SURE-tools 2.1.4__tar.gz → 2.1.6__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of SURE-tools might be problematic. Click here for more details.
- {sure_tools-2.1.4 → sure_tools-2.1.6}/PKG-INFO +1 -1
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/PerturbFlow.py +49 -124
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/SURE.py +44 -79
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE_tools.egg-info/PKG-INFO +1 -1
- {sure_tools-2.1.4 → sure_tools-2.1.6}/setup.py +1 -1
- {sure_tools-2.1.4 → sure_tools-2.1.6}/LICENSE +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/README.md +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/__init__.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/assembly/__init__.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/assembly/assembly.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/assembly/atlas.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/atac/__init__.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/atac/utils.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/codebook/__init__.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/codebook/codebook.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/flow/__init__.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/flow/flow_stats.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/flow/plot_quiver.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/utils/__init__.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/utils/custom_mlp.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/utils/queue.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE/utils/utils.py +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE_tools.egg-info/SOURCES.txt +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE_tools.egg-info/dependency_links.txt +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE_tools.egg-info/entry_points.txt +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE_tools.egg-info/requires.txt +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/SURE_tools.egg-info/top_level.txt +0 -0
- {sure_tools-2.1.4 → sure_tools-2.1.6}/setup.cfg +0 -0
|
@@ -55,44 +55,6 @@ def set_random_seed(seed):
|
|
|
55
55
|
pyro.set_rng_seed(seed)
|
|
56
56
|
|
|
57
57
|
class PerturbFlow(nn.Module):
|
|
58
|
-
"""SUccinct REpresentation of single-omics cells
|
|
59
|
-
|
|
60
|
-
Parameters
|
|
61
|
-
----------
|
|
62
|
-
inpute_size
|
|
63
|
-
Number of features (e.g., genes, peaks, proteins, etc.) per cell.
|
|
64
|
-
codebook_size
|
|
65
|
-
Number of metacells.
|
|
66
|
-
cell_factor_size
|
|
67
|
-
Number of cell-level factors.
|
|
68
|
-
z_dim
|
|
69
|
-
Dimensionality of latent states and metacells.
|
|
70
|
-
hidden_layers
|
|
71
|
-
A list give the numbers of neurons for each hidden layer.
|
|
72
|
-
loss_func
|
|
73
|
-
The likelihood model for single-cell data generation.
|
|
74
|
-
|
|
75
|
-
One of the following:
|
|
76
|
-
* ``'negbinomial'`` - negative binomial distribution (default)
|
|
77
|
-
* ``'poisson'`` - poisson distribution
|
|
78
|
-
* ``'multinomial'`` - multinomial distribution
|
|
79
|
-
z_dist
|
|
80
|
-
The distribution model for latent states.
|
|
81
|
-
|
|
82
|
-
One of the following:
|
|
83
|
-
* ``'normal'`` - normal distribution
|
|
84
|
-
* ``'laplacian'`` - Laplacian distribution
|
|
85
|
-
* ``'studentt'`` - Student-t distribution.
|
|
86
|
-
use_cuda
|
|
87
|
-
A boolean option for switching on cuda device.
