ObjectNat 1.2.0__tar.gz → 1.2.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ObjectNat might be problematic. Click here for more details.

Files changed (38) hide show
  1. {objectnat-1.2.0 → objectnat-1.2.2}/LICENSE.txt +28 -28
  2. objectnat-1.2.2/PKG-INFO +116 -0
  3. objectnat-1.2.2/README.md +92 -0
  4. {objectnat-1.2.0 → objectnat-1.2.2}/pyproject.toml +72 -68
  5. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/__init__.py +9 -13
  6. objectnat-1.2.2/src/objectnat/_version.py +1 -0
  7. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/coverage_zones/graph_coverage.py +98 -108
  8. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/coverage_zones/radius_voronoi_coverage.py +37 -45
  9. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/coverage_zones/stepped_coverage.py +126 -142
  10. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/isochrones/isochrones.py +262 -299
  11. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/noise/__init__.py +0 -1
  12. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/noise/noise_simulation.py +452 -440
  13. objectnat-1.2.2/src/objectnat/methods/noise/noise_simulation_simplified.py +209 -0
  14. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/point_clustering/cluster_points_in_polygons.py +115 -116
  15. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/provision/provision.py +121 -110
  16. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/provision/provision_model.py +12 -1
  17. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/utils/graph_utils.py +306 -320
  18. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/visibility/visibility_analysis.py +470 -511
  19. objectnat-1.2.0/PKG-INFO +0 -148
  20. objectnat-1.2.0/README.md +0 -124
  21. objectnat-1.2.0/src/objectnat/_version.py +0 -1
  22. objectnat-1.2.0/src/objectnat/methods/noise/noise_exceptions.py +0 -14
  23. objectnat-1.2.0/src/objectnat/methods/noise/noise_simulation_simplified.py +0 -135
  24. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/_api.py +0 -0
  25. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/_config.py +0 -0
  26. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/__init__.py +0 -0
  27. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/coverage_zones/__init__.py +0 -0
  28. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/isochrones/__init__.py +0 -0
  29. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/isochrones/isochrone_utils.py +0 -0
  30. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/noise/noise_init_data.py +0 -0
  31. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/noise/noise_reduce.py +0 -0
  32. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/point_clustering/__init__.py +0 -0
  33. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/provision/__init__.py +0 -0
  34. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/provision/provision_exceptions.py +0 -0
  35. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/utils/__init__.py +0 -0
  36. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/utils/geom_utils.py +0 -0
  37. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/utils/math_utils.py +0 -0
  38. {objectnat-1.2.0 → objectnat-1.2.2}/src/objectnat/methods/visibility/__init__.py +0 -0
@@ -1,28 +1,28 @@
1
- BSD 3-Clause License
2
-
3
- Copyright (c) 2023, iduprojects
4
-
5
- Redistribution and use in source and binary forms, with or without
6
- modification, are permitted provided that the following conditions are met:
7
-
8
- 1. Redistributions of source code must retain the above copyright notice, this
9
- list of conditions and the following disclaimer.
10
-
11
- 2. Redistributions in binary form must reproduce the above copyright notice,
12
- this list of conditions and the following disclaimer in the documentation
13
- and/or other materials provided with the distribution.
14
-
15
- 3. Neither the name of the copyright holder nor the names of its
16
- contributors may be used to endorse or promote products derived from
17
- this software without specific prior written permission.
18
-
19
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2023, iduprojects
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright notice, this
9
+ list of conditions and the following disclaimer.
10
+
11
+ 2. Redistributions in binary form must reproduce the above copyright notice,
12
+ this list of conditions and the following disclaimer in the documentation
13
+ and/or other materials provided with the distribution.
