Rhapso 0.1.96__tar.gz → 0.1.98__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (107) hide show
  1. {rhapso-0.1.96 → rhapso-0.1.98}/PKG-INFO +7 -11
  2. {rhapso-0.1.96 → rhapso-0.1.98}/README.md +6 -10
  3. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso.egg-info/PKG-INFO +7 -11
  4. {rhapso-0.1.96 → rhapso-0.1.98}/setup.py +3 -1
  5. {rhapso-0.1.96 → rhapso-0.1.98}/LICENSE +0 -0
  6. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/__init__.py +0 -0
  7. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/data_prep/__init__.py +0 -0
  8. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/data_prep/n5_reader.py +0 -0
  9. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/data_prep/s3_big_stitcher_reader.py +0 -0
  10. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/data_prep/xml_to_dataframe.py +0 -0
  11. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/__init__.py +0 -0
  12. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/advanced_refinement.py +0 -0
  13. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/difference_of_gaussian.py +0 -0
  14. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/image_reader.py +0 -0
  15. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/metadata_builder.py +0 -0
  16. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/overlap_detection.py +0 -0
  17. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/points_validation.py +0 -0
  18. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/save_interest_points.py +0 -0
  19. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/detection/view_transform_models.py +0 -0
  20. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/__init__.py +0 -0
  21. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/__init__.py +0 -0
  22. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/blend.py +0 -0
  23. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/fusion.py +0 -0
  24. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/geometry.py +0 -0
  25. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/io.py +0 -0
  26. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/script_utils.py +0 -0
  27. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion/setup.py +0 -0
  28. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/affine_fusion_worker.py +0 -0
  29. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/__init__.py +0 -0
  30. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/__init__.py +0 -0
  31. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/compress/__init__.py +0 -0
  32. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/compress/czi_to_zarr.py +0 -0
  33. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/compress/zarr_writer.py +0 -0
  34. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/models.py +0 -0
  35. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/utils/__init__.py +0 -0
  36. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/utils/utils.py +0 -0
  37. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_hcr_data_transformation/zeiss_job.py +0 -0
  38. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/__init__.py +0 -0
  39. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/array_to_zarr.py +0 -0
  40. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/radial_correction.py +0 -0
  41. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/run_capsule.py +0 -0
  42. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/utils/__init__.py +0 -0
  43. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/utils/utils.py +0 -0
  44. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale/aind_z1_radial_correction/worker.py +0 -0
  45. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/multiscale_worker.py +0 -0
  46. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/__init__.py +0 -0
  47. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/dispim_link.py +0 -0
  48. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/exaspim_link.py +0 -0
  49. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/hcr_link.py +0 -0
  50. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/iSPIM_top.py +0 -0
  51. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/link_utils.py +0 -0
  52. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/main.py +0 -0
  53. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/ng_layer.py +0 -0
  54. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/ng_state.py +0 -0
  55. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/parsers.py +0 -0
  56. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/raw_link.py +0 -0
  57. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/utils/__init__.py +0 -0
  58. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/utils/shader_utils.py +0 -0
  59. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/utils/transfer.py +0 -0
  60. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen/utils/utils.py +0 -0
  61. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/fusion/neuroglancer_link_gen_worker.py +0 -0
  62. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/matching/__init__.py +0 -0
  63. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/matching/load_and_transform_points.py +0 -0
  64. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/matching/ransac_matching.py +0 -0
  65. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/matching/save_matches.py +0 -0
  66. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/matching/xml_parser.py +0 -0
  67. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/__init__.py +0 -0
  68. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/__init__.py +0 -0
  69. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/aws/__init__.py +0 -0
  70. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/aws/alignment_pipeline.py +0 -0
  71. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/aws/config/__init__.py +0 -0
  72. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/evaluation.py +0 -0
  73. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/interest_point_detection.py +0 -0
  74. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/interest_point_matching.py +0 -0
  75. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/local/__init__.py +0 -0
  76. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/local/alignment_pipeline.py +0 -0
  77. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/matching_stats.py +0 -0
  78. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/param/__init__.py +0 -0
  79. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/solver.py +0 -0
  80. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/pipelines/ray/split_dataset.py +0 -0
  81. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/__init__.py +0 -0
  82. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/compute_tiles.py +0 -0
  83. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/concatenate_models.py +0 -0
  84. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/connected_graphs.py +0 -0
  85. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/data_prep.py +0 -0
  86. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/global_optimization.py +0 -0
  87. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/model_and_tile_setup.py +0 -0
  88. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/pre_align_tiles.py +0 -0
  89. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/save_results.py +0 -0
  90. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/view_transforms.py +0 -0
  91. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/solver/xml_to_dataframe_solver.py +0 -0
  92. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/split_dataset/__init__.py +0 -0
  93. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/split_dataset/compute_grid_rules.py +0 -0
  94. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/split_dataset/save_points.py +0 -0
  95. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/split_dataset/save_xml.py +0 -0
  96. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/split_dataset/split_images.py +0 -0
  97. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso/split_dataset/xml_to_dataframe_split.py +0 -0
  98. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso.egg-info/SOURCES.txt +0 -0
  99. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso.egg-info/dependency_links.txt +0 -0
  100. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso.egg-info/requires.txt +0 -0
  101. {rhapso-0.1.96 → rhapso-0.1.98}/Rhapso.egg-info/top_level.txt +0 -0
  102. {rhapso-0.1.96 → rhapso-0.1.98}/pyproject.toml +0 -0
  103. {rhapso-0.1.96 → rhapso-0.1.98}/setup.cfg +0 -0
  104. {rhapso-0.1.96 → rhapso-0.1.98}/tests/__init__.py +0 -0
  105. {rhapso-0.1.96 → rhapso-0.1.98}/tests/test_detection.py +0 -0
  106. {rhapso-0.1.96 → rhapso-0.1.98}/tests/test_matching.py +0 -0
  107. {rhapso-0.1.96 → rhapso-0.1.98}/tests/test_solving.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Rhapso
3
- Version: 0.1.96
3
+ Version: 0.1.98
4
4
  Summary: A python package for aligning and stitching light sheet fluorescence microscopy images together
5
5
  Author: ND
6
6
  Author-email: sean.fite@alleninstitute.org
@@ -86,7 +86,7 @@ Rhapso is still loading... and while we wrap up development, a couple things to
86
86
  <br>
87
87
 