|
|
88
|
-
|
|
89
|
-
Examples
|
|
90
|
-
--------
|
|
91
|
-
>>>
|
|
92
|
-
>>>
|
|
93
|
-
>>>
|
|
94
|
-
|
|
95
|
-
"""
|
|
96
58
|
def __init__(self,
|
|
97
59
|
input_size: int,
|
|
98
60
|
codebook_size: int = 200,
|
|
@@ -447,7 +409,6 @@ class PerturbFlow(nn.Module):
|
|
|
447
409
|
zns = pyro.sample('zn', dist.Gumbel(zn_loc, zn_scale).to_event(1))
|
|
448
410
|
|
|
449
411
|
if self.cell_factor_size>0:
|
|
450
|
-
#zus = self.decoder_undesired([zns,us])
|
|
451
412
|
zus = None
|
|
452
413
|
for i in np.arange(self.cell_factor_size):
|
|
453
414
|
if i==0:
|
|
@@ -643,7 +604,6 @@ class PerturbFlow(nn.Module):
|
|
|
643
604
|
zns = pyro.sample('zn', dist.Gumbel(zn_loc, zn_scale).to_event(1), obs=embeds)
|
|
644
605
|
|
|
645
606
|
if self.cell_factor_size>0:
|
|
646
|
-
#zus = self.decoder_undesired([zns,us])
|
|
647
607
|
zus = None
|
|
648
608
|
for i in np.arange(self.cell_factor_size):
|
|
649
609
|
if i==0:
|
|
@@ -710,7 +670,7 @@ class PerturbFlow(nn.Module):
|
|
|
710
670
|
xs,
|
|
711
671
|
batch_size: int = 1024):
|
|
712
672
|
"""
|
|
713
|
-
Return cells' latent representations
|
|
673
|
+
Return cells' basis latent representations
|
|
714
674
|
|
|
715
675
|
Parameters
|
|
716
676
|
----------
|
|
@@ -731,7 +691,7 @@ class PerturbFlow(nn.Module):
|
|
|
731
691
|
Z = []
|
|
732
692
|
with tqdm(total=len(dataloader), desc='', unit='batch') as pbar:
|
|
733
693
|
for X_batch, _ in dataloader:
|
|
734
|
-
zns = self.
|
|
694
|
+
zns = self._get_basis_embedding(X_batch)
|
|
735
695
|
Z.append(tensor_to_numpy(zns))
|
|
736
696
|
pbar.update(1)
|
|
737
697
|
|
|
@@ -858,7 +818,7 @@ class PerturbFlow(nn.Module):
|
|
|
858
818
|
delta_zs,
|
|
859
819
|
batch_size: int = 1024):
|
|
860
820
|
"""
|
|
861
|
-
Return cells' changes in the
|
|
821
|
+
Return cells' changes in the feature space induced by specific perturbation of a factor
|
|
862
822
|
|
|
863
823
|
"""
|
|
864
824
|
delta_zs = convert_to_tensor(delta_zs, device=self.get_device())
|
|
@@ -1083,24 +1043,18 @@ def parse_args():
|
|
|
1083
1043
|
help="the file for the record of cell-level factors",
|
|
1084
1044
|
)
|
|
1085
1045
|
parser.add_argument(
|
|
1086
|
-
"-
|
|
1087
|
-
"--
|
|
1088
|
-
default=
|
|
1089
|
-
type=
|
|
1090
|
-
help="
|
|
1091
|
-
)
|
|
1092
|
-
parser.add_argument(
|
|
1093
|
-
"-64",
|
|
1094
|
-
"--float64",
|
|
1095
|
-
action="store_true",
|
|
1096
|
-
help="use double float precision",
|
|
1046
|
+
"-bs",
|
|
1047
|
+
"--batch-size",
|
|
1048
|
+
default=1000,
|
|
1049
|
+
type=int,
|
|
1050
|
+
help="number of cells to be considered in a batch",
|
|
1097
1051
|
)
|
|
1098
1052
|
parser.add_argument(
|
|
1099
|
-
"
|
|
1100
|
-
|
|
1101
|
-
|
|
1102
|
-
|
|
1103
|
-
help="
|
|
1053
|
+
"-lr",
|
|
1054
|
+
"--learning-rate",
|
|
1055
|
+
default=0.0001,
|
|
1056
|
+
type=float,
|
|
1057
|
+
help="learning rate for Adam optimizer",
