RadGEEToolbox 1.6.0__tar.gz → 1.6.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- radgeetoolbox-1.6.2/PKG-INFO +194 -0
- radgeetoolbox-1.6.2/README.md +165 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/CollectionStitch.py +6 -6
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/GetPalette.py +2 -2
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/LandsatCollection.py +219 -462
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/Sentinel1Collection.py +129 -245
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/Sentinel2Collection.py +164 -403
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/VisParams.py +6 -6
- radgeetoolbox-1.6.2/RadGEEToolbox.egg-info/PKG-INFO +194 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/pyproject.toml +13 -1
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/setup.py +1 -1
- radgeetoolbox-1.6.0/PKG-INFO +0 -247
- radgeetoolbox-1.6.0/README.md +0 -228
- radgeetoolbox-1.6.0/RadGEEToolbox.egg-info/PKG-INFO +0 -247
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/LICENSE.txt +0 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox/__init__.py +0 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox.egg-info/SOURCES.txt +0 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox.egg-info/dependency_links.txt +0 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox.egg-info/requires.txt +0 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/RadGEEToolbox.egg-info/top_level.txt +0 -0
- {radgeetoolbox-1.6.0 → radgeetoolbox-1.6.2}/setup.cfg +0 -0
|
@@ -0,0 +1,194 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: RadGEEToolbox
|
|
3
|
+
Version: 1.6.2
|
|
4
|
+
Summary: Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API
|
|
5
|
+
Home-page: https://github.com/radwinskis/RadGEEToolbox
|
|
6
|
+
Author: Mark Radwin
|
|
7
|
+
Author-email: Mark Radwin <markradwin@gmail.com>
|
|
8
|
+
License: MIT
|
|
9
|
+
Project-URL: Homepage, https://github.com/radwinskis/RadGEEToolbox
|
|
10
|
+
Project-URL: Documentation, https://radgeetoolbox.readthedocs.io/en/latest/
|
|
11
|
+
Project-URL: Issues, https://github.com/radwinskis/RadGEEToolbox/issues
|
|
12
|
+
Classifier: Development Status :: 4 - Beta
|
|
13
|
+
Classifier: Intended Audience :: Science/Research
|
|
14
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: GIS
|
|
17
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
18
|
+
Classifier: Operating System :: OS Independent
|
|
19
|
+
Requires-Python: >=3.6
|
|
20
|
+
Description-Content-Type: text/markdown
|
|
21
|
+
License-File: LICENSE.txt
|
|
22
|
+
Requires-Dist: earthengine-api
|
|
23
|
+
Requires-Dist: numpy
|
|
24
|
+
Requires-Dist: pandas
|
|
25
|
+
Dynamic: author
|
|
26
|
+
Dynamic: home-page
|
|
27
|
+
Dynamic: license-file
|
|
28
|
+
Dynamic: requires-python
|
|
29
|
+
|
|
30
|
+
[](https://pypi.org/project/RadGEEToolbox/)
|
|
31
|
+
|
|
32
|
+
# RadGEEToolbox 🛠
|
|
33
|
+
|
|
34
|
+

|
|
35
|
+
|
|
36
|
+
### 🌎 Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API
|
|
37
|
+
|
|
38
|
+
### [See documentation here](https://radgeetoolbox.readthedocs.io/en/latest/)
|
|
39
|
+
|
|
40
|
+
**RadGEEToolbox** is an open-source Python package that simplifies the processing and analysis of satellite imagery using the Google Earth Engine Python API. It provides ready-to-use tools for filtering, masking, mosaicking, spectral index calculations, and extracting statistics from multispectral (Landsat, Sentinel-2) and SAR (Sentinel-1) datasets.
|
|
41
|
+
|
|
42
|
+
Designed for both new and advanced users of Google Earth Engine, RadGEEToolbox minimizes repetitive scripting, accelerates common remote sensing workflows, and aims to maximize efficiency within the constraints of the Google Earth Engine API. Whether you’re building a time series of vegetation indices or extracting surface properties along transects, this package helps get results faster.
|
|
43
|
+
|
|
44
|
+
_________
|
|
45
|
+
|
|
46
|
+
## Key Features
|
|
47
|
+
|
|
48
|
+
- Modular tools for processing **Landsat, Sentinel-1 SAR, and Sentinel-2** imagery
|
|
49
|
+
- Efficient filtering, masking, and mosaicking of Earth Engine image collections
|
|
50
|
+
- Built-in support for computing **spectral indices** (NDWI, NDVI, LST, turbidity, chlorophyll, etc.)
|
|
51
|
+
- SAR utilities for **multilooking**, **speckle filtering**, and **backscatter conversion**
|
|
52
|
+
- Automated extraction of **transect and zonal statistics** across image collections
|
|
53
|
+
- Easy conversion between RadGEEToolbox and standard Earth Engine objects
|
|
54
|
+
- Server-side–friendly workflows and caching for faster, scalable processing
|
|
55
|
+
|
|
56
|
+
🔍 For a full breakdown of available tools, see the [RadGEEToolbox documentation »](https://radgeetoolbox.readthedocs.io/en/latest/)
|
|
57
|
+
|
|
58
|
+
_____________
|
|
59
|
+
|
|
60
|
+
## Installation Instructions
|
|
61
|
+
|
|
62
|
+
### Prerequisites
|
|
63
|
+
|
|
64
|
+
- **Python**: Ensure you have version 3.6 or higher installed.
|
|
65
|
+
- **pip**: This is Python's package installer.
|
|
66
|
+
- **conda-forge**: Community led Conda package installer channel
|
|
67
|
+
|
|
68
|
+
### Installing via pip
|
|
69
|
+
|
|
70
|
+
To install `RadGEEToolbox` version 1.6.2 using pip (NOTE: it is recommended to create a new virtual environment):
|
|
71
|
+
|
|
72
|
+
```bash
|
|
73
|
+
pip install RadGEEToolbox==1.6.2
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
### Installing via Conda
|
|
77
|
+
|
|
78
|
+
To install `RadGEEToolbox` version 1.6.2 using conda-forge (NOTE: it is recommended to create a new virtual environment):
|
|
79
|
+
|
|
80
|
+
```bash
|
|
81
|
+
conda install conda-forge::radgeetoolbox
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
### Manual Installation from Source
|
|
85
|
+
|
|
86
|
+
1. **Clone the Repository**:
|
|
87
|
+
```bash
|
|
88
|
+
git clone https://github.com/radwinskis/RadGEEToolbox.git
|
|
89
|
+
```
|
|
90
|
+
|
|
91
|
+
2. **Navigate to Directory**:
|
|
92
|
+
```bash
|
|
93
|
+
cd RadGEEToolbox
|
|
94
|
+
```
|
|
95
|
+
|
|
96
|
+
3. **Install the Package**:
|
|
97
|
+
```bash
|
|
98
|
+
pip install .
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
### ✅ Verifying the Installation
|
|
102
|
+
|
|
103
|
+
To verify that `RadGEEToolbox` was installed correctly:
|
|
104
|
+
|
|
105
|
+
```python
|
|
106
|
+
python -c "import RadGEEToolbox; print(RadGEEToolbox.__version__)"
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
You should see `1.6.2` printed as the version number.
|
|
110
|
+
|
|
111
|
+
________
|
|
112
|
+
# Usage Example
|
|
113
|
+
|
|
114
|
+
Below is an example use case using the `LandsatCollection` module to create an NDWI image collection, create water classification maps, and create a time series of water area.
|
|
115
|
+
|
|
116
|
+
### 1. Create a Filtered Landsat Image Collection
|
|
117
|
+
|
|
118
|
+
```python
|
|
119
|
+
# 1. Import necessary packages and modules
|
|
120
|
+
import ee
|
|
121
|
+
from RadGEEToolbox import LandsatCollection
|
|
122
|
+
|
|
123
|
+
# 2. Authenticate & Initialize GEE API
|
|
124
|
+
ee.Authenticate()
|
|
125
|
+
ee.Initialize()
|
|
126
|
+
|
|
127
|
+
# 3. Define study area boundary - in this case Lake Powell, Utah
|
|
128
|
+
study_area = ee.Geometry.Polygon(
|
|
129
|
+
[[[-111.35875055487008, 37.19999663127137],
|
|
130
|
+
[-111.35875055487008, 37.00119876939416],
|
|
131
|
+
[-111.12048456365915, 37.00119876939416],
|
|
132
|
+
[-111.12048456365915, 37.19999663127137]]])
|
|
133
|
+
|
|
134
|
+
# 3. Create a Landsat image collection for a given time range and study area
|
|
135
|
+
# includes filtering imagery based on areal percentage of cloud cover
|
|
136
|
+
# WRS-2 tile(s) can also be used for filtering instead of an ROI geometry
|
|
137
|
+
collection = LandsatCollection(
|
|
138
|
+
start_date='2020-01-01', #date formats of 'YYYY-MM-DD'
|
|
139
|
+
end_date='2025-01-01',
|
|
140
|
+
cloud_percentage_threshold=10, #filtering to <10% cloud coverage
|
|
141
|
+
boundary=study_area #ee.Geometry() of your study area
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
# 4. Check collection by printing the dates of all images in the collection
|
|
145
|
+
dates = collection.dates
|
|
146
|
+
print(dates)
|
|
147
|
+
```
|
|
148
|
+
### 2. Apply a Cloud Mask and Compute NDWI
|
|
149
|
+
```python
|
|
150
|
+
# 1. Mask clouds
|
|
151
|
+
cloud_masked_collection = collection.masked_clouds_collection
|
|
152
|
+
# 2. Create a collection of singleband NDWI images with band names of 'ndwi'
|
|
153
|
+
cloud_masked_NDWI_collection = cloud_masked_collection.ndwi
|
|
154
|
+
# BONUS - 3. Create water classification maps using a user-set binary NDWI threshold
|
|
155
|
+
water_classification_maps = cloud_masked_collection.ndwi_collection(
|
|
156
|
+
threshold=0
|
|
157
|
+
)
|
|
158
|
+
```
|
|
159
|
+

|
|
160
|
+
|
|
161
|
+
Visualization of true color and classified water (in blue) from one of the dates in the collection
|
|
162
|
+
|
|
163
|
+
### 3. Calculate Water Area Time Series
|
|
164
|
+
```python
|
|
165
|
+
calculate_water_area = cloud_masked_NDWI_collection.PixelAreaSumCollection(
|
|
166
|
+
band_name='ndwi', #specify band to use from collection
|
|
167
|
+
geometry=study_area), #ee.Geometry() of your study area
|
|
168
|
+
threshold=0, #binary classification threshold for unclassified rasters,
|
|
169
|
+
scale=90 #pixel size for zonal statistics
|
|
170
|
+
)
|
|
171
|
+
water_area_time_series = calculate_water_area.aggregate_array('ndwi').getInfo()
|
|
172
|
+
print('List of square meters of water in images:', water_area_time_series)
|
|
173
|
+
```
|
|
174
|
+
|
|
175
|
+

|
|
176
|
+
|
|
177
|
+
Plotted Results from Above Example - All Processed in Less Than 5 Seconds!
|
|
178
|
+
|
|
179
|
+
For details about Sentinel-1 SAR and Sentinel-2 MSI modules, and all other available Landsat or cross-module functions, please refer to the [RadGEEToolbox documentation](https://radgeetoolbox.readthedocs.io/en/latest/). You can also explore [`/Example Notebooks`](https://github.com/radwinskis/RadGEEToolbox/tree/main/Example%20Notebooks) for more usage examples.
|
|
180
|
+
|
|
181
|
+
________
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
## Contributing
|
|
185
|
+
|
|
186
|
+
Contributions are welcome! If you’d like to suggest a feature, report a bug, or contribute code or documentation, please visit the [GitHub Issues](https://github.com/radwinskis/RadGEEToolbox/issues) page to get started or view the `CONTRIBUTING.md` file in the main directory.
|
|
187
|
+
|
|
188
|
+
____
|
|
189
|
+
|
|
190
|
+
## License
|
|
191
|
+
|
|
192
|
+
RadGEEToolbox is released under the MIT License.