88
88
  ## Summary
89
- Rhapso is a set of Python components used to register, align, and stitch large-scale, 3D, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
89
+ Rhapso is a set of Python components used to register, align, and stitch large-scale, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
90
90
 
91
91
  Rhapso is published on PyPI and can be installed with:
92
92
 
@@ -109,7 +109,7 @@ Questions or want to contribute? Please open an issue..
109
109
  - **Global Optimization** - Align matched features between tile pairs globally
110
110
  - **Validation and Visualization Tools** - Validate component specific results for the best output
111
111
  - **ZARR** - Zarr data as input
112
- - **TIFF** - Tiff data as input
112
+ - **TIFF** - TIFF data as input
113
113
  - **AWS** - AWS S3 based input/output and Ray based EC2 instances
114
114
  - **Scale** - Tested on 200 TB of data without downsampling
115
115
 
@@ -123,26 +123,22 @@ This process has a lot of knobs and variations, and when used correctly, can wor
123
123
 
124
124
  **First, figure out what type of alignment you need.**
125
125
  - Are there translations to shift to?
126
- - If so, you’ll likely want to start with a rigid alignment and double-check that the required translations do not span more than the overlapping distance.
127
-
128
- **A very important thing to keep in mind:** interest-point–based alignment will not work well if you don’t find enough high-quality points that can be matched.
129
- - Too few, even if they’re very good, will lead to poor alignment.
130
- - The same is true if you have lots of low-quality matches.
126
+ - If so, you’ll likely want to start with a rigid alignment.
131
127
 
