SURE-tools 2.2.12__tar.gz → 2.2.18__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {sure_tools-2.2.12 → sure_tools-2.2.18}/PKG-INFO +1 -1
  2. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/DensityFlow.py +79 -45
  3. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE_tools.egg-info/PKG-INFO +1 -1
  4. {sure_tools-2.2.12 → sure_tools-2.2.18}/setup.py +1 -1
  5. {sure_tools-2.2.12 → sure_tools-2.2.18}/LICENSE +0 -0
  6. {sure_tools-2.2.12 → sure_tools-2.2.18}/README.md +0 -0
  7. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/SURE.py +0 -0
  8. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/__init__.py +0 -0
  9. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/assembly/__init__.py +0 -0
  10. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/assembly/assembly.py +0 -0
  11. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/assembly/atlas.py +0 -0
  12. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/atac/__init__.py +0 -0
  13. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/atac/utils.py +0 -0
  14. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/codebook/__init__.py +0 -0
  15. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/codebook/codebook.py +0 -0
  16. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/flow/__init__.py +0 -0
  17. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/flow/flow_stats.py +0 -0
  18. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/flow/plot_quiver.py +0 -0
  19. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/perturb/__init__.py +0 -0
  20. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/perturb/perturb.py +0 -0
  21. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/utils/__init__.py +0 -0
  22. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/utils/custom_mlp.py +0 -0
  23. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/utils/queue.py +0 -0
  24. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE/utils/utils.py +0 -0
  25. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE_tools.egg-info/SOURCES.txt +0 -0
  26. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE_tools.egg-info/dependency_links.txt +0 -0
  27. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE_tools.egg-info/entry_points.txt +0 -0
  28. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE_tools.egg-info/requires.txt +0 -0
  29. {sure_tools-2.2.12 → sure_tools-2.2.18}/SURE_tools.egg-info/top_level.txt +0 -0
  30. {sure_tools-2.2.12 → sure_tools-2.2.18}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: SURE-tools
3
- Version: 2.2.12
3
+ Version: 2.2.18
4
4
  Summary: Succinct Representation of Single Cells
5
5
  Home-page: https://github.com/ZengFLab/SURE
6
6
  Author: Feng Zeng
@@ -59,12 +59,13 @@ class DensityFlow(nn.Module):
59
59
  input_size: int,
60
60
  codebook_size: int = 200,
61
61
  cell_factor_size: int = 0,
62
+ turn_off_cell_specific: bool = False,
62
63
  supervised_mode: bool = False,
63
64
  z_dim: int = 10,
64
65
  z_dist: Literal['normal','studentt','laplacian','cauchy','gumbel'] = 'gumbel',
65
- loss_func: Literal['negbinomial','poisson','multinomial','bernoulli'] = 'negbinomial',
66
+ loss_func: Literal['negbinomial','poisson','multinomial','bernoulli'] = 'multinomial',
66
67
  inverse_dispersion: float = 10.0,
67
- use_zeroinflate: bool = True,
68
+ use_zeroinflate: bool = False,
68
69
  hidden_layers: list = [500],
69
70
  hidden_layer_activation: Literal['relu','softplus','leakyrelu','linear'] = 'relu',
70
71
  nn_dropout: float = 0.1,
@@ -102,6 +103,7 @@ class DensityFlow(nn.Module):
102
103
  else:
103
104
  self.use_bias = [not zero_bias] * self.cell_factor_size
104
105
  #self.use_bias = not zero_bias
106
+ self.turn_off_cell_specific = turn_off_cell_specific
105
107
 
