Rhapso 0.1.92__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (107) hide show
  1. rhapso-0.1.92/LICENSE +21 -0
  2. rhapso-0.1.92/PKG-INFO +39 -0
  3. rhapso-0.1.92/README.md +361 -0
  4. rhapso-0.1.92/Rhapso/__init__.py +1 -0
  5. rhapso-0.1.92/Rhapso/data_prep/__init__.py +2 -0
  6. rhapso-0.1.92/Rhapso/data_prep/n5_reader.py +188 -0
  7. rhapso-0.1.92/Rhapso/data_prep/s3_big_stitcher_reader.py +55 -0
  8. rhapso-0.1.92/Rhapso/data_prep/xml_to_dataframe.py +215 -0
  9. rhapso-0.1.92/Rhapso/detection/__init__.py +5 -0
  10. rhapso-0.1.92/Rhapso/detection/advanced_refinement.py +203 -0
  11. rhapso-0.1.92/Rhapso/detection/difference_of_gaussian.py +324 -0
  12. rhapso-0.1.92/Rhapso/detection/image_reader.py +117 -0
  13. rhapso-0.1.92/Rhapso/detection/metadata_builder.py +130 -0
  14. rhapso-0.1.92/Rhapso/detection/overlap_detection.py +327 -0
  15. rhapso-0.1.92/Rhapso/detection/points_validation.py +49 -0
  16. rhapso-0.1.92/Rhapso/detection/save_interest_points.py +265 -0
  17. rhapso-0.1.92/Rhapso/detection/view_transform_models.py +67 -0
  18. rhapso-0.1.92/Rhapso/fusion/__init__.py +0 -0
  19. rhapso-0.1.92/Rhapso/fusion/affine_fusion/__init__.py +2 -0
  20. rhapso-0.1.92/Rhapso/fusion/affine_fusion/blend.py +289 -0
  21. rhapso-0.1.92/Rhapso/fusion/affine_fusion/fusion.py +601 -0
  22. rhapso-0.1.92/Rhapso/fusion/affine_fusion/geometry.py +159 -0
  23. rhapso-0.1.92/Rhapso/fusion/affine_fusion/io.py +546 -0
  24. rhapso-0.1.92/Rhapso/fusion/affine_fusion/script_utils.py +111 -0
  25. rhapso-0.1.92/Rhapso/fusion/affine_fusion/setup.py +4 -0
  26. rhapso-0.1.92/Rhapso/fusion/affine_fusion_worker.py +234 -0
  27. rhapso-0.1.92/Rhapso/fusion/multiscale/__init__.py +0 -0
  28. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/__init__.py +19 -0
  29. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/compress/__init__.py +3 -0
  30. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/compress/czi_to_zarr.py +698 -0
  31. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/compress/zarr_writer.py +265 -0
  32. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/models.py +81 -0
  33. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/utils/__init__.py +3 -0
  34. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/utils/utils.py +526 -0
  35. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_hcr_data_transformation/zeiss_job.py +249 -0
  36. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/__init__.py +21 -0
  37. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/array_to_zarr.py +257 -0
  38. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/radial_correction.py +557 -0
  39. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/run_capsule.py +98 -0
  40. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/utils/__init__.py +3 -0
  41. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/utils/utils.py +266 -0
  42. rhapso-0.1.92/Rhapso/fusion/multiscale/aind_z1_radial_correction/worker.py +89 -0
  43. rhapso-0.1.92/Rhapso/fusion/multiscale_worker.py +113 -0
  44. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/__init__.py +8 -0
  45. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/dispim_link.py +235 -0
  46. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/exaspim_link.py +127 -0
  47. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/hcr_link.py +368 -0
  48. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/iSPIM_top.py +47 -0
  49. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/link_utils.py +239 -0
  50. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/main.py +299 -0
  51. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/ng_layer.py +1434 -0
  52. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/ng_state.py +1123 -0
  53. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/parsers.py +336 -0
  54. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/raw_link.py +116 -0
  55. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/utils/__init__.py +4 -0
  56. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/utils/shader_utils.py +85 -0
  57. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/utils/transfer.py +43 -0
  58. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen/utils/utils.py +303 -0
  59. rhapso-0.1.92/Rhapso/fusion/neuroglancer_link_gen_worker.py +30 -0
  60. rhapso-0.1.92/Rhapso/matching/__init__.py +0 -0
  61. rhapso-0.1.92/Rhapso/matching/load_and_transform_points.py +458 -0
  62. rhapso-0.1.92/Rhapso/matching/ransac_matching.py +544 -0