|
|
1104
1058
|
)
|
|
1105
1059
|
parser.add_argument(
|
|
1106
1060
|
"-cs",
|
|
@@ -1109,6 +1063,13 @@ def parse_args():
|
|
|
1109
1063
|
type=int,
|
|
1110
1064
|
help="size of vector quantization codebook",
|
|
1111
1065
|
)
|
|
1066
|
+
parser.add_argument(
|
|
1067
|
+
"--z-dist",
|
|
1068
|
+
default='gumbel',
|
|
1069
|
+
type=str,
|
|
1070
|
+
choices=['normal','laplacian','studentt','gumbel','cauchy'],
|
|
1071
|
+
help="distribution model for latent representation",
|
|
1072
|
+
)
|
|
1112
1073
|
parser.add_argument(
|
|
1113
1074
|
"-zd",
|
|
1114
1075
|
"--z-dim",
|
|
@@ -1116,6 +1077,27 @@ def parse_args():
|
|
|
1116
1077
|
type=int,
|
|
1117
1078
|
help="size of the tensor representing the latent variable z variable",
|
|
1118
1079
|
)
|
|
1080
|
+
parser.add_argument(
|
|
1081
|
+
"-likeli",
|
|
1082
|
+
"--likelihood",
|
|
1083
|
+
default='negbinomial',
|
|
1084
|
+
type=str,
|
|
1085
|
+
choices=['negbinomial', 'multinomial', 'poisson', 'bernoulli'],
|
|
1086
|
+
help="specify the distribution likelihood function",
|
|
1087
|
+
)
|
|
1088
|
+
parser.add_argument(
|
|
1089
|
+
"-zi",
|
|
1090
|
+
"--zeroinflate",
|
|
1091
|
+
action="store_true",
|
|
1092
|
+
help="use zero-inflated estimation",
|
|
1093
|
+
)
|
|
1094
|
+
parser.add_argument(
|
|
1095
|
+
"-id",
|
|
1096
|
+
"--inverse-dispersion",
|
|
1097
|
+
default=10.0,
|
|
1098
|
+
type=float,
|
|
1099
|
+
help="inverse dispersion prior for negative binomial",
|
|
1100
|
+
)
|
|
1119
1101
|
parser.add_argument(
|
|
1120
1102
|
"-hl",
|
|
1121
1103
|
"--hidden-layers",
|
|
@@ -1150,18 +1132,10 @@ def parse_args():
|
|
|
1150
1132
|
help="post functions for activation layers, could be none or dropout, default is 'none'",
|
|
1151
1133
|
)
|
|
1152
1134
|
parser.add_argument(
|
|
1153
|
-
"-
|
|
1154
|
-
"--
|
|
1155
|
-
|
|
1156
|
-
|
|
1157
|
-
help="inverse dispersion prior for negative binomial",
|
|
1158
|
-
)
|
|
1159
|
-
parser.add_argument(
|
|
1160
|
-
"-lr",
|
|
1161
|
-
"--learning-rate",
|
|
1162
|
-
default=0.0001,
|
|
1163
|
-
type=float,
|
|
1164
|
-
help="learning rate for Adam optimizer",
|
|
1135
|
+
"-64",
|
|
1136
|
+
"--float64",
|
|
1137
|
+
action="store_true",
|
|
1138
|
+
help="use double float precision",
|
|
1165
1139
|
)
|
|
1166
1140
|
parser.add_argument(
|
|
1167
1141
|
"-dr",
|
|
@@ -1182,50 +1156,7 @@ def parse_args():
|
|
|
1182
1156
|
default=0.95,
|
|
1183
1157
|
type=float,
|
|
1184
1158
|
help="beta-1 parameter for Adam optimizer",
|
|
1185
|
-
)
|
|
1186
|
-
parser.add_argument(
|
|
1187
|
-
"-bs",
|
|
1188
|
-
"--batch-size",
|
|
1189
|
-
default=1000,
|
|
1190
|
-
type=int,
|
|
1191
|
-
help="number of cells to be considered in a batch",
|
|
1192
|
-
)
|
|
1193
|
-
parser.add_argument(
|
|
1194
|
-
"-gp",
|
|
1195
|
-
"--gate-prior",
|
|
1196
|
-
default=0.6,
|
|
1197
|
-
type=float,
|
|
1198
|
-