132
128
  Once you’ve run the rigid step, how does your data look?
133
129
  - Did the required translations shrink to an acceptable level?
134
130
  - If not, try again with new parameters, keeping the questions above in mind.
135
131
 
136
- At this point, the translational part of your alignment should be in good shape. Now ask: **are additional transformations needed?** If so, you likely need an affine alignment next.
132
+ At this point, the translational part of your alignment should be in good shape. Now ask: **are transformations needed?** If so, you likely need an affine alignment next.
137
133
 
138
134
  Your dataset should be correctly aligned at this point. If not, there are a number of reasons why, and we have listed some common recurrences and will keep this up to date.
139
135
 
140
- There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into multiple tiles of your choosing. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
136
+ There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into chunks. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
141
137
 
142
138
  **Common Causes of Poor Alignment**
143
139
  - Not enough quality matches (adjust sigma threshold until you do)
144
140
  - Data is not consistent looking (we take a global approach to params)
145
- - Large translations needed (extened search radius)
141
+ - Large translations needed (extend search radius)
146
142
  - Translations that extend beyond overlapping span (increase overlap)
147
143
 
148
144
  ---
@@ -40,7 +40,7 @@ Rhapso is still loading... and while we wrap up development, a couple things to
40
40
  <br>
41
41
 
42
42
  ## Summary
43
- Rhapso is a set of Python components used to register, align, and stitch large-scale, 3D, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
43
+ Rhapso is a set of Python components used to register, align, and stitch large-scale, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
44
44
 
45
45
  Rhapso is published on PyPI and can be installed with:
46
46
 
@@ -63,7 +63,7 @@ Questions or want to contribute? Please open an issue..
63
63
  - **Global Optimization** - Align matched features between tile pairs globally
64
64
  - **Validation and Visualization Tools** - Validate component specific results for the best output
65
65
  - **ZARR** - Zarr data as input
66
- - **TIFF** - Tiff data as input
66
+ - **TIFF** - TIFF data as input
67
67
  - **AWS** - AWS S3 based input/output and Ray based EC2 instances
68
68
  - **Scale** - Tested on 200 TB of data without downsampling
69
69
 
@@ -77,26 +77,22 @@ This process has a lot of knobs and variations, and when used correctly, can wor
77
77
 
78
78
  **First, figure out what type of alignment you need.**
79
79
  - Are there translations to shift to?
80
- - If so, you’ll likely want to start with a rigid alignment and double-check that the required translations do not span more than the overlapping distance.
81
-
82
- **A very important thing to keep in mind:** interest-point–based alignment will not work well if you don’t find enough high-quality points that can be matched.
83
- - Too few, even if they’re very good, will lead to poor alignment.
84
- - The same is true if you have lots of low-quality matches.
80
+ - If so, you’ll likely want to start with a rigid alignment.
85
81
 
86
82
  Once you’ve run the rigid step, how does your data look?
87
83
  - Did the required translations shrink to an acceptable level?
88
84
  - If not, try again with new parameters, keeping the questions above in mind.
89
85
 
90
- At this point, the translational part of your alignment should be in good shape. Now ask: **are additional transformations needed?** If so, you likely need an affine alignment next.
86
+ At this point, the translational part of your alignment should be in good shape. Now ask: **are transformations needed?** If so, you likely need an affine alignment next.
91
87
 
92
88
  Your dataset should be correctly aligned at this point. If not, there are a number of reasons why, and we have listed some common recurrences and will keep this up to date.
93
89
 
94
- There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into multiple tiles of your choosing. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
90
+ There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into chunks. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
95
91
 
96
92
  **Common Causes of Poor Alignment**
97
93
  - Not enough quality matches (adjust sigma threshold until you do)
98
94
  - Data is not consistent looking (we take a global approach to params)
99
- - Large translations needed (extened search radius)
95
+ - Large translations needed (extend search radius)
100
96
  - Translations that extend beyond overlapping span (increase overlap)
101
97
 