  63. rhapso-0.1.92/Rhapso/matching/save_matches.py +120 -0
  64. rhapso-0.1.92/Rhapso/matching/xml_parser.py +302 -0
  65. rhapso-0.1.92/Rhapso/pipelines/__init__.py +0 -0
  66. rhapso-0.1.92/Rhapso/pipelines/ray/__init__.py +0 -0
  67. rhapso-0.1.92/Rhapso/pipelines/ray/aws/__init__.py +0 -0
  68. rhapso-0.1.92/Rhapso/pipelines/ray/aws/alignment_pipeline.py +227 -0
  69. rhapso-0.1.92/Rhapso/pipelines/ray/aws/config/__init__.py +0 -0
  70. rhapso-0.1.92/Rhapso/pipelines/ray/evaluation.py +71 -0
  71. rhapso-0.1.92/Rhapso/pipelines/ray/interest_point_detection.py +137 -0
  72. rhapso-0.1.92/Rhapso/pipelines/ray/interest_point_matching.py +110 -0
  73. rhapso-0.1.92/Rhapso/pipelines/ray/local/__init__.py +0 -0
  74. rhapso-0.1.92/Rhapso/pipelines/ray/local/alignment_pipeline.py +167 -0
  75. rhapso-0.1.92/Rhapso/pipelines/ray/matching_stats.py +104 -0
  76. rhapso-0.1.92/Rhapso/pipelines/ray/param/__init__.py +0 -0
  77. rhapso-0.1.92/Rhapso/pipelines/ray/solver.py +120 -0
  78. rhapso-0.1.92/Rhapso/pipelines/ray/split_dataset.py +78 -0
  79. rhapso-0.1.92/Rhapso/solver/__init__.py +0 -0
  80. rhapso-0.1.92/Rhapso/solver/compute_tiles.py +562 -0
  81. rhapso-0.1.92/Rhapso/solver/concatenate_models.py +116 -0
  82. rhapso-0.1.92/Rhapso/solver/connected_graphs.py +111 -0
  83. rhapso-0.1.92/Rhapso/solver/data_prep.py +181 -0
  84. rhapso-0.1.92/Rhapso/solver/global_optimization.py +410 -0
  85. rhapso-0.1.92/Rhapso/solver/model_and_tile_setup.py +109 -0
  86. rhapso-0.1.92/Rhapso/solver/pre_align_tiles.py +323 -0
  87. rhapso-0.1.92/Rhapso/solver/save_results.py +97 -0
  88. rhapso-0.1.92/Rhapso/solver/view_transforms.py +75 -0
  89. rhapso-0.1.92/Rhapso/solver/xml_to_dataframe_solver.py +213 -0
  90. rhapso-0.1.92/Rhapso/split_dataset/__init__.py +0 -0
  91. rhapso-0.1.92/Rhapso/split_dataset/compute_grid_rules.py +78 -0
  92. rhapso-0.1.92/Rhapso/split_dataset/save_points.py +101 -0
  93. rhapso-0.1.92/Rhapso/split_dataset/save_xml.py +377 -0
  94. rhapso-0.1.92/Rhapso/split_dataset/split_images.py +537 -0
  95. rhapso-0.1.92/Rhapso/split_dataset/xml_to_dataframe_split.py +219 -0
  96. rhapso-0.1.92/Rhapso.egg-info/PKG-INFO +39 -0
  97. rhapso-0.1.92/Rhapso.egg-info/SOURCES.txt +105 -0
  98. rhapso-0.1.92/Rhapso.egg-info/dependency_links.txt +1 -0
  99. rhapso-0.1.92/Rhapso.egg-info/requires.txt +15 -0
  100. rhapso-0.1.92/Rhapso.egg-info/top_level.txt +2 -0
  101. rhapso-0.1.92/pyproject.toml +3 -0
  102. rhapso-0.1.92/setup.cfg +4 -0
  103. rhapso-0.1.92/setup.py +53 -0
  104. rhapso-0.1.92/tests/__init__.py +1 -0
  105. rhapso-0.1.92/tests/test_detection.py +17 -0
  106. rhapso-0.1.92/tests/test_matching.py +21 -0
  107. rhapso-0.1.92/tests/test_solving.py +21 -0
rhapso-0.1.92/LICENSE ADDED
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Allen Institute for Neural Dynamics
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
rhapso-0.1.92/PKG-INFO ADDED
@@ -0,0 +1,39 @@
1
+ Metadata-Version: 2.4
2
+ Name: Rhapso
3
+ Version: 0.1.92
4
+ Summary: A python package for aligning and stitching light sheet fluorescence microscopy images together
5
+ Author: ND
6
+ Author-email: sean.fite@alleninstitute.org
7
+ Classifier: Development Status :: 3 - Alpha
8
+ Classifier: Intended Audience :: Developers
9
+ Classifier: Natural Language :: English
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.7
12
+ Classifier: Programming Language :: Python :: 3.8
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Operating System :: OS Independent
16
+ Requires-Python: >=3.7
17
+ License-File: LICENSE
18
+ Requires-Dist: pandas
19
+ Requires-Dist: dask[array]==2024.12.1
20
+ Requires-Dist: zarr==2.18.3
21
+ Requires-Dist: scipy==1.13.1
22
+ Requires-Dist: scikit-image
23
+ Requires-Dist: bioio==1.3.0
24
+ Requires-Dist: bioio-tifffile==1.0.0
25
+ Requires-Dist: tifffile==2025.1.10
26
+ Requires-Dist: dask-image==2024.5.3
27
+ Requires-Dist: boto3==1.35.92
28
+ Requires-Dist: numcodecs==0.13.1
29
+ Requires-Dist: matplotlib==3.10.0
30
+ Requires-Dist: memory-profiler==0.61.0
31
+ Requires-Dist: s3fs==2024.12.0
32
+ Requires-Dist: scikit-learn
33
+ Dynamic: author
34
+ Dynamic: author-email
35
+ Dynamic: classifier
36
+ Dynamic: license-file
37
+ Dynamic: requires-dist
38
+ Dynamic: requires-python
39
+ Dynamic: summary
@@ -0,0 +1,361 @@
1
+ # Rhapso
2
+
3
+ **Rhapso** is a modular Python toolkit for interest point based registration, alignment, and fusing of large-scale microscopy datasets.