help="gate prior for zero-inflated model",
|
|
1199
|
-
)
|
|
1200
|
-
parser.add_argument(
|
|
1201
|
-
"-likeli",
|
|
1202
|
-
"--likelihood",
|
|
1203
|
-
default='negbinomial',
|
|
1204
|
-
type=str,
|
|
1205
|
-
choices=['negbinomial', 'multinomial', 'poisson', 'gaussian','lognormal'],
|
|
1206
|
-
help="specify the distribution likelihood function",
|
|
1207
|
-
)
|
|
1208
|
-
parser.add_argument(
|
|
1209
|
-
"-dirichlet",
|
|
1210
|
-
"--use-dirichlet",
|
|
1211
|
-
action="store_true",
|
|
1212
|
-
help="use Dirichlet distribution over gene frequency",
|
|
1213
|
-
)
|
|
1214
|
-
parser.add_argument(
|
|
1215
|
-
"-mass",
|
|
1216
|
-
"--dirichlet-mass",
|
|
1217
|
-
default=1,
|
|
1218
|
-
type=float,
|
|
1219
|
-
help="mass param for dirichlet model",
|
|
1220
|
-
)
|
|
1221
|
-
parser.add_argument(
|
|
1222
|
-
"-zi",
|
|
1223
|
-
"--zero-inflation",
|
|
1224
|
-
default='exact',
|
|
1225
|
-
type=str,
|
|
1226
|
-
choices=['none','exact','inexact'],
|
|
1227
|
-
help="use zero-inflated estimation",
|
|
1228
|
-
)
|
|
1159
|
+
)
|
|
1229
1160
|
parser.add_argument(
|
|
1230
1161
|
"--seed",
|
|
1231
1162
|
default=None,
|
|
@@ -1266,29 +1197,23 @@ def main():
|
|
|
1266
1197
|
input_size = xs.shape[1]
|
|
1267
1198
|
cell_factor_size = 0 if us is None else us.shape[1]
|
|
1268
1199
|
|
|
1269
|
-
latent_dist = args.z_dist
|
|
1270
|
-
|
|
1271
1200
|
###########################################
|
|
1272
1201
|
perturbflow = PerturbFlow(
|
|
1273
1202
|
input_size=input_size,
|
|
1274
1203
|
cell_factor_size=cell_factor_size,
|
|
1275
1204
|
inverse_dispersion=args.inverse_dispersion,
|
|
1276
|
-
|
|
1205
|
+
z_dim=args.z_dim,
|
|
1277
1206
|
hidden_layers=args.hidden_layers,
|
|
1278
1207
|
hidden_layer_activation=args.hidden_layer_activation,
|
|
1279
1208
|
use_cuda=args.cuda,
|
|
1280
1209
|
config_enum=args.enum_discrete,
|
|
1281
|
-
|
|
1282
|
-
zero_inflation=args.zero_inflation,
|
|
1283
|
-
gate_prior=args.gate_prior,
|
|
1284
|
-
delta=args.delta,
|
|
1210
|
+
use_zeroinflate=args.zeroinflate,
|
|
1285
1211
|
loss_func=args.likelihood,
|
|
1286
|
-
dirichlet_mass=args.dirichlet_mass,
|
|
1287
1212
|
nn_dropout=args.layer_dropout_rate,
|
|
1288
1213
|
post_layer_fct=args.post_layer_function,
|
|
1289
1214
|
post_act_fct=args.post_activation_function,
|
|
1290
1215
|
codebook_size=args.codebook_size,
|
|
1291
|
-
|
|
1216
|
+
z_dist = args.z_dist,
|
|
1292
1217
|
dtype=dtype,
|
|
1293
1218
|
)
|
|
1294
1219
|
|
|
@@ -1004,24 +1004,18 @@ def parse_args():
|
|
|
1004
1004
|
help="the file for the record of cell-level factors",
|
|
1005
1005
|
)
|
|
1006
1006
|
parser.add_argument(
|
|
1007
|
-
"-
|
|
1008
|
-
"--
|
|
1009
|
-
default=
|
|
1010
|
-
type=
|
|
1011
|
-
help="
|
|
1012
|
-
)
|
|
1013
|
-
parser.add_argument(
|
|
1014
|
-
"-64",
|
|
1015
|
-
"--float64",
|
|
1016
|
-
action="store_true",
|
|
1017
|
-