102
98
  ---
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: Rhapso
3
- Version: 0.1.96
3
+ Version: 0.1.98
4
4
  Summary: A python package for aligning and stitching light sheet fluorescence microscopy images together
5
5
  Author: ND
6
6
  Author-email: sean.fite@alleninstitute.org
@@ -86,7 +86,7 @@ Rhapso is still loading... and while we wrap up development, a couple things to
86
86
  <br>
87
87
 
88
88
  ## Summary
89
- Rhapso is a set of Python components used to register, align, and stitch large-scale, 3D, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
89
+ Rhapso is a set of Python components used to register, align, and stitch large-scale, overlapping, tile-based, multiscale microscopy datasets. Its stateless components can run on a single machine or scale out across cloud-based clusters.
90
90
 
91
91
  Rhapso is published on PyPI and can be installed with:
92
92
 
@@ -109,7 +109,7 @@ Questions or want to contribute? Please open an issue..
109
109
  - **Global Optimization** - Align matched features between tile pairs globally
110
110
  - **Validation and Visualization Tools** - Validate component specific results for the best output
111
111
  - **ZARR** - Zarr data as input
112
- - **TIFF** - Tiff data as input
112
+ - **TIFF** - TIFF data as input
113
113
  - **AWS** - AWS S3 based input/output and Ray based EC2 instances
114
114
  - **Scale** - Tested on 200 TB of data without downsampling
115
115
 
@@ -123,26 +123,22 @@ This process has a lot of knobs and variations, and when used correctly, can wor
123
123
 
124
124
  **First, figure out what type of alignment you need.**
125
125
  - Are there translations to shift to?
126
- - If so, you’ll likely want to start with a rigid alignment and double-check that the required translations do not span more than the overlapping distance.
127
-
128
- **A very important thing to keep in mind:** interest-point–based alignment will not work well if you don’t find enough high-quality points that can be matched.
129
- - Too few, even if they’re very good, will lead to poor alignment.
130
- - The same is true if you have lots of low-quality matches.
126
+ - If so, you’ll likely want to start with a rigid alignment.
131
127
 
132
128
  Once you’ve run the rigid step, how does your data look?
133
129
  - Did the required translations shrink to an acceptable level?
134
130
  - If not, try again with new parameters, keeping the questions above in mind.
135
131
 
136
- At this point, the translational part of your alignment should be in good shape. Now ask: **are additional transformations needed?** If so, you likely need an affine alignment next.
132
+ At this point, the translational part of your alignment should be in good shape. Now ask: **are transformations needed?** If so, you likely need an affine alignment next.
137
133
 
138
134
  Your dataset should be correctly aligned at this point. If not, there are a number of reasons why, and we have listed some common recurrences and will keep this up to date.
139
135
 
140
- There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into multiple tiles of your choosing. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
136
+ There is a special case in some datasets where the z-stack is very large. In this case, you can use the split-dataset utility, which splits each tile into chunks. Then you can run split-affine alignment, allowing for more precise transformations without such imposing global rails.
141
137
 
142
138
  **Common Causes of Poor Alignment**
143
139
  - Not enough quality matches (adjust sigma threshold until you do)
144
140
  - Data is not consistent looking (we take a global approach to params)
145
- - Large translations needed (extened search radius)
141
+ - Large translations needed (extend search radius)
146
142
  - Translations that extend beyond overlapping span (increase overlap)
147
143
 
148
144
  ---
@@ -7,7 +7,7 @@ long_description = (this_directory / "README.md").read_text(encoding="utf-8")
7
7
 
8
8
  setup(
9
9
  name='Rhapso',
10
- version='0.1.96',
10
+ version='0.1.98',
11
11
  author='ND',
12
12
  author_email='sean.fite@alleninstitute.org',
13
13
  description='A python package for aligning and stitching light sheet fluorescence microscopy images together',
@@ -52,3 +52,5 @@ setup(
52
52
 
53
53
 
54
54
 
55
+
56
+
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes