SURE-tools 2.1.59__tar.gz → 2.1.64__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of SURE-tools might be problematic. Click here for more details.

Files changed (30) hide show
  1. {sure_tools-2.1.59 → sure_tools-2.1.64}/PKG-INFO +1 -1
  2. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/PerturbFlow.py +15 -14
  3. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE_tools.egg-info/PKG-INFO +1 -1
  4. {sure_tools-2.1.59 → sure_tools-2.1.64}/setup.py +1 -1
  5. {sure_tools-2.1.59 → sure_tools-2.1.64}/LICENSE +0 -0
  6. {sure_tools-2.1.59 → sure_tools-2.1.64}/README.md +0 -0
  7. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/SURE.py +0 -0
  8. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/__init__.py +0 -0
  9. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/assembly/__init__.py +0 -0
  10. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/assembly/assembly.py +0 -0
  11. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/assembly/atlas.py +0 -0
  12. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/atac/__init__.py +0 -0
  13. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/atac/utils.py +0 -0
  14. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/codebook/__init__.py +0 -0
  15. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/codebook/codebook.py +0 -0
  16. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/flow/__init__.py +0 -0
  17. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/flow/flow_stats.py +0 -0
  18. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/flow/plot_quiver.py +0 -0
  19. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/perturb/__init__.py +0 -0
  20. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/perturb/perturb.py +0 -0
  21. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/utils/__init__.py +0 -0
  22. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/utils/custom_mlp.py +0 -0
  23. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/utils/queue.py +0 -0
  24. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE/utils/utils.py +0 -0
  25. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE_tools.egg-info/SOURCES.txt +0 -0
  26. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE_tools.egg-info/dependency_links.txt +0 -0
  27. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE_tools.egg-info/entry_points.txt +0 -0
  28. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE_tools.egg-info/requires.txt +0 -0
  29. {sure_tools-2.1.59 → sure_tools-2.1.64}/SURE_tools.egg-info/top_level.txt +0 -0
  30. {sure_tools-2.1.59 → sure_tools-2.1.64}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: SURE-tools
3
- Version: 2.1.59
3
+ Version: 2.1.64
4
4
  Summary: Succinct Representation of Single Cells
5
5
  Home-page: https://github.com/ZengFLab/SURE
6
6
  Author: Feng Zeng
@@ -351,7 +351,7 @@ class PerturbFlow(nn.Module):
351
351
 
352
352
  zs = zns
353
353
  concentrate = self.decoder_concentrate(zs)
354
- if self.loss_func in ['bernoulli','negbinomial']:
354
+ if self.loss_func in ['bernoulli']:
355
355
  log_theta = concentrate
356
356
  else:
357
357
  rate = concentrate.exp()
@@ -361,9 +361,9 @@ class PerturbFlow(nn.Module):
361
361
 
362
362
  if self.loss_func == 'negbinomial':
363
363
  if self.use_zeroinflate:
364
- pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, logits=log_theta),gate_logits=gate_logits).to_event(1), obs=xs)
364
+ pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, probs=theta),gate_logits=gate_logits).to_event(1), obs=xs)
365
365
  else:
366
- pyro.sample('x', dist.NegativeBinomial(total_count=total_count, logits=log_theta).to_event(1), obs=xs)
366
+ pyro.sample('x', dist.NegativeBinomial(total_count=total_count, probs=theta).to_event(1), obs=xs)
367
367
  elif self.loss_func == 'poisson':
368
368
  if self.use_zeroinflate:
369
369
  pyro.sample('x', dist.ZeroInflatedDistribution(dist.Poisson(rate=rate),gate_logits=gate_logits).to_event(1), obs=xs.round())
@@ -435,7 +435,7 @@ class PerturbFlow(nn.Module):
435
435
  zs = zns
436
436
 
437
437
  concentrate = self.decoder_concentrate(zs)
438
- if self.loss_func in ['bernoulli','negbinomial']:
438
+ if self.loss_func in ['bernoulli']:
439
439
  log_theta = concentrate
440
440
  else:
441
441
  rate = concentrate.exp()
@@ -445,9 +445,9 @@ class PerturbFlow(nn.Module):
445
445
 
446
446
  if self.loss_func == 'negbinomial':
447
447
  if self.use_zeroinflate:
448
- pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, logits=log_theta),gate_logits=gate_logits).to_event(1), obs=xs)
448
+ pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, probs=theta),gate_logits=gate_logits).to_event(1), obs=xs)
449
449
  else:
450
- pyro.sample('x', dist.NegativeBinomial(total_count=total_count, logits=log_theta).to_event(1), obs=xs)
450
+ pyro.sample('x', dist.NegativeBinomial(total_count=total_count, probs=theta).to_event(1), obs=xs)
451
451
  elif self.loss_func == 'poisson':
452
452
  if self.use_zeroinflate:
453
453
  pyro.sample('x', dist.ZeroInflatedDistribution(dist.Poisson(rate=rate),gate_logits=gate_logits).to_event(1), obs=xs.round())
@@ -531,7 +531,7 @@ class PerturbFlow(nn.Module):
531
531
  zs = zns
532
532
 