help="use double float precision",
|
|
1007
|
+
"-bs",
|
|
1008
|
+
"--batch-size",
|
|
1009
|
+
default=1000,
|
|
1010
|
+
type=int,
|
|
1011
|
+
help="number of cells to be considered in a batch",
|
|
1018
1012
|
)
|
|
1019
1013
|
parser.add_argument(
|
|
1020
|
-
"
|
|
1021
|
-
|
|
1022
|
-
|
|
1023
|
-
|
|
1024
|
-
help="
|
|
1014
|
+
"-lr",
|
|
1015
|
+
"--learning-rate",
|
|
1016
|
+
default=0.0001,
|
|
1017
|
+
type=float,
|
|
1018
|
+
help="learning rate for Adam optimizer",
|
|
1025
1019
|
)
|
|
1026
1020
|
parser.add_argument(
|
|
1027
1021
|
"-cs",
|
|
@@ -1030,6 +1024,13 @@ def parse_args():
|
|
|
1030
1024
|
type=int,
|
|
1031
1025
|
help="size of vector quantization codebook",
|
|
1032
1026
|
)
|
|
1027
|
+
parser.add_argument(
|
|
1028
|
+
"--z-dist",
|
|
1029
|
+
default='gumbel',
|
|
1030
|
+
type=str,
|
|
1031
|
+
choices=['normal','laplacian','studentt','cauchy','gumbel'],
|
|
1032
|
+
help="distribution model for latent representation",
|
|
1033
|
+
)
|
|
1033
1034
|
parser.add_argument(
|
|
1034
1035
|
"-zd",
|
|
1035
1036
|
"--z-dim",
|
|
@@ -1037,6 +1038,27 @@ def parse_args():
|
|
|
1037
1038
|
type=int,
|
|
1038
1039
|
help="size of the tensor representing the latent variable z variable",
|
|
1039
1040
|
)
|
|
1041
|
+
parser.add_argument(
|
|
1042
|
+
"-likeli",
|
|
1043
|
+
"--likelihood",
|
|
1044
|
+
default='negbinomial',
|
|
1045
|
+
type=str,
|
|
1046
|
+
choices=['negbinomial', 'multinomial', 'poisson', 'bernoulli'],
|
|
1047
|
+
help="specify the distribution likelihood function",
|
|
1048
|
+
)
|
|
1049
|
+
parser.add_argument(
|
|
1050
|
+
"-zi",
|
|
1051
|
+
"--zeroinflate",
|
|
1052
|
+
action="store_true",
|
|
1053
|
+
help="use zeroinflation",
|
|
1054
|
+
)
|
|
1055
|
+
parser.add_argument(
|
|
1056
|
+
"-id",
|
|
1057
|
+
"--inverse-dispersion",
|
|
1058
|
+
default=10.0,
|
|
1059
|
+
type=float,
|
|
1060
|
+
help="inverse dispersion prior for negative binomial",
|
|
1061
|
+
)
|
|
1040
1062
|
parser.add_argument(
|
|
1041
1063
|
"-hl",
|
|
1042
1064
|
"--hidden-layers",
|
|
@@ -1070,20 +1092,6 @@ def parse_args():
|
|
|
1070
1092
|
type=str,
|
|
1071
1093
|
help="post functions for activation layers, could be none or dropout, default is 'none'",
|
|
1072
1094
|
)
|
|
1073
|
-
parser.add_argument(
|
|
1074
|
-
"-id",
|
|
1075
|
-
"--inverse-dispersion",
|
|
1076
|
-
default=10.0,
|
|
1077
|
-
type=float,
|
|
1078
|
-
help="inverse dispersion prior for negative binomial",
|
|
1079
|
-
)
|
|
1080
|
-
parser.add_argument(
|
|
1081
|
-
"-lr",
|
|
1082
|
-
"--learning-rate",
|
|
1083
|
-
default=0.0001,
|
|
1084
|
-
type=float,
|
|
1085
|
-
help="learning rate for Adam optimizer",
|
|
1086
|
-
)
|
|
1087
1095
|
parser.add_argument(
|
|
1088
1096
|
"-dr",
|
|
1089
1097
|
"--decay-rate",
|
|
@@ -1105,47 +1113,10 @@ def parse_args():
|
|
|
1105
1113
|
help="beta-1 parameter for Adam optimizer",
|
|
1106
1114
|
)
|
|
1107
1115
|
parser.add_argument(
|
|
1108
|
-
"-
|
|
1109
|
-
"--
|
|
1110
|
-
default=1000,
|
|
1111
|
-
type=int,
|
|
1112
|
-
help="number of cells to be considered in a batch",
|
|
1113
|
-
)
|
|
1114
|
-
parser.add_argument(
|
|
1115
|
-
"-gp",
|
|
1116
|
-
"--gate-prior",
|
|
1117
|
-
default=0.6,
|
|
1118
|
-
type=float,
|
|
1119
|
-
help="gate prior for zero-inflated model",
|
|
1120
|
-
)
|
|
1121
|
-
parser.add_argument(
|
|
1122
|
-
"-likeli",
|
|
1123
|
-
"--likelihood",
|
|
1124
|
-
default='negbinomial',
|
|
1125
|
-
type=str,
|
|
1126
|
-
choices=['negbinomial', 'multinomial', 'poisson', 'gaussian','lognormal'],
|
|
1127
|
-
help="specify the distribution likelihood function",
|
|
1128
|
-
)
|
|
1129
|
-
parser.add_argument(
|
|
1130
|
-
"-dirichlet",
|
|
1131
|
-
"--use-dirichlet",
|
|
1116
|
+
"-64",
|
|
1117
|
+
"--float64",
|
|
1132
1118
|
action="store_true",
|
|
1133
|
-
help="use
|
|
1134
|
-
)
|
|
1135
|
-
parser.add_argument(
|
|
1136
|
-
"-mass",
|
|
1137
|
-
"--dirichlet-mass",
|
|
1138
|
-
default=1,
|
|
1139
|
-
type=float,
|
|
1140
|
-
help="mass param for dirichlet model",
|
|
1141
|
-
)
|
|
1142
|
-
parser.add_argument(
|
|
1143
|
-
"-zi",
|
|
1144
|
-
"--zero-inflation",
|
|
1145
|
-
default='exact',
|
|
1146
|
-
type=str,
|
|
1147
|
-
choices=['none','exact','inexact'],
|
|
1148
|
-
help="use zero-inflated estimation",
|
|
1119
|
+
help="use double float precision",
|
|
1149
1120
|
)
|
|
1150
1121
|
parser.add_argument(
|
|
1151
1122
|
"--seed",
|
|
@@ -1187,29 +1158,23 @@ def main():
|
|
|
1187
1158
|
input_size = xs.shape[1]
|
|
1188
1159
|
cell_factor_size = 0 if us is None else us.shape[1]
|
|
1189
1160
|
|
|
1190
|
-
latent_dist = args.z_dist
|
|
1191
|
-
|
|
1192
1161
|
###########################################
|
|
1193
1162
|
sure = SURE(
|
|
1194
1163
|
input_size=input_size,
|
|
1195
1164
|
cell_factor_size=cell_factor_size,
|
|
1196
1165
|
inverse_dispersion=args.inverse_dispersion,
|
|
1197
|
-
|
|
1166
|
+
z_dim=args.z_dim,
|
|
1198
1167
|
hidden_layers=args.hidden_layers,
|
|
1199
1168
|
hidden_layer_activation=args.hidden_layer_activation,
|
|
1200
1169
|
use_cuda=args.cuda,
|
|
1201
1170
|
config_enum=args.enum_discrete,
|
|
1202
|
-
|
|
1203
|
-
zero_inflation=args.zero_inflation,
|
|
1204
|
-
gate_prior=args.gate_prior,
|
|
1205
|
-
delta=args.delta,
|
|
1171
|
+
use_zeroinflate=args.zeroinflate,
|
|
1206
1172
|
loss_func=args.likelihood,
|
|
1207
|
-
dirichlet_mass=args.dirichlet_mass,
|
|
1208
1173
|
nn_dropout=args.layer_dropout_rate,
|
|
1209
1174
|
post_layer_fct=args.post_layer_function,
|
|
1210
1175
|
post_act_fct=args.post_activation_function,
|
|
1211
1176
|
codebook_size=args.codebook_size,
|
|
1212
|
-
|
|
1177
|
+
z_dist = args.z_dist,
|
|
1213
1178
|
dtype=dtype,
|
|
1214
1179
|
)
|
|
1215
1180
|
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|