4
+
5
+ [![License](https://img.shields.io/badge/license-MIT-brightgreen)](LICENSE)
6
+ [![Python Version](https://img.shields.io/badge/python-3.11-blue.svg)](https://www.python.org/downloads/release/python-3110/)
7
+ [![Documentation](https://img.shields.io/badge/docs-wiki-blue)](https://github.com/AllenNeuralDynamics/Rhapso/wiki)
8
+
9
+ <!-- ## Example Usage Media Content Coming Soon....
10
+ -- -->
11
+
12
+ <br>
13
+
14
+ ## Table of Contents
15
+ - [Summary](#summary)
16
+ - [Contact](#contact)
17
+ - [Features](#features)
18
+ - [Performance](#performance)
19
+ - [Layout](#layout)
20
+ - [Installation](#installation)
21
+ - [Ray](#ray)
22
+ - [Run Locally w/ Ray](#run-locally-with-ray)
23
+ - [Run on AWS Cluster w/ Ray](#run-on-aws-cluster-with-ray)
24
+ - [Access Ray Dashboard](#access-ray-dashboard)
25
+ - [Parameters](#parameters)
26
+ - [Tuning Guide](#tuning-guide)
27
+ - [Build Package](#build-package)
28
+ - [Using the Built `.whl` File](#using-the-built-whl-file)
29
+
30
+ ---
31
+
32
+ <br>
33
+
34
+ **Update 11/26/25**
35
+ --------
36
+ Rhapso is still loading... and while we wrap up development, a couple things to know if you are outside the Allen Institute:
37
+ - This process requires a very specific XML structure to work.
38
+ - Fusion/Mutliscale is included but still under testing and development
39
+
40
+ <br>
41
+
42
+ ## Summary
43
+ Rhapso is a set of Python components for registration, alignment, and stitching of large-scale, 3D, overlapping tile-based, multiscale microscopy datasets.
44
+
45
+ Rhapso was developed by the Allen Institute for Neural Dynamics. Rhapso is comprised of stateless components. You can call these components using a pipeline script, with the option to run on a single machine or scale out with Ray to cloud based (currently only supporting AWS) clusters.
46
+
47
+ Current data loaders support Zarr and Tiff.
48
+
49
+ <br>
50
+
51
+ ## Contact
52
+ Questions or want to contribute? Please open an issue..
53
+
54
+ <br>
55
+
56
+ ## Features
57
+ - **Interest Point Detection** - using DOG based feature detection
58
+ - **Interest Point Matching** - using descriptor based RANSAC to match feature points
59
+ - **Global Optimization** - aligning matched features per tile, globally
60
+ - **Validation and Visualization Tools** - validate component specific results for the best output
61
+
62
+ ---
63
+
64
+ <br>
65
+
66
+ ## High Level Approach to Registration, Alignment, and Fusion
67
+
68
+ We first run **interest point detection** to capture feature points in the dataset, focusing on overlapping regions between tiles. These points drive all downstream alignment.
69
+
70
+ Next, we perform **alignment** in two-three stages, with regularized models:
71
+
72
+ 1. **Rigid matching + solver** – Match interest points with a rigid model and solve for globally consistent rigid transforms between all tiles.
73
+ 2. **Affine matching + solver** – Starting from the rigid solution, repeat matching with an affine model to recover more precise tile transforms.
74
+ 3. **Split affine matching + solver** – For very large z-stacks, we recommend first running the split dataset component to chunk tiles into smaller Z-bounds, then repeating affine matching and solving in “split affine” mode to refine local alignment.
75
+
76
+ All resulting transforms are written back into the input XML.
77
+
78
+ Whether you split or not, once the XML contains your final transforms, you are ready for **fusion**. We recommend viewing the aligned XML in FIJI/BDV to visually confirm alignment quality before running fusion.
79
+
80
+
81
+ ---
82
+
83
+ <br>
84
+
85
+ ## Performance
86
+
87
+ **Interest Point Detection Performance Example (130TB Zarr dataset)**
88
+
89
+ | Environment | Resources | Avg runtime |
90
+ |:----------------------|:---------------------|:-----------:|
91
+ | Local single machine | 10 CPU, 10 GB RAM | ~120 min |
92
+ | AWS Ray cluster | 560 CPU, 4.4 TB RAM | ~30 min |
93
+
94
+ <br>
95
+ *Actual times vary by pipeline components, dataset size, tiling, and parameter choices.*
96
+
97
+ ---
98
+
99
+ <br>
100
+
101
+ ## Layout
102
+
103
+ ```
104
+ Rhapso/
105
+ └── Rhapso/
106
+ ├── data_prep/ # Custom data loaders
107
+ ├── detection/
108
+ ├── evaluation/
109
+ ├── fusion/
110
+ ├── image_split/
111
+ ├── matching/
112
+ ├── pipelines/
113
+ │ └── ray/
114
+ │ ├── aws/
115
+ │ │ ├── config/ # Cluster templates (edit for your account)
116
+ │ │ └── alignment_pipeline.py # AWS Ray pipeline entry point
117
+ │ ├── local/
118
+ │ │ └── alignment_pipeline.py # Local Ray pipeline entry point
119
+ │ ├── param/ # Run parameter files (customize per run)
120
+ │ ├── interest_point_detection.py # Detection pipeline script
121
+ │ ├── interest_point_matching.py # Matching pipeline script
122
+ │ └── solver.py # Global solver script
123
+ ├── solver/
124
+ └── visualization/ # Validation tools
125
+ ```
126
+
127
+ ---
128
+
129
+ <br>
130
+
131
+
132
+ ## Installation
133
+
134
+ ```sh
135
+ # clone the repo
136
+ git clone https://github.com/AllenNeuralDynamics/Rhapso.git
137
+
138
+ # create and activate a virtual environment
139
+ python -m venv .venv && source .venv/bin/activate
140
+ # or: conda create -n rhapso python=3.11 && conda activate rhapso
141
+
142
+ # install deps
143
+ pip install -r requirements.txt
144
+ ```
145
+ ---
146
+
147
+ <br>
148
+
149
+ ## Ray
150
+
151
+ **Ray** is a Python framework for parallel and distributed computing. It lets you run regular Python functions in parallel on a single machine **or** scale them out to a cluster (e.g., AWS) with minimal code changes. In Rhapso, we use Ray to process large scale datasets.
152
+
153
+ - Convert a function into a distributed task with `@ray.remote`
154
+ - Control scheduling with resource hints (CPUs, memory)
155
+
156
+ <br>
157
+
158
+ > [!TIP]
159
+ > Ray schedules **greedily** by default and each task reserves **1 CPU**, so if you fire many tasks, Ray will try to run as many as your machine advertises—often too much for a laptop. Throttle concurrency explicitly so you don’t overload your system. Use your machine's activity monitor to track this or the Ray dashboard to monitor this on your cluster:
160
+ >
161
+ > - **Cap by CPUs**:
162
+ > ```python
163
+ > @ray.remote(num_cpus=3) # Ray will schedule each time 3 cpus are available
164
+ > ```
165
+ > - **Cap by Memory and CPU** if Tasks are RAM-Heavy (bytes):
166
+ > ```python
167
+ > @ray.remote(num_cpus=2, memory=4 * 1024**3) # 4 GiB and 2 CPU per task>
168
+ > ```
169
+ > - **No Cap** on Resources:
170
+ > ```python
171
+ > @ray.remote
172
+ > ```
173
+ > - **Good Local Default:**
174
+ > ```python
175
+ > @ray.remote(num_cpus=2)
176
+ > ```
177
+
178
+ ---
179
+
180
+ <br>
181
+
182
+
183
+ ## Run Locally with Ray
184
+
185
+ ### 1. Edit or create param file (templates in codebase)
186
+ ```python
187
+ Rhapso/Rhapso/pipelines/param/
188
+ ```
189
+
190
+ ### 2. Update alignment pipeline script to point to param file
191
+ ```python
192
+ with open("Rhapso/pipelines/ray/param/your_param_file.yml", "r") as file:
193
+ config = yaml.safe_load(file)
194
+ ```
195
+
196
+ ### 3. Run local alignment pipeline script
197
+ ```python
198
+ python Rhapso/pipelines/ray/local/alignment_pipeline.py
199
+
200
+ ```
201
+
202
+ ---
203
+
204
+ <br>
205
+
206
+
207
+ ## Run on AWS Cluster with Ray
208
+
209
+ ### 1. Edit/create param file (templates in codebase)
210
+ ```python
211
+ Rhapso/pipelines/ray/param/
212
+ ```
213
+
214
+ ### 2. Update alignment pipeline script to point to param file
215
+ ```python
216
+ with open("Rhapso/pipelines/ray/param/your_param_file.yml", "r") as file:
217
+ config = yaml.safe_load(file)
218
+ ```
219
+
220
+ ### 3. Edit/create config file (templates in codebase)
221
+ ```python
222
+ Rhapso/pipelines/ray/aws/config/
223
+ ```
224
+
225
+ ### 4. Update config file to point to whl location in setup_commands
226
+ ```python
227
+ - aws s3 cp s3://rhapso-whl-v2/Rhapso-0.1.8-py3-none-any.whl /tmp/Rhapso-0.1.8-py3-none-any.whl
228
+ ```
229
+
230
+ ### 5. Update alignment pipeline script to point to config file
231
+ ```python
232
+ unified_yml = "your_cluster_config_file_name.yml"
233
+ ```
234
+
235
+ ### 6. Create whl file and upload to s3
236
+ ```python
237
+ python setup.py sdist bdist_wheel
238
+ ```
239
+
240
+ ### 7. Run AWS alignment pipeline script
241
+ ```python
242
+ python Rhapso/pipelines/ray/aws/alignment_pipeline.py
243
+ ```
244
+
245
+ > [!TIP]
246
+ > - The pipeline script is set to always spin the cluster down, it is a good practice to double check in AWS.
247
+ > - If you experience a sticky cache on run params, you may have forgotten to spin your old cluster down.
248
+
249
+ <br>
250
+
251
+ ## Access Ray Dashboard
252
+
253
+ **This is a great place to tune your cluster's performance.**
254
+ 1. Find public IP of head node.
255
+ 2. Replace the ip address and PEM file location to ssh into head node.
256
+ ```
257
+ ssh -i /You/path/to/ssh/key.pem -L port:localhost:port ubuntu@public.ip.address
258
+ ```
259
+ 4. Go to dashboard.
260
+ ```
261
+ http://localhost:8265
262
+ ```
263
+
264
+ ---
265
+
266
+ <br>
267
+
268
+ ## Parameters
269
+
270
+ ### Detection
271
+ ```
272
+ | Parameter | Feature / step | What it does | Typical range\* |
273
+ | :----------------- | :--------------------- | :-------------------------------------------------------------------------------------------- | :-------------------------------- |
274
+ | `dsxy` | Downsampling (XY) | Reduces XY resolution before detection; speeds up & denoises, but raises minimum feature size | 16 |
275
+ | `dsz` | Downsampling (Z) | Reduces Z resolution; often lower than XY due to anisotropy | 16 |
276
+ | `min_intensity` | Normalization | Lower bound for intensity normalization prior to DoG | 1 |
277
+ | `max_intensity` | Normalization | Upper bound for intensity normalization prior to DoG | 5 |
278
+ | `sigma` | DoG blur | Gaussian blur scale (sets feature size); higher = smoother, fewer peaks | 1.5 - 2.5 |
279
+ | `threshold` | Peak detection (DoG) | Peak threshold (initial min peak ≈ `threshold / 3`); higher = fewer, stronger peaks | 0.0008 - .05 |
280
+ | `median_filter` | Pre-filter (XY) | Median filter size to suppress speckle/isolated noise before DoG | 1-10 |
281
+ | `combine_distance` | Post-merge (DoG peaks) | Merge radius (voxels) to de-duplicate nearby detections | 0.5 |
282
+ | `chunks_per_bound` | Tiling/parallelism | Sub-partitions per tile/bound; higher improves parallelism but adds overhead | 12-18 |
283
+ | `max_spots` | Post-cap | Maximum detections per bound to prevent domination by dense regions | 8,0000 - 10,000 |
284
+ ```
285
+ <br>
286
+
287
+ ### Matching
288
+ ```
289
+ # Candidate Selection
290
+ | Parameter | Feature / step | What it does | Typical range |
291
+ | :----------------------------- | :------------------ | :---------------------------------------------------------------- | :------------- |
292
+ | `num_neighbors` | Candidate search | Number of nearest neighbors to consider per point | 3 |
293
+ | `redundancy` | Candidate search | Extra neighbors added for robustness beyond `num_neighbors` | 0 - 1 |
294
+ | `significance` | Ratio test | Strictness of descriptor ratio test; larger = stricter acceptance | 3 |
295
+ | `search_radius` | Spatial gating | Max spatial distance for candidate matches (in downsampled units) | 100 - 300 |
296
+ | `num_required_neighbors` | Candidate filtering | Minimum neighbors required to keep a candidate point | 3 |
297
+
298
+ # Ransac
299
+ | Parameter | Feature / step | What it does | Typical range |
300
+ | :---------------------------- | :------------------- | :---------------------------------------------------------------- | :------------- |
301
+ | `model_min_matches` | RANSAC | Minimum correspondences to estimate a rigid transform | 18 – 32 |
302
+ | `inlier_factor` | RANSAC | Inlier tolerance scaling; larger = looser inlier threshold | 30 – 100 |
303
+ | `lambda_value` | RANSAC | Regularization strength during model fitting | 0.1 – 0.05 |
304
+ | `num_iterations` | RANSAC | Number of RANSAC trials; higher = more robust, slower | 10,0000 |
305
+ | `regularization_weight` | RANSAC | Weight applied to the regularization term | 1.0 |
306
+
307
+ ```
308
+ <br>
309
+
310
+ ### Solver
311
+ ```
312
+ | Parameter | Feature / step | What it does | Typical range |
313
+ | :------------------- | :------------- | :----------------------------------------------------------------- | :------------------ |
314
+ | `relative_threshold` | Graph pruning | Reject edges with residuals above dataset-relative cutoff | 3.5 |
315
+ | `absolute_threshold` | Graph pruning | Reject edges above an absolute error bound (detection-space units) | 7.0 |
316
+ | `min_matches` | Graph pruning | Minimum matches required to retain an edge between tiles | 3 |
317
+ | `damp` | Optimization | Damping for iterative solver; higher can stabilize tough cases | 1.0 |
318
+ | `max_iterations` | Optimization | Upper bound on solver iterations | 10,0000 |
319
+ | `max_allowed_error` | Optimization | Overall error cap; `inf` disables hard stop by error | `inf` |
320
+ | `max_plateauwidth` | Early stopping | Stagnation window before stopping on no improvement | 200 |
321
+
322
+ ```
323
+
324
+ ---
325
+
326
+ <br>
327
+
328
+ ## Tuning Guide
329
+
330
+ - **Start with Detection.** The quality and density of interest points strongly determine alignment outcomes.
331
+
332
+ - **Target Counts (exaSPIM):** ~25–35k points per tile in dense regions; ~10k for sparser tiles. Going much higher usually increases runtime without meaningful accuracy gains.
333
+
334
+ - **Inspect Early.** After detection, run the visualization script and verify that peaks form **clustered shapes/lines** with a **good spatial spread**—a good sign for robust rigid matches.
335
+
336
+ - **Rigid → Affine Dependency.** Weak rigid matches produce poor rigid transforms, which then degrade affine matching (points don’t land close enough). If tiles fail to align:
337
+ - Check **match counts** for the problem tile and its neighbors.
338
+ - Adjust high-impact detection knobs—`sigma`, `threshold`, and `median_filter`—within sensible ranges.
339
+ - Revisit `max_spots` and `combine_distance` to balance density vs. duplicate detections.
340
+
341
+ ---
342
+
343
+ <br>
344
+
345
+ ## Build Package
346
+
347
+ ### Using the Built `.whl` File
348
+
349
+ 1. **Build the `.whl` File in the root of this repo:**
350
+ ```sh
351
+ cd /path/to/Rhapso
352
+ pip install setuptools wheel
353
+ python setup.py sdist bdist_wheel
354
+ ```
355
+ The `.whl` file will appear in the `dist` directory. Do not rename it to ensure compatibility (e.g., `rhapso-0.1-py3-none-any.whl`).
356
+
357
+ ---
358
+
359
+ <br>
360
+ <br>
361
+ <br>
@@ -0,0 +1 @@
1
+
@@ -0,0 +1,2 @@
1
+
2
+ # This file can be empty or contain initialization code for the data_preparation module
@@ -0,0 +1,188 @@
1
+ # -----------------------------------------------------------------------------
2
+ # n5_reader.py – N5 data verification script
3
+ #
4
+ # Setup & run:
5
+ # 1. python -m venv n5Venv # create a fresh Python virtual environment
6
+ # 2. source n5Venv/bin/activate # activate the virtual environment
7
+ # 3. pip install .[n5_reader] # install n5_reader dependencies from setup.py
8
+ # 4. python Rhapso/data_prep/n5_reader.py
9
+ # # run the N5 reader for inspecting datasets
10
+ # -----------------------------------------------------------------------------
11
+
12
+ import zarr
13
+ import s3fs
14
+ import os
15
+ import numpy as np
16
+ import matplotlib.pyplot as plt
17
+ import json
18
+ from zarr.storage import FSStore
19
+
20
+ def list_files_under_prefix(node, path):
21
+ try:
22
+ for item in node[path]:
23
+ new_path = f"{path}/{item}"
24
+ if isinstance(node[new_path], zarr.hierarchy.Group):
25
+ print(f"Group: {new_path}")
26
+ list_files_under_prefix(node, new_path)
27
+ else:
28
+ print(f"Dataset: {new_path} - {node[new_path].shape}")
29
+ except KeyError:
30
+ print(f"No items found under the path {path}")
31
+
32
+ # Amount of interest points in view 18,0 is 1061