533
533
  concentrate = self.decoder_concentrate(zs)
534
- if self.loss_func in ['bernoulli','negbinomial']:
534
+ if self.loss_func in ['bernoulli']:
535
535
  log_theta = concentrate
536
536
  else:
537
537
  rate = concentrate.exp()
@@ -541,9 +541,9 @@ class PerturbFlow(nn.Module):
541
541
 
542
542
  if self.loss_func == 'negbinomial':
543
543
  if self.use_zeroinflate:
544
- pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, logits=log_theta),gate_logits=gate_logits).to_event(1), obs=xs)
544
+ pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, probs=theta),gate_logits=gate_logits).to_event(1), obs=xs)
545
545
  else:
546
- pyro.sample('x', dist.NegativeBinomial(total_count=total_count, logits=log_theta).to_event(1), obs=xs)
546
+ pyro.sample('x', dist.NegativeBinomial(total_count=total_count, probs=theta).to_event(1), obs=xs)
547
547
  elif self.loss_func == 'poisson':
548
548
  if self.use_zeroinflate:
549
549
  pyro.sample('x', dist.ZeroInflatedDistribution(dist.Poisson(rate=rate),gate_logits=gate_logits).to_event(1), obs=xs.round())
@@ -637,7 +637,7 @@ class PerturbFlow(nn.Module):
637
637
  zs = zns
638
638
 
639
639
  concentrate = self.decoder_concentrate(zs)
640
- if self.loss_func in ['bernoulli','negbinomial']:
640
+ if self.loss_func in ['bernoulli']:
641
641
  log_theta = concentrate
642
642
  else:
643
643
  rate = concentrate.exp()
@@ -647,9 +647,9 @@ class PerturbFlow(nn.Module):
647
647
 
648
648
  if self.loss_func == 'negbinomial':
649
649
  if self.use_zeroinflate:
650
- pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, logits=log_theta),gate_logits=gate_logits).to_event(1), obs=xs)
650
+ pyro.sample('x', dist.ZeroInflatedDistribution(dist.NegativeBinomial(total_count=total_count, probs=theta),gate_logits=gate_logits).to_event(1), obs=xs)
651
651
  else:
652
- pyro.sample('x', dist.NegativeBinomial(total_count=total_count, logits=log_theta).to_event(1), obs=xs)
652
+ pyro.sample('x', dist.NegativeBinomial(total_count=total_count, probs=theta).to_event(1), obs=xs)
653
653
  elif self.loss_func == 'poisson':
654
654
  if self.use_zeroinflate:
655
655
  pyro.sample('x', dist.ZeroInflatedDistribution(dist.Poisson(rate=rate),gate_logits=gate_logits).to_event(1), obs=xs.round())
@@ -909,16 +909,17 @@ class PerturbFlow(nn.Module):
909
909
  use_sampler: bool = False):
910
910
 
911
911
  zs = convert_to_tensor(zs, device=self.get_device())
912
- ls = zs
913
912
 
914
913
  if self.loss_func in ['multinomial','poisson']:
915
- assert library_sizes!=None, 'Library sizes are required for multinomial!'
914
+ assert library_sizes is not None, 'Library sizes are required for multinomial!'
916
915
 
917
916
  if type(library_sizes) == list:
918
917
  library_sizes = np.array(library_sizes).view(-1,1)
919
918
  elif len(library_sizes.shape)==1:
920
919
  library_sizes = library_sizes.view(-1,1)
921
920
  ls = convert_to_tensor(library_sizes, device=self.get_device)
921
+ else:
922
+ ls = zs
922
923
 
923
924
  dataset = CustomDataset2(zs,ls)
924
925
  dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: SURE-tools
3
- Version: 2.1.59
3
+ Version: 2.1.64
4
4
  Summary: Succinct Representation of Single Cells
5
5
  Home-page: https://github.com/ZengFLab/SURE
6
6
  Author: Feng Zeng
@@ -5,7 +5,7 @@ with open("README.md", "r") as fh:
5
5
 
6
6
  setup(
7
7
  name='SURE-tools',
8
- version='2.1.59',
8
+ version='2.1.64',
9
9
  description='Succinct Representation of Single Cells',
10
10
  long_description=long_description,
11
11
  long_description_content_type="text/markdown",
File without changes
File without changes
File without changes
File without changes