|
|
193
|
+
|
|
194
|
+
|
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
[](https://pypi.org/project/RadGEEToolbox/)
|
|
2
|
+
|
|
3
|
+
# RadGEEToolbox 🛠
|
|
4
|
+
|
|
5
|
+

|
|
6
|
+
|
|
7
|
+
### 🌎 Streamlined Multispectral & SAR Analysis for Google Earth Engine Python API
|
|
8
|
+
|
|
9
|
+
### [See documentation here](https://radgeetoolbox.readthedocs.io/en/latest/)
|
|
10
|
+
|
|
11
|
+
**RadGEEToolbox** is an open-source Python package that simplifies the processing and analysis of satellite imagery using the Google Earth Engine Python API. It provides ready-to-use tools for filtering, masking, mosaicking, spectral index calculations, and extracting statistics from multispectral (Landsat, Sentinel-2) and SAR (Sentinel-1) datasets.
|
|
12
|
+
|
|
13
|
+
Designed for both new and advanced users of Google Earth Engine, RadGEEToolbox minimizes repetitive scripting, accelerates common remote sensing workflows, and aims to maximize efficiency within the constraints of the Google Earth Engine API. Whether you’re building a time series of vegetation indices or extracting surface properties along transects, this package helps get results faster.
|
|
14
|
+
|
|
15
|
+
_________
|
|
16
|
+
|
|
17
|
+
## Key Features
|
|
18
|
+
|
|
19
|
+
- Modular tools for processing **Landsat, Sentinel-1 SAR, and Sentinel-2** imagery
|
|
20
|
+
- Efficient filtering, masking, and mosaicking of Earth Engine image collections
|
|
21
|
+
- Built-in support for computing **spectral indices** (NDWI, NDVI, LST, turbidity, chlorophyll, etc.)
|
|
22
|
+
- SAR utilities for **multilooking**, **speckle filtering**, and **backscatter conversion**
|
|
23
|
+
- Automated extraction of **transect and zonal statistics** across image collections
|
|
24
|
+
- Easy conversion between RadGEEToolbox and standard Earth Engine objects
|
|
25
|
+
- Server-side–friendly workflows and caching for faster, scalable processing
|
|
26
|
+
|
|
27
|
+
🔍 For a full breakdown of available tools, see the [RadGEEToolbox documentation »](https://radgeetoolbox.readthedocs.io/en/latest/)
|
|
28
|
+
|
|
29
|
+
_____________
|
|
30
|
+
|
|
31
|
+
## Installation Instructions
|
|
32
|
+
|
|
33
|
+
### Prerequisites
|
|
34
|
+
|
|
35
|
+
- **Python**: Ensure you have version 3.6 or higher installed.
|
|
36
|
+
- **pip**: This is Python's package installer.
|
|
37
|
+
- **conda-forge**: Community led Conda package installer channel
|
|
38
|
+
|
|
39
|
+
### Installing via pip
|
|
40
|
+
|
|
41
|
+
To install `RadGEEToolbox` version 1.6.2 using pip (NOTE: it is recommended to create a new virtual environment):
|
|
42
|
+
|
|
43
|
+
```bash
|
|
44
|
+
pip install RadGEEToolbox==1.6.2
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
### Installing via Conda
|
|
48
|
+
|
|
49
|
+
To install `RadGEEToolbox` version 1.6.2 using conda-forge (NOTE: it is recommended to create a new virtual environment):
|
|
50
|
+
|
|
51
|
+
```bash
|
|
52
|
+
conda install conda-forge::radgeetoolbox
|
|
53
|
+
```
|
|
54
|
+
|
|
55
|
+
### Manual Installation from Source
|
|
56
|
+
|
|
57
|
+
1. **Clone the Repository**:
|
|
58
|
+
```bash
|
|
59
|
+
git clone https://github.com/radwinskis/RadGEEToolbox.git
|
|
60
|
+
```
|
|
61
|
+
|
|
62
|
+
2. **Navigate to Directory**:
|
|
63
|
+
```bash
|
|
64
|
+
cd RadGEEToolbox
|
|
65
|
+
```
|
|
66
|
+
|
|
67
|
+
3. **Install the Package**:
|
|
68
|
+
```bash
|
|
69
|
+
pip install .
|
|
70
|
+
```
|
|
71
|
+
|
|
72
|
+
### ✅ Verifying the Installation
|
|
73
|
+
|
|
74
|
+
To verify that `RadGEEToolbox` was installed correctly:
|
|
75
|
+
|
|
76
|
+
```python
|
|
77
|
+
python -c "import RadGEEToolbox; print(RadGEEToolbox.__version__)"
|
|
78
|
+
```
|
|
79
|
+
|
|
80
|
+
You should see `1.6.2` printed as the version number.
|
|
81
|
+
|
|
82
|
+
________
|
|
83
|
+
# Usage Example
|
|
84
|
+
|
|
85
|
+
Below is an example use case using the `LandsatCollection` module to create an NDWI image collection, create water classification maps, and create a time series of water area.
|
|
86
|
+
|
|
87
|
+
### 1. Create a Filtered Landsat Image Collection
|
|
88
|
+
|
|
89
|
+
```python
|
|
90
|
+
# 1. Import necessary packages and modules
|
|
91
|
+
import ee
|
|
92
|
+
from RadGEEToolbox import LandsatCollection
|
|
93
|
+
|
|
94
|
+
# 2. Authenticate & Initialize GEE API
|
|
95
|
+
ee.Authenticate()
|
|
96
|
+
ee.Initialize()
|
|
97
|
+
|
|
98
|
+
# 3. Define study area boundary - in this case Lake Powell, Utah
|
|
99
|
+
study_area = ee.Geometry.Polygon(
|
|
100
|
+
[[[-111.35875055487008, 37.19999663127137],
|
|
101
|
+
[-111.35875055487008, 37.00119876939416],
|
|
102
|
+
[-111.12048456365915, 37.00119876939416],
|
|
103
|
+
[-111.12048456365915, 37.19999663127137]]])
|
|
104
|
+
|
|
105
|
+
# 3. Create a Landsat image collection for a given time range and study area
|
|
106
|
+
# includes filtering imagery based on areal percentage of cloud cover
|
|
107
|
+
# WRS-2 tile(s) can also be used for filtering instead of an ROI geometry
|
|
108
|
+
collection = LandsatCollection(
|
|
109
|
+
start_date='2020-01-01', #date formats of 'YYYY-MM-DD'
|
|
110
|
+
end_date='2025-01-01',
|
|
111
|
+
cloud_percentage_threshold=10, #filtering to <10% cloud coverage
|
|
112
|
+
boundary=study_area #ee.Geometry() of your study area
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
# 4. Check collection by printing the dates of all images in the collection
|
|
116
|
+
dates = collection.dates
|
|
117
|
+
print(dates)
|
|
118
|
+
```
|
|
119
|
+
### 2. Apply a Cloud Mask and Compute NDWI
|
|
120
|
+
```python
|
|
121
|
+
# 1. Mask clouds
|
|
122
|
+
cloud_masked_collection = collection.masked_clouds_collection
|
|
123
|
+
# 2. Create a collection of singleband NDWI images with band names of 'ndwi'
|
|
124
|
+
cloud_masked_NDWI_collection = cloud_masked_collection.ndwi
|
|
125
|
+
# BONUS - 3. Create water classification maps using a user-set binary NDWI threshold
|
|
126
|
+
water_classification_maps = cloud_masked_collection.ndwi_collection(
|
|
127
|
+
threshold=0
|
|
128
|
+
)
|
|
129
|
+
```
|
|
130
|
+

|
|
131
|
+
|
|
132
|
+
Visualization of true color and classified water (in blue) from one of the dates in the collection
|
|
133
|
+
|
|
134
|
+
### 3. Calculate Water Area Time Series
|
|
135
|
+
```python
|
|
136
|
+
calculate_water_area = cloud_masked_NDWI_collection.PixelAreaSumCollection(
|
|
137
|
+
band_name='ndwi', #specify band to use from collection
|
|
138
|
+
geometry=study_area), #ee.Geometry() of your study area
|
|
139
|
+
threshold=0, #binary classification threshold for unclassified rasters,
|
|
140
|
+
scale=90 #pixel size for zonal statistics
|
|
141
|
+
)
|
|
142
|
+
water_area_time_series = calculate_water_area.aggregate_array('ndwi').getInfo()
|
|
143
|
+
print('List of square meters of water in images:', water_area_time_series)
|
|
144
|
+
```
|
|
145
|
+
|
|
146
|
+

|
|
147
|
+
|
|
148
|
+
Plotted Results from Above Example - All Processed in Less Than 5 Seconds!
|
|
149
|
+
|
|
150
|
+
For details about Sentinel-1 SAR and Sentinel-2 MSI modules, and all other available Landsat or cross-module functions, please refer to the [RadGEEToolbox documentation](https://radgeetoolbox.readthedocs.io/en/latest/). You can also explore [`/Example Notebooks`](https://github.com/radwinskis/RadGEEToolbox/tree/main/Example%20Notebooks) for more usage examples.
|
|
151
|
+
|
|
152
|
+
________
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
## Contributing
|
|
156
|
+
|
|
157
|
+
Contributions are welcome! If you’d like to suggest a feature, report a bug, or contribute code or documentation, please visit the [GitHub Issues](https://github.com/radwinskis/RadGEEToolbox/issues) page to get started or view the `CONTRIBUTING.md` file in the main directory.
|
|
158
|
+
|
|
159
|
+
____
|
|
160
|
+
|
|
161
|
+
## License
|
|
162
|
+
|
|
163
|
+
RadGEEToolbox is released under the MIT License.
|
|
164
|
+
|
|
165
|
+
|
|
@@ -6,12 +6,12 @@ def CollectionStitch(img_col1, img_col2, copy_properties_from=1):
|
|
|
6
6
|
Returned image collection is an eeImageCollection object. NOTE this is different from the CollectionStitch function available in the LandsatCollection and SentinelCollection classes.
|
|
7
7
|
|
|
8
8
|
Args:
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
9
|
+
img_col1 (RadGEEToolbox object): primary RadGEEToolbox image collection to be mosaiced with the secondary image collection
|
|
10
|
+
img_col2 (RadGEEToolbox object): secondary RadGEEToolbox image collection to be mosaiced with the primary image collection
|
|
11
|
+
copy_properties_from (int): image collection used for copying image properties, options of 1 or 2 for primary or secondary respectively. Default is 1.
|
|
12
12
|
|
|
13
13
|
Returns:
|
|
14
|
-
|
|
14
|
+
ee.ImageCollection: ee.ImageCollection image collection with mosaiced imagery and image properties from chosen collection
|
|
15
15
|
"""
|
|
16
16
|
image_list = []
|
|
17
17
|
dates_list = img_col1.dates_list + img_col2.dates_list
|
|
@@ -39,10 +39,10 @@ def MosaicByDate(img_col):
|
|
|
39
39
|
Function to mosaic collection images that share the same date. Server-side friendly. Requires images to have date property of "Date_Filter"
|
|
40
40
|
|
|
41
41
|
Args:
|
|
42
|
-
|
|
42
|
+
img_col(RadGEEToolbox object): eeImageCollection object
|
|
43
43
|
|
|
44
44
|
Returns:
|
|
45
|
-
|
|
45
|
+
ee.ImageCollection: ee.ImageCollection with mosaiced imagery
|
|
46
46
|
"""
|
|
47
47
|
input_collection = img_col
|
|
48
48
|
# Function to mosaic images of the same date and accumulate them
|
|
@@ -3,10 +3,10 @@ def get_palette(name):
|
|
|
3
3
|
Returns the color palette associated with the given name.
|
|
4
4
|
|
|
5
5
|
Args:
|
|
6
|
-
|
|
6
|
+
name (str): options are 'algae', 'dense', 'greens', 'haline', 'inferno', 'jet', 'matter', 'pubu', 'soft_blue_green_red', 'thermal', 'turbid', 'ylord'
|
|
7
7
|
|
|
8
8
|
Returns:
|
|
9
|
-
|
|
9
|
+
list: list of colors to be used for image visualization in GEE vis params
|
|
10
10
|
|
|
11
11
|
"""
|
|
12
12
|
palettes = {
|