33
+ # Max value for view 18,0 in corr ip index is 1017
34
+
35
+ def read_n5_data(n5_path):
36
+ import zarr, s3fs, os
37
+
38
+ # guard missing local path
39
+ if not n5_path.startswith("s3://") and not os.path.isdir(n5_path):
40
+ print(f"❌ Local N5 path not found: {n5_path}")
41
+ return
42
+
43
+ # open the store (S3 or local N5)
44
+ if n5_path.startswith("s3://"):
45
+ s3 = s3fs.S3FileSystem(anon=False)
46
+ store = s3fs.S3Map(root=n5_path, s3=s3)
47
+ else:
48
+ store = zarr.N5Store(n5_path)
49
+
50
+ print(f"\n🔍 Reading N5 data at: {n5_path}")
51
+ root = zarr.open(store, mode='r')
52
+
53
+ def visit_fn(path, node):
54
+ if isinstance(node, zarr.Array):
55
+ print(f"\n📂 Dataset: {path}")
56
+ print(f" 🔢 dtype: {node.dtype}")
57
+ shape = node.shape
58
+ print(f" 📏 shape: {shape}")
59
+ if len(shape) > 1:
60
+ print(f" 📊 count: {shape[0]} arrays of shape {shape[1:]}")
61
+ else:
62
+ print(f" 📊 count: {shape[0]} elements")
63
+ print(f" 🗂 chunks: {node.chunks}")
64
+ print(f" 🛠 compressor: {node.compressor}")
65
+
66
+ print(" 🔎 first 5 entries:")
67
+ sample = node[:5]
68
+ for i, entry in enumerate(sample, start=1):
69
+ # ensure nested array is printed clearly
70
+ val = entry.tolist() if hasattr(entry, "tolist") else entry
71
+ print(f" {i}. {val}")
72
+
73
+ root.visititems(visit_fn)
74
+
75
+ # # read_n5_data('/home/martin/Documents/Allen/Data/IP_TIFF_XML_2/interestpoints.n5')
76
+
77
+ def read_correspondences(dataset_path):
78
+ if dataset_path.startswith("s3://"):
79
+ store = zarr.storage.FSStore(dataset_path, mode="r")
80
+ root = zarr.open(store, mode="r")
81
+ else:
82
+ store = zarr.N5Store(dataset_path)
83
+ root = zarr.open(store, mode="r")
84
+
85
+ if "data" not in root:
86
+ print("Key 'data' not found in root.")
87
+ return
88
+
89
+ group = root["data"]
90
+ data = group[:]
91
+ print(f"Loaded {len(data)} entries.")
92
+
93
+ # for i, entry in enumerate(data):
94
+ # print(f"{i}: {entry}")
95
+
96
+ # print("hi")
97
+
98
+ # Big Stitcher Output
99
+ # # base_path = "/Users/seanfite/Desktop/interest_point_detection/interestpoints.n5"
100
+ # base_path = "/Users/seanfite/Desktop/ip_rigid_alignment/interestpoints.n5"
101
+ # # base_path = "/Users/seanfite/Desktop/ip_affine_alignment/interestpoints.n5"
102
+ # # base_path = "s3://rhapso-matching-test/output/interestpoints.n5"
103
+ # for tp_id in [0]:
104
+ # for setup_id in range(20):
105
+ # path = f"{base_path}/tpId_{tp_id}_viewSetupId_{setup_id}/beads/correspondences"
106
+ # print(f"Reading: {path}")
107
+ # read_correspondences(path)
108
+
109
+ def read_interest_points(full_path):
110
+ if full_path.startswith("s3://"):
111
+ # s3 = s3fs.S3FileSystem(anon=False)
112
+ # store = s3fs.S3Map(root=full_path, s3=s3)
113
+ # zarray = zarr.open_array(store, mode='r')
114
+ # data = zarray[:]
115
+
116
+ path = full_path.replace("s3://", "", 1)
117
+ bucket = path.split("/")[0]
118
+ prefix = "/".join(path.split("/")[1:])
119
+
120
+ s3 = s3fs.S3FileSystem()
121
+ store = FSStore(f"{bucket}/{prefix}", fs=s3, mode='r')
122
+ root = zarr.open(store, mode="r")
123
+
124
+ group = root["data"]
125
+ data = group[:]
126
+ count = len(data)
127
+ print(count)
128
+ print("")
129
+
130
+
131
+ else:
132
+ full_path = full_path.rstrip("/") # remove trailing slash if any
133
+ components = full_path.split("/")
134
+
135
+ # Find index of the N5 root (assumes .n5 marks the root)
136
+ try:
137
+ n5_index = next(i for i, c in enumerate(components) if c.endswith(".n5"))
138
+ except StopIteration:
139
+ raise ValueError("No .n5 directory found in path")
140
+
141
+ dataset_path = "/".join(components[:n5_index + 1]) # the store root
142
+ dataset_rel_path = "/".join(components[n5_index + 1:]) # relative dataset path
143
+
144