106
108
  self.codebook_weights = None
107
109
 
@@ -203,27 +205,51 @@ class DensityFlow(nn.Module):
203
205
  self.cell_factor_effect = nn.ModuleList()
204
206
  for i in np.arange(self.cell_factor_size):
205
207
  if self.use_bias[i]:
206
- self.cell_factor_effect.append(MLP(
207
- [self.latent_dim+1] + self.decoder_hidden_layers + [self.latent_dim],
208
- activation=activate_fct,
209
- output_activation=None,
210
- post_layer_fct=post_layer_fct,
211
- post_act_fct=post_act_fct,
212
- allow_broadcast=self.allow_broadcast,
213
- use_cuda=self.use_cuda,
208
+ if self.turn_off_cell_specific:
209
+ self.cell_factor_effect.append(MLP(
210
+ [1] + self.decoder_hidden_layers + [self.latent_dim],
211
+ activation=activate_fct,
212
+ output_activation=None,
213
+ post_layer_fct=post_layer_fct,
214
+ post_act_fct=post_act_fct,
215
+ allow_broadcast=self.allow_broadcast,
216
+ use_cuda=self.use_cuda,
217
+ )
218
+ )
219
+ else:
220
+ self.cell_factor_effect.append(MLP(
221
+ [self.latent_dim+1] + self.decoder_hidden_layers + [self.latent_dim],
222
+ activation=activate_fct,
223
+ output_activation=None,
224
+ post_layer_fct=post_layer_fct,
225
+ post_act_fct=post_act_fct,
226
+ allow_broadcast=self.allow_broadcast,
227
+ use_cuda=self.use_cuda,
228
+ )
214
229
  )
215
- )
216
230
  else:
217
- self.cell_factor_effect.append(ZeroBiasMLP(
218
- [self.latent_dim+1] + self.decoder_hidden_layers + [self.latent_dim],
219
- activation=activate_fct,
220
- output_activation=None,
221
- post_layer_fct=post_layer_fct,
222
- post_act_fct=post_act_fct,
223
- allow_broadcast=self.allow_broadcast,
224
- use_cuda=self.use_cuda,
231
+ if self.turn_off_cell_specific:
232
+ self.cell_factor_effect.append(ZeroBiasMLP(
233
+ [1] + self.decoder_hidden_layers + [self.latent_dim],
234
+ activation=activate_fct,
235
+ output_activation=None,
236
+ post_layer_fct=post_layer_fct,
237
+ post_act_fct=post_act_fct,
238
+ allow_broadcast=self.allow_broadcast,
239
+ use_cuda=self.use_cuda,
240
+ )
241
+ )
242
+ else:
243
+ self.cell_factor_effect.append(ZeroBiasMLP(
244
+ [self.latent_dim+1] + self.decoder_hidden_layers + [self.latent_dim],
245
+ activation=activate_fct,
246
+ output_activation=None,
247
+ post_layer_fct=post_layer_fct,
248
+ post_act_fct=post_act_fct,
249
+ allow_broadcast=self.allow_broadcast,
250
+ use_cuda=self.use_cuda,
251
+ )
225
252
  )
226
- )
227
253
 
228
254
  self.decoder_concentrate = MLP(
229
255
  [self.latent_dim] + self.decoder_hidden_layers + [self.input_size],
@@ -676,9 +702,17 @@ class DensityFlow(nn.Module):
676
702
  zus = None
677
703
  for i in np.arange(self.cell_factor_size):
678
704
  if i==0:
679
- zus = self.cell_factor_effect[i]([zns,us[:,i].reshape(-1,1)])
705
+ #if self.turn_off_cell_specific:
706
+ # zus = self.cell_factor_effect[i](us[:,i].reshape(-1,1))
707
+ #else:
708
+ # zus = self.cell_factor_effect[i]([zns,us[:,i].reshape(-1,1)])
709
+ zus = self._cell_response(zns, i, us)
680
710
  else:
681
- zus = zus + self.cell_factor_effect[i]([zns,us[:,i].reshape(-1,1)])
711
+ #if self.turn_off_cell_specific:
712
+ # zus = zus + self.cell_factor_effect[i](us[:,i].reshape(-1,1))
713
+ #else:
714
+ # zus = zus + self.cell_factor_effect[i]([zns,us[:,i].reshape(-1,1)])
715
+ zus = zus + self._cell_response(zns, i, us)
682
716
  return zus
683
717
 
684
718
  def _get_codebook_identity(self):
@@ -696,7 +730,7 @@ class DensityFlow(nn.Module):
696
730
  """
697
731
  Return the mean part of metacell codebook
698
732
  """
699
- cb = self._get_metacell_coordinates()
733
+ cb = self._get_codebook()
700
734
  cb = tensor_to_numpy(cb)
701
735
  return cb
702
736
 
@@ -820,12 +854,12 @@ class DensityFlow(nn.Module):
820
854
  us_i = us[:,pert_idx].reshape(-1,1)
821
855
 
822
856
  # factor effect of xs
823
- dzs0 = self.get_cell_response(xs, factor_idx=pert_idx, perturb=us_i)
857
+ dzs0 = self.get_cell_response(zs, factor_idx=pert_idx, perturb=us_i)
824
858
 
