ from setuptools import setup, find_packages
|
|
|
2
2
|
import codecs
|
|
3
3
|
import os
|
|
4
4
|
|
|
5
|
-
VERSION = "0.0.
|
|
5
|
+
VERSION = "0.0.8"
|
|
6
6
|
DESCRIPTION = "TDCR model"
|
|
7
7
|
|
|
8
|
+
with open("README.md", "r") as f:
|
|
9
|
+
long_description = f.read()
|
|
10
|
+
|
|
8
11
|
setup(
|
|
9
12
|
name = "TDCRPy",
|
|
10
13
|
version = VERSION,
|
|
11
14
|
author = "RomainCoulon (Romain Coulon)",
|
|
12
15
|
author_email = "<romain.coulon@bipm.org>",
|
|
13
16
|
description = DESCRIPTION,
|
|
17
|
+
long_description=long_description,
|
|
18
|
+
long_description_content_type="text/markdown",
|
|
19
|
+
url="https://github.com/RomainCoulon/TDCRPy",
|
|
14
20
|
packages = find_packages(),
|
|
15
21
|
install_requires = ["numpy","scipy","sys","time","urllib","zipfile","re"],
|
|
16
22
|
keywords = ["python","TDCR","Monte-Carlo","radionuclide","scintillation","counting"],
|
|
17
23
|
classifiers=[
|
|
18
24
|
"Development Status :: 2 - Pre-Alpha",
|
|
19
25
|
"Intended Audience :: Science/Research",
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
26
|
+
"License :: OSI Approved :: MIT License",
|
|
27
|
+
"Natural Language :: English",
|
|
28
|
+
"Natural Language :: French",
|
|
23
29
|
"Programming Language :: Python :: 3",
|
|
24
30
|
"Operating System :: Unix",
|
|
25
31
|
"Operating System :: MacOS :: MacOS X",
|
|
26
32
|
"Operating System :: Microsoft :: Windows",
|
|
27
|
-
|
|
33
|
+
"Topic :: Scientific/Engineering :: Physics",
|
|
28
34
|
]
|
|
29
35
|
)
|
TDCRPy-0.0.6/PKG-INFO
DELETED
|
@@ -1,24 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: TDCRPy
|
|
3
|
-
Version: 0.0.6
|
|
4
|
-
Summary: TDCR model
|
|
5
|
-
Home-page: UNKNOWN
|
|
6
|
-
Author: RomainCoulon (Romain Coulon)
|
|
7
|
-
Author-email: <romain.coulon@bipm.org>
|
|
8
|
-
License: UNKNOWN
|
|
9
|
-
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
-
Platform: UNKNOWN
|
|
11
|
-
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
|
-
Classifier: Intended Audience :: Science/Research
|
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
-
Classifier: Natural Language :: English
|
|
15
|
-
Classifier: Natural Language :: French
|
|
16
|
-
Classifier: Programming Language :: Python :: 3
|
|
17
|
-
Classifier: Operating System :: Unix
|
|
18
|
-
Classifier: Operating System :: MacOS :: MacOS X
|
|
19
|
-
Classifier: Operating System :: Microsoft :: Windows
|
|
20
|
-
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
21
|
-
License-File: LICENCE.md
|
|
22
|
-
|
|
23
|
-
UNKNOWN
|
|
24
|
-
|
|
@@ -1,24 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: TDCRPy
|
|
3
|
-
Version: 0.0.6
|
|
4
|
-
Summary: TDCR model
|
|
5
|
-
Home-page: UNKNOWN
|
|
6
|
-
Author: RomainCoulon (Romain Coulon)
|
|
7
|
-
Author-email: <romain.coulon@bipm.org>
|
|
8
|
-
License: UNKNOWN
|
|
9
|
-
Keywords: python,TDCR,Monte-Carlo,radionuclide,scintillation,counting
|
|
10
|
-
Platform: UNKNOWN
|
|
11
|
-
Classifier: Development Status :: 2 - Pre-Alpha
|
|
12
|
-
Classifier: Intended Audience :: Science/Research
|
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
-
Classifier: Natural Language :: English
|
|
15
|
-
Classifier: Natural Language :: French
|
|
16
|
-
Classifier: Programming Language :: Python :: 3
|
|
17
|
-
Classifier: Operating System :: Unix
|
|
18
|
-
Classifier: Operating System :: MacOS :: MacOS X
|
|
19
|
-
Classifier: Operating System :: Microsoft :: Windows
|
|
20
|
-
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
21
|
-
License-File: LICENCE.md
|
|
22
|
-
|
|
23
|
-
UNKNOWN
|
|
24
|
-
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|