+ # Open N5 store and dataset
145
+ store = zarr.N5Store(dataset_path)
146
+ root = zarr.open(store, mode='r')
147
+
148
+ if dataset_rel_path not in root:
149
+ print(f"Skipping: {dataset_rel_path} (not found)")
150
+ return
151
+
152
+ zarray = root[dataset_rel_path + "/loc"]
153
+ data = zarray[:]
154
+
155
+ print("\n--- Detection Stats (Raw Rhapso Output) ---")
156
+ print(f"Total Points: {len(data)}")
157
+
158
+ # for dim, name in zip(range(3), ['X', 'Y', 'Z']):
159
+ # values = data[:, dim]
160
+ # print(f"{name} Range: {values.min():.2f} – {values.max():.2f} | Spread (std): {values.std():.2f}")
161
+
162
+ # volume = np.ptp(data[:, 0]) * np.ptp(data[:, 1]) * np.ptp(data[:, 2])
163
+ # density = len(data) / (volume / 1e9) if volume > 0 else 0
164
+ # print(f"Estimated Density: {density:.2f} points per 1000³ volume")
165
+ # print("-----------------------")
166
+
167
+ # # --- 3D Plot ---
168
+ # max_points = 1000000000000
169
+ # sample = data if len(data) <= max_points else data[np.random.choice(len(data), max_points, replace=False)]
170
+
171
+ # fig = plt.figure(figsize=(10, 8))
172
+ # ax = fig.add_subplot(111, projection='3d')
173
+ # ax.scatter(sample[:, 0], sample[:, 1], sample[:, 2], c='blue', alpha=0.5, s=1)
174
+ # ax.set_xlabel('X')
175
+ # ax.set_ylabel('Y')
176
+ # ax.set_zlabel('Z')
177
+ # ax.set_title(f"Interest Points in 3D (showing {len(sample)} points)")
178
+ # plt.tight_layout()
179
+ # plt.show()
180
+
181
+ # base_path = "s3://rhapso-matching-test/output/interestpoints.n5"
182
+ # base_path = "/Users/seanfite/Desktop/IP_TIFF_XML/interestpoints.n5"
183
+ base_path = "/Users/seanfite/Desktop/interestpoints.n5"
184
+ for tp_id in [0]:
185
+ for setup_id in range(20):
186
+ path = f"{base_path}/tpId_{tp_id}_viewSetupId_{setup_id}/beads/interestpoints"
187
+ print(f"For view: {setup_id}")
188
+ read_interest_points(path)
@@ -0,0 +1,55 @@
1
+ import json
2
+ import os
3
+ import s3fs
4
+
5
+ """
6
+ Utility class for downloading BigStitcher outputs from S3 to local storage for N5 reader compatibility
7
+ """
8
+
9
+ class S3BigStitcherReader:
10
+ def __init__(self, s3_uri, local_directory):
11
+ self.s3_uri = s3_uri
12
+ self.local_directory = local_directory
13
+
14
+ def download_n5_from_s3_to_local(self):
15
+ """
16
+ Recursively download an N5 dataset from S3 to a local directory.
17
+ """
18
+ s3 = s3fs.S3FileSystem(anon=False)
19
+ s3_path = self.s3_uri.replace("s3://", "")
20
+ all_keys = s3.find(s3_path, detail=True)
21
+
22
+ for key, obj in all_keys.items():
23
+ if obj["type"] == "file":
24
+ rel_path = key.replace(s3_path + "/", "")
25
+ local_file_path = os.path.join(self.local_directory, rel_path)
26
+ os.makedirs(os.path.dirname(local_file_path), exist_ok=True)
27
+ s3.get(key, local_file_path)
28
+
29
+ # Check for the specific interestpoints path
30
+ if rel_path.endswith("beads/interestpoints/attributes.json") and "interestpoints.n5" in rel_path:
31
+ # Construct the path to the attributes file
32
+ attributes_path = os.path.join(os.path.dirname(local_file_path), "attributes.json")
33
+ attributes_data = {
34
+ "pointcloud": "1.0.0",
35
+ "type": "list",
36
+ "list version": "1.0.0"
37
+ }
38
+
39
+ with open(attributes_path, "w") as f:
40
+ json.dump(attributes_data, f, indent=2)
41
+
42
+ def run(self):
43
+ self.download_n5_from_s3_to_local()
44
+
45
+ s3_path = self.s3_uri.replace("s3://", "")
46
+ full_local_path = os.path.join(self.local_directory, s3_path)
47
+
48
+ # Final paths
49
+ xml_input_path = os.path.join(full_local_path, "bigstitcher_ip.xml")
50
+ n5_output_path = os.path.join(full_local_path, "interestpoints.n5")
51
+
52
+ print("XML Input Path:", xml_input_path)
53
+ print("N5 Output Path:", n5_output_path)
54
+
55
+ return xml_input_path, n5_output_path