825
859
  # perturbation effect
826
860
  ps = np.ones_like(us_i)
827
861
  if np.sum(np.abs(ps-us_i))>=1:
828
- dzs = self.get_cell_response(xs, factor_idx=pert_idx, perturb=ps)
862
+ dzs = self.get_cell_response(zs, factor_idx=pert_idx, perturb=ps)
829
863
  zs = zs + dzs0 + dzs
830
864
  else:
831
865
  zs = zs + dzs0
@@ -842,47 +876,48 @@ class DensityFlow(nn.Module):
842
876
 
843
877
  return counts, zs
844
878
 
845
- def _cell_response(self, xs, factor_idx, perturb):
879
+ def _cell_response(self, zs, perturb_idx, perturb):
846
880
  #zns,_ = self.encoder_zn(xs)
847
- zns,_ = self._get_basal_embedding(xs)
881
+ #zns,_ = self._get_basal_embedding(xs)
882
+ zns = zs
848
883
  if perturb.ndim==2:
849
- ms = self.cell_factor_effect[factor_idx]([zns, perturb])
884
+ if self.turn_off_cell_specific:
885
+ ms = self.cell_factor_effect[perturb_idx](perturb)
886
+ else:
887
+ ms = self.cell_factor_effect[perturb_idx]([zns, perturb])
850
888
  else:
851
- ms = self.cell_factor_effect[factor_idx]([zns, perturb.reshape(-1,1)])
889
+ if self.turn_off_cell_specific:
890
+ ms = self.cell_factor_effect[perturb_idx](perturb.reshape(-1,1))
891
+ else:
892
+ ms = self.cell_factor_effect[perturb_idx]([zns, perturb.reshape(-1,1)])
852
893
 
853
894
  return ms
854
895
 
855
896
  def get_cell_response(self,
856
- xs,
857
- factor_idx,
858
- perturb,
897
+ zs,
898
+ perturb_idx,
899
+ perturb_us,
859
900
  batch_size: int = 1024):
860
901
  """
861
902
  Return cells' changes in the latent space induced by specific perturbation of a factor
862
903
 
863
904
  """
864
- xs = self.preprocess(xs)
865
- xs = convert_to_tensor(xs, device=self.get_device())
866
- ps = convert_to_tensor(perturb, device=self.get_device())
867
- dataset = CustomDataset2(xs,ps)
905
+ #xs = self.preprocess(xs)
906
+ zs = convert_to_tensor(zs, device=self.get_device())
907
+ ps = convert_to_tensor(perturb_us, device=self.get_device())
908
+ dataset = CustomDataset2(zs,ps)
868
909
  dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
869
910
 
870
911
  Z = []
871
912
  with tqdm(total=len(dataloader), desc='', unit='batch') as pbar:
872
- for X_batch, P_batch, _ in dataloader:
873
- zns = self._cell_response(X_batch, factor_idx, P_batch)
913
+ for Z_batch, P_batch, _ in dataloader:
914
+ zns = self._cell_response(Z_batch, perturb_idx, P_batch)
874
915
  Z.append(tensor_to_numpy(zns))
875
916
  pbar.update(1)
876
917
 
877
918
  Z = np.concatenate(Z)
878
919
  return Z
879
920
 
880
- def get_metacell_response(self, factor_idx, perturb):
881
- zs = self._get_codebook()
882
- ps = convert_to_tensor(perturb, device=self.get_device())
883
- ms = self.cell_factor_effect[factor_idx]([zs,ps])
884
- return tensor_to_numpy(ms)
885
-
886
921
  def _get_expression_response(self, delta_zs):
887
922
  return self.decoder_concentrate(delta_zs)
888
923
 
@@ -1343,5 +1378,4 @@ def main():
1343
1378
 
1344
1379
 
1345
1380
  if __name__ == "__main__":
1346
-
1347
1381
  main()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: SURE-tools
3
- Version: 2.2.12
3
+ Version: 2.2.18
4
4
  Summary: Succinct Representation of Single Cells
5
5
  Home-page: https://github.com/ZengFLab/SURE
6
6
  Author: Feng Zeng
@@ -5,7 +5,7 @@ with open("README.md", "r") as fh:
5
5
 
6
6
  setup(
7
7
  name='SURE-tools',
8
- version='2.2.12',
8
+ version='2.2.18',
9
9
  description='Succinct Representation of Single Cells',
10
10
  long_description=long_description,
11
11
  long_description_content_type="text/markdown",
File without changes
File without changes
File without changes
File without changes