14
+
15
+ 3. Neither the name of the copyright holder nor the names of its
16
+ contributors may be used to endorse or promote products derived from
17
+ this software without specific prior written permission.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@@ -0,0 +1,116 @@
1
+ Metadata-Version: 2.4
2
+ Name: ObjectNat
3
+ Version: 1.2.2
4
+ Summary: ObjectNat is an open-source library created for geospatial analysis created by IDU team
5
+ License: BSD-3-Clause
6
+ License-File: LICENSE.txt
7
+ Author: DDonnyy
8
+ Author-email: 63115678+DDonnyy@users.noreply.github.com
9
+ Requires-Python: >=3.10,<3.13
10
+ Classifier: License :: OSI Approved :: BSD License
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Requires-Dist: geopandas (>=1.0.1,<2.0.0)
16
+ Requires-Dist: loguru (>=0.7.3,<0.8.0)
17
+ Requires-Dist: networkx (>=3.4.2,<4.0.0)
18
+ Requires-Dist: numpy (>=2.1.3,<3.0.0)
19
+ Requires-Dist: pandarallel (>=1.6.5,<2.0.0)
20
+ Requires-Dist: pandas (>=2.2.0,<3.0.0)
21
+ Requires-Dist: scikit-learn (>=1.4.0,<2.0.0)
22
+ Requires-Dist: tqdm (>=4.66.2,<5.0.0)
23
+ Description-Content-Type: text/markdown
24
+
25
+ # ObjectNat
26
+
27
+ [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
28
+ [![PyPI version](https://img.shields.io/pypi/v/objectnat.svg)](https://pypi.org/project/objectnat/)
29
+ [![CI](https://github.com/DDonnyy/ObjectNat/actions/workflows/ci_pipeline.yml/badge.svg)](https://github.com/DDonnyy/ObjecNat/actions/workflows/ci_pipeline.yml)
30
+ [![codecov](https://codecov.io/gh/DDonnyy/ObjectNat/graph/badge.svg?token=K6JFSJ02GU)](https://codecov.io/gh/DDonnyy/ObjectNat)
31
+ [![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](https://opensource.org/licenses/MIT)
32
+
33
+ - [РИДМИ (Russian)](README_ru.md)
34
+ <p align="center">
35
+ <img src="https://github.com/user-attachments/assets/ed0f226e-1728-4659-9e21-b4d499e703cd" alt="logo" width="400">
36
+ </p>
37
+
38
+ #### **ObjectNat** is an open-source library created for geospatial analysis created by **IDU team**
39
+
40
+ ---
41
+
42
+ ## Features and How to Use
43
+
44
+ Each feature is accompanied by a Jupyter notebook example and full documentation.
45
+
46
+ 1. **[Isochrones and Transport Accessibility](./examples/isochrone_generator.ipynb)**
47
+ Analyze areas reachable within a given time along a transport network.
48
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/isochrones.html)
49
+
50
+ 2. **[Coverage Zones](./examples/coverage_zones.ipynb)**
51
+ Build zones of reachability for each point using routing or simple radius.
52
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/coverage.html)
53
+
54
+ 3. **[Service Provision Analysis](./examples/calculate_provision.ipynb)**
55
+ Evaluate service availability and model demand-supply balance.
56
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/provision.html)
57
+
58
+ 4. **[Visibility Analysis](./examples/visibility_analysis.ipynb)**
59
+ Estimate visibility to nearby buildings from selected points.
60
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/visibility.html)
61
+
62
+ 5. **[Noise Simulation](./examples/noise_simulation.ipynb)**
63
+ Simulate noise propagation considering obstacles and environment.
64
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/noise.html)
65
+ 🔗 [Detailed theory in the Wiki](https://github.com/DDonnyy/ObjectNat/wiki/Noise-simulation)
66
+
67
+ 6. **[Point Clusterization](./examples/point_clusterization.ipynb)**
68
+ Group nearby points into clusters and analyze service composition.
69
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/clustering.html)
70
+
71
+ ---
72
+
73
+ ## City graphs
74
+
75
+ To ensure optimal performance of ObjectNat's geospatial analysis functions, it's recommended to utilize urban graphs sourced from the [IduEdu](https://github.com/DDonnyy/IduEdu) library.
76
+ **IduEdu** is an open-source Python library designed for the creation and manipulation of complex city networks derived from OpenStreetMap data.
77
+
78
+ **IduEdu** can be installed with ``pip``:
79
+ ```
80
+ pip install IduEdu
81
+ ```
82
+ ---
83
+
84
+ ## Installation
85
+
86
+ **ObjectNat** can be installed with ``pip``:
87
+
88
+ ```
89
+ pip install ObjectNat
90
+ ```
91
+
92
+ ---
93
+
94
+ ### Configuration changes
95
+
96
+ ```python
97
+ from objectnat import config
98
+
99
+ config.change_logger_lvl('INFO') # To mute all debug msgs
100
+ config.set_enable_tqdm(False) # To mute all tqdm's progress bars
101
+ ```
102
+
103
+ ---
104
+
105
+ ## Contacts
106
+
107
+ - [NCCR](https://actcognitive.org/) - National Center for Cognitive Research
108
+ - [IDU](https://idu.itmo.ru/) - Institute of Design and Urban Studies
109
+ - [Natalya Chichkova](https://t.me/nancy_nat) - project manager
110
+ - [Danila Oleynikov (Donny)](https://t.me/ddonny_dd) - lead software engineer
111
+
112
+ ---
113
+
114
+ ## Publications
115
+
116
+ _Coming soon._
@@ -0,0 +1,92 @@
1
+ # ObjectNat
2
+
3
+ [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
4
+ [![PyPI version](https://img.shields.io/pypi/v/objectnat.svg)](https://pypi.org/project/objectnat/)
5
+ [![CI](https://github.com/DDonnyy/ObjectNat/actions/workflows/ci_pipeline.yml/badge.svg)](https://github.com/DDonnyy/ObjecNat/actions/workflows/ci_pipeline.yml)
6
+ [![codecov](https://codecov.io/gh/DDonnyy/ObjectNat/graph/badge.svg?token=K6JFSJ02GU)](https://codecov.io/gh/DDonnyy/ObjectNat)
7
+ [![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](https://opensource.org/licenses/MIT)
8
+
9
+ - [РИДМИ (Russian)](README_ru.md)
10
+ <p align="center">
11
+ <img src="https://github.com/user-attachments/assets/ed0f226e-1728-4659-9e21-b4d499e703cd" alt="logo" width="400">
12
+ </p>
13
+
14
+ #### **ObjectNat** is an open-source library created for geospatial analysis created by **IDU team**
15
+
16
+ ---
17
+
18
+ ## Features and How to Use
19
+
20
+ Each feature is accompanied by a Jupyter notebook example and full documentation.
21
+
22
+ 1. **[Isochrones and Transport Accessibility](./examples/isochrone_generator.ipynb)**
23
+ Analyze areas reachable within a given time along a transport network.
24
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/isochrones.html)
25
+
26
+ 2. **[Coverage Zones](./examples/coverage_zones.ipynb)**
27
+ Build zones of reachability for each point using routing or simple radius.
28
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/coverage.html)
29
+
30
+ 3. **[Service Provision Analysis](./examples/calculate_provision.ipynb)**
31
+ Evaluate service availability and model demand-supply balance.
32
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/provision.html)
33
+
34
+ 4. **[Visibility Analysis](./examples/visibility_analysis.ipynb)**
35
+ Estimate visibility to nearby buildings from selected points.
36
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/visibility.html)
37
+
38
+ 5. **[Noise Simulation](./examples/noise_simulation.ipynb)**
39
+ Simulate noise propagation considering obstacles and environment.
40
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/noise.html)
41
+ 🔗 [Detailed theory in the Wiki](https://github.com/DDonnyy/ObjectNat/wiki/Noise-simulation)
42
+
43
+ 6. **[Point Clusterization](./examples/point_clusterization.ipynb)**
44
+ Group nearby points into clusters and analyze service composition.
45
+ 📄 [See documentation](https://iduclub.github.io/ObjectNat/latest/usage/clustering.html)
46
+
47
+ ---
48
+
49
+ ## City graphs
50
+
51
+ To ensure optimal performance of ObjectNat's geospatial analysis functions, it's recommended to utilize urban graphs sourced from the [IduEdu](https://github.com/DDonnyy/IduEdu) library.
52
+ **IduEdu** is an open-source Python library designed for the creation and manipulation of complex city networks derived from OpenStreetMap data.
53
+
54
+ **IduEdu** can be installed with ``pip``:
55
+ ```
56
+ pip install IduEdu
57
+ ```
58
+ ---
59
+
60
+ ## Installation
61
+
62
+ **ObjectNat** can be installed with ``pip``:
63
+
64
+ ```
65
+ pip install ObjectNat
66
+ ```
67
+
68
+ ---
69
+
70
+ ### Configuration changes
71
+
72
+ ```python
73
+ from objectnat import config
74
+
75
+ config.change_logger_lvl('INFO') # To mute all debug msgs
76
+ config.set_enable_tqdm(False) # To mute all tqdm's progress bars
77
+ ```
78
+
79
+ ---
80
+
81
+ ## Contacts
82
+
83
+ - [NCCR](https://actcognitive.org/) - National Center for Cognitive Research
84
+ - [IDU](https://idu.itmo.ru/) - Institute of Design and Urban Studies
85
+ - [Natalya Chichkova](https://t.me/nancy_nat) - project manager
86
+ - [Danila Oleynikov (Donny)](https://t.me/ddonny_dd) - lead software engineer
87
+
88
+ ---
89
+
90
+ ## Publications
91
+
92
+ _Coming soon._
@@ -1,69 +1,73 @@
1
- [tool.poetry]
2
- name = "ObjectNat"
3
- version = "1.2.0"
4
- description = "ObjectNat is an open-source library created for geospatial analysis created by IDU team"
5
- license = "BSD-3-Clause"
6
- authors = ["DDonnyy <63115678+DDonnyy@users.noreply.github.com>"]
7
- readme = "README.md"
8
-
9
- packages = [{ include = "objectnat", from = "src" }]
10
-
11
- [tool.poetry.dependencies]
12
- python = ">=3.10,<3.13"
13
- numpy = "^2.1.3"
14
- pandas = "^2.2.0"
15
- geopandas = "^1.0.1"
16
- tqdm = "^4.66.2"
17
- pandarallel = "^1.6.5"
18
- networkx = "^3.4.2"
19
- scikit-learn = "^1.4.0"
20
- loguru = "^0.7.3"
21
-
22
- [tool.poetry.group.dev.dependencies]
23
- iduedu = "^0.5.0"
24
- pyarrow = "^19.0.1"
25
- black = "^24.2.0"
26
- pylint = "^3.0.3"
27
- isort = "^5.13.2"
28
- jupyter = "^1.0.0"
29
- pytest = "^8.3.5"
30
- pytest-cov = "^6.0.0"
31
- pre-commit = "^4.2.0"
32
- folium = "^0.19.5"
33
- matplotlib = "^3.10.1"
34
- mapclassify = "^2.8.1"
35
-
36
- [build-system]
37
- requires = ["poetry-core"]
38
- build-backend = "poetry.core.masonry.api"
39
-
40
- [tool.black]
41
- line-length = 120
42
- target-version = ['py310']
43
-
44
- [tool.pylint.format]
45
- max-line-length = 120
46
- expected-line-ending-format = "LF"
47
- max-locals = 20
48
- extension-pkg-allow-list = ["networkit"]
49
- disable = [
50
- "duplicate-code",
51
- "too-many-positional-arguments",
52
- "missing-module-docstring",
53
- "missing-function-docstring",
54
- "too-many-locals",
55
- "too-many-branches",
56
- "too-many-statements",
57
- "too-many-arguments",
58
- "cyclic-import"
59
- ]
60
-
61
- [tool.isort]
62
- multi_line_output = 3
63
- include_trailing_comma = true
64
- force_grid_wrap = 0
65
- use_parentheses = true
66
- ensure_newline_before_comments = true
67
- line_length = 120
68
- split_on_trailing_comma = true
1
+ [tool.poetry]
2
+ name = "ObjectNat"
3
+ version = "1.2.2"
4
+ description = "ObjectNat is an open-source library created for geospatial analysis created by IDU team"
5
+ license = "BSD-3-Clause"
6
+ authors = ["DDonnyy <63115678+DDonnyy@users.noreply.github.com>"]
7
+ readme = "README.md"
8
+
9
+ packages = [{ include = "objectnat", from = "src" }]
10
+
11
+ [tool.poetry.dependencies]
12
+ python = ">=3.10,<3.13"
13
+ numpy = "^2.1.3"
14
+ pandas = "^2.2.0"
15
+ geopandas = "^1.0.1"
16
+ tqdm = "^4.66.2"
17
+ pandarallel = "^1.6.5"
18
+ networkx = "^3.4.2"
19
+ scikit-learn = "^1.4.0"
20
+ loguru = "^0.7.3"
21
+
22
+ [tool.poetry.group.dev.dependencies]
23
+ iduedu = "^0.5.0"
24
+ pyarrow = "^19.0.1"
25
+ black = "^24.2.0"
26
+ pylint = "^3.0.3"
27
+ isort = "^5.13.2"
28
+ jupyter = "^1.0.0"
29
+ pytest = "^8.3.5"
30
+ pytest-cov = "^6.0.0"
31
+ pre-commit = "^4.2.0"
32
+ folium = "^0.19.5"
33
+ matplotlib = "^3.10.1"
34
+ mapclassify = "^2.8.1"
35
+ mkdocs = "^1.6.1"
36
+ mkdocstrings = {extras = ["python"], version = "^0.29.1"}
37
+ mkdocs-material = "^9.6.14"
38
+ mike = "^2.1.3"
39
+
40
+ [build-system]
41
+ requires = ["poetry-core"]
42
+ build-backend = "poetry.core.masonry.api"
43
+
44
+ [tool.black]
45
+ line-length = 120
46
+ target-version = ['py310']
47
+
48
+ [tool.pylint.format]
49
+ max-line-length = 120
50
+ expected-line-ending-format = "LF"
51
+ max-locals = 20
52
+ extension-pkg-allow-list = ["networkit"]
53
+ disable = [
54
+ "duplicate-code",
55
+ "too-many-positional-arguments",
56
+ "missing-module-docstring",
57
+ "missing-function-docstring",
58
+ "too-many-locals",
59
+ "too-many-branches",
60
+ "too-many-statements",
61
+ "too-many-arguments",
62
+ "cyclic-import"
63
+ ]
64
+
65
+ [tool.isort]
66
+ multi_line_output = 3
67
+ include_trailing_comma = true
68
+ force_grid_wrap = 0
69
+ use_parentheses = true
70
+ ensure_newline_before_comments = true
71
+ line_length = 120
72
+ split_on_trailing_comma = true
69
73
  skip = ["__init__.py"]
@@ -1,13 +1,9 @@
1
- """
2
- ObjectNat
3
- ========
4
-
5
-
6
- ObjectNat is an open-source library created for geospatial analysis created by IDU team.
7
-
8
- Homepage https://github.com/DDonnyy/ObjectNat.
9
- """
10
-
11
- from ._config import config
12
- from ._api import *
13
- from ._version import VERSION as __version__
1
+ """
2
+ ObjectNat is an open-source library created for geospatial analysis created by IDU team.
3
+
4
+ Homepage https://github.com/DDonnyy/ObjectNat.
5
+ """
6
+
7
+ from ._config import config
8
+ from ._api import *
9
+ from ._version import VERSION as __version__
@@ -0,0 +1 @@
1
+ VERSION = "1.2.2"
@@ -1,108 +1,98 @@
1
- from typing import Literal
2
-
3
- import geopandas as gpd
4
- import networkx as nx
5
- import pandas as pd
6
- from pyproj.exceptions import CRSError
7
- from shapely import Point, concave_hull
8
-
9
- from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, reverse_graph
10
-
11
-
12
- def get_graph_coverage(
13
- gdf_to: gpd.GeoDataFrame,
14
- nx_graph: nx.Graph,
15
- weight_type: Literal["time_min", "length_meter"],
16
- weight_value_cutoff: float = None,
17
- zone: gpd.GeoDataFrame = None,
18
- ):
19
- """
20
- Calculate coverage zones from source points through a graph network using Dijkstra's algorithm
21
- and Voronoi diagrams.
22
-
23
- The function works by:
24
- 1. Finding nearest graph nodes for each input point
25
- 2. Calculating all reachable nodes within cutoff distance using Dijkstra
26
- 3. Creating Voronoi polygons around graph nodes
27
- 4. Combining reachability information with Voronoi cells
28
- 5. Clipping results to specified zone boundary
29
-
30
- Parameters
31
- ----------
32
- gdf_to : gpd.GeoDataFrame
33
- Source points to which coverage is calculated.
34
- nx_graph : nx.Graph
35
- NetworkX graph representing the transportation network.
36
- weight_type : Literal["time_min", "length_meter"]
37
- Edge attribute to use as weight for path calculations.
38
- weight_value_cutoff : float, optional
39
- Maximum weight value for path calculations (e.g., max travel time/distance).
40
- zone : gpd.GeoDataFrame, optional
41
- Boundary polygon to clip the resulting coverage zones. If None, concave hull of reachable nodes will be used.
42
-
43
- Returns
44
- -------
45
- gpd.GeoDataFrame
46
- GeoDataFrame with coverage zones polygons, each associated with its source point, returns in the same CRS as
47
- original gdf_from.
48
-
49
- Notes
50
- -----
51
- - The graph must have a valid CRS attribute in its graph properties
52
- - MultiGraph/MultiDiGraph inputs will be converted to simple Graph/DiGraph
53
-
54
- Examples
55
- --------
56
- >>> from iduedu import get_intermodal_graph # pip install iduedu to get OSM city network graph
57
- >>> points = gpd.read_file('points.geojson')
58
- >>> graph = get_intermodal_graph(osm_id=1114252)
59
- >>> coverage = get_graph_coverage(points, graph, "time_min", 15)
60
- """
61
- original_crs = gdf_to.crs
62
- try:
63
- local_crs = nx_graph.graph["crs"]
64
- except KeyError as exc:
65
- raise ValueError("Graph does not have crs attribute") from exc
66
-
67
- try:
68
- points = gdf_to.copy()
69
- points.to_crs(local_crs, inplace=True)
70
- except CRSError as e:
71
- raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
72
-
73
- nx_graph, reversed_graph = reverse_graph(nx_graph, weight_type)
74
-
75
- points.geometry = points.representative_point()
76
-
77
- _, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
78
-
79
- points["nearest_node"] = nearest_nodes
80
-
81
- nearest_paths = nx.multi_source_dijkstra_path(
82
- reversed_graph, nearest_nodes, weight=weight_type, cutoff=weight_value_cutoff
83
- )
84
- reachable_nodes = list(nearest_paths.keys())
85
- graph_points = pd.DataFrame(
86
- data=[{"node": node, "geometry": Point(data["x"], data["y"])} for node, data in nx_graph.nodes(data=True)]
87
- ).set_index("node")
88
- nearest_nodes = pd.DataFrame(
89
- data=[path[0] for path in nearest_paths.values()], index=reachable_nodes, columns=["node_to"]
90
- )
91
- graph_nodes_gdf = gpd.GeoDataFrame(
92
- graph_points.merge(nearest_nodes, left_index=True, right_index=True, how="left"),
93
- geometry="geometry",
94
- crs=local_crs,
95
- )
96
- graph_nodes_gdf["node_to"] = graph_nodes_gdf["node_to"].fillna("non_reachable")
97
- voronois = gpd.GeoDataFrame(geometry=graph_nodes_gdf.voronoi_polygons(), crs=local_crs)
98
- graph_nodes_gdf = graph_nodes_gdf[graph_nodes_gdf["node_to"] != "non_reachable"]
99
- zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="node_to").reset_index().drop(columns=["node"])
100
- zone_coverages = zone_coverages.merge(
101
- points.drop(columns="geometry"), left_on="node_to", right_on="nearest_node", how="inner"
102
- ).reset_index(drop=True)
103
- zone_coverages.drop(columns=["node_to", "nearest_node"], inplace=True)
104
- if zone is None:
105
- zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
106
- else:
107
- zone = zone.to_crs(local_crs)
108
- return zone_coverages.clip(zone).to_crs(original_crs)
1
+ from typing import Literal
2
+
3
+ import geopandas as gpd
4
+ import networkx as nx
5
+ import pandas as pd
6
+ from pyproj.exceptions import CRSError
7
+ from shapely import Point, concave_hull
8
+
9
+ from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, reverse_graph
10
+
11
+
12
+ def get_graph_coverage(
13
+ gdf_to: gpd.GeoDataFrame,
14
+ nx_graph: nx.Graph,
15
+ weight_type: Literal["time_min", "length_meter"],
16
+ weight_value_cutoff: float = None,
17
+ zone: gpd.GeoDataFrame = None,
18
+ ):
19
+ """
20
+ Calculate coverage zones from source points through a graph network using Dijkstra's algorithm
21
+ and Voronoi diagrams.
22
+
23
+ The function works by:
24
+ 1. Finding nearest graph nodes for each input point
25
+ 2. Calculating all reachable nodes within cutoff distance using Dijkstra
26
+ 3. Creating Voronoi polygons around graph nodes
27
+ 4. Combining reachability information with Voronoi cells
28
+ 5. Clipping results to specified zone boundary
29
+
30
+ Parameters:
31
+ gdf_to (gpd.GeoDataFrame):
32
+ Source points to which coverage is calculated.
33
+ nx_graph (nx.Graph):
34
+ NetworkX graph representing the transportation network.
35
+ weight_type (Literal["time_min", "length_meter"]):
36
+ Edge attribute to use as weight for path calculations.
37
+ weight_value_cutoff (float):
38
+ Maximum weight value for path calculations (e.g., max travel time/distance).
39
+ zone (gpd.GeoDataFrame):
40
+ Boundary polygon to clip the resulting coverage zones. If None, concave hull of reachable nodes will be used.
41
+
42
+ Returns:
43
+ (gpd.GeoDataFrame):
44
+ GeoDataFrame with coverage zones polygons, each associated with its source point, returns in the same CRS
45
+ as original gdf_from.
46
+
47
+ Notes:
48
+ - The graph must have a valid CRS attribute in its graph properties
49
+ - MultiGraph/MultiDiGraph inputs will be converted to simple Graph/DiGraph
50
+ """
51
+ original_crs = gdf_to.crs
52
+ try:
53
+ local_crs = nx_graph.graph["crs"]
54
+ except KeyError as exc:
55
+ raise ValueError("Graph does not have crs attribute") from exc
56
+
57
+ try:
58
+ points = gdf_to.copy()
59
+ points.to_crs(local_crs, inplace=True)
60
+ except CRSError as e:
61
+ raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
62
+
63
+ nx_graph, reversed_graph = reverse_graph(nx_graph, weight_type)
64
+
65
+ points.geometry = points.representative_point()
66
+
67
+ _, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
68
+
69
+ points["nearest_node"] = nearest_nodes
70
+
71
+ nearest_paths = nx.multi_source_dijkstra_path(
72
+ reversed_graph, nearest_nodes, weight=weight_type, cutoff=weight_value_cutoff
73
+ )
74
+ reachable_nodes = list(nearest_paths.keys())
75
+ graph_points = pd.DataFrame(
76
+ data=[{"node": node, "geometry": Point(data["x"], data["y"])} for node, data in nx_graph.nodes(data=True)]
77
+ ).set_index("node")
78
+ nearest_nodes = pd.DataFrame(
79
+ data=[path[0] for path in nearest_paths.values()], index=reachable_nodes, columns=["node_to"]
80
+ )
81
+ graph_nodes_gdf = gpd.GeoDataFrame(
82
+ graph_points.merge(nearest_nodes, left_index=True, right_index=True, how="left"),
83
+ geometry="geometry",
84
+ crs=local_crs,
85
+ )
86
+ graph_nodes_gdf["node_to"] = graph_nodes_gdf["node_to"].fillna("non_reachable")
87
+ voronois = gpd.GeoDataFrame(geometry=graph_nodes_gdf.voronoi_polygons(), crs=local_crs)
88
+ graph_nodes_gdf = graph_nodes_gdf[graph_nodes_gdf["node_to"] != "non_reachable"]
89
+ zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="node_to").reset_index().drop(columns=["node"])
90
+ zone_coverages = zone_coverages.merge(
91
+ points.drop(columns="geometry"), left_on="node_to", right_on="nearest_node", how="inner"
92
+ ).reset_index(drop=True)
93
+ zone_coverages.drop(columns=["node_to", "nearest_node"], inplace=True)
94
+ if zone is None:
95
+ zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
96
+ else:
97
+ zone = zone.to_crs(local_crs)
98
+ return zone_coverages.clip(zone).to_crs(original_crs)