NeuralNetworks 0.2.4__tar.gz → 0.2.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/PKG-INFO +14 -27
  2. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/README.md +13 -26
  3. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/__init__.py +1 -1
  4. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks.egg-info/PKG-INFO +14 -27
  5. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/LICENSE +0 -0
  6. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/pyproject.toml +0 -0
  7. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/setup.cfg +0 -0
  8. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Dependances/__init__.py +0 -0
  9. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Dependances/matplot.py +0 -0
  10. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Dependances/pytorch.py +0 -0
  11. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/MLP/FourierFeatures.py +0 -0
  12. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/MLP/Layers.py +0 -0
  13. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/MLP/__init__.py +0 -0
  14. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/MLP/inference.py +0 -0
  15. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Trainer/__init__.py +0 -0
  16. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Trainer/dynamic_learning_rate.py +0 -0
  17. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Trainer/sample_data.py +0 -0
  18. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/Trainer/train.py +0 -0
  19. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/UI/Learnings.py +0 -0
  20. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/UI/Losses.py +0 -0
  21. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks/UI/__init__.py +0 -0
  22. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks.egg-info/SOURCES.txt +0 -0
  23. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks.egg-info/dependency_links.txt +0 -0
  24. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks.egg-info/requires.txt +0 -0
  25. {neuralnetworks-0.2.4 → neuralnetworks-0.2.5}/src/NeuralNetworks.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: NeuralNetworks
3
- Version: 0.2.4
3
+ Version: 0.2.5
4
4
  Summary: Multi-Layer Perceptrons with multi-Fourier encoding, variable learning rate, visualization and PyTorch compilation
5
5
  Author-email: Alexandre Brun <alexandre51160@gmail.com>
6
6
  License: GPL-3.0-or-later
@@ -46,8 +46,6 @@ Cette classe fournit :
46
46
 
47
47
  ---
48
48
 
49
- #### **Paramètres**
50
-
51
49
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
52
50
  |----------------------|--------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
53
51
  | `input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des données en entrée au réseau. Default: `1` |
@@ -56,47 +54,36 @@ Cette classe fournit :
56
54
  | `sigmas` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Oui | Liste de sigma pour encodages RFF. Si None : passthrough. Default: `None` |
57
55
  | `fourier_input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | WIP. Default: `2` |
58
56
  | `nb_fourier` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Nombre de fréquences utilisées pour les Fourier Features. Default: `8` |
59
- | `norm` | [`norm`](#norms-norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
57
+ | `norm` | [`norm`](#norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
60
58
  | `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Oui | Nom du réseau pour identification ou affichage. Default: `'Net'` |
61
59
 
62
- #### **Attributs**
63
-
64
- - `losses : list[float]` Historique des pertes cumulées lors de l'entraînement
65
- - `learnings : list[float]` Historique des taux d'apprentissage utilisées lors de l'entraînement
66
- - `model : nn.Sequential` MLP complet construit dynamiquement
67
- - `name : str` Nom du réseau
68
-
69
- | **Attributs** | **Type** | **Description** |
70
- |---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
71
- | `losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
72
- | `learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
73
- | `model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
74
- | `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
60
+ | **Attributs** | **Type** | **Description** |
61
+ |-----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
62
+ | `MLP.losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
63
+ | `MLP.learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
64
+ | `MLP.model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
65
+ | `MLP.name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
75
66
 
76
67
  ---
77
68
 
78
69
  ### **Trainer**
79
70
 
80
- Cette classe fournit :
81
-
82
- - Méthode pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html)
83
-
84
- #### **Paramètres**
71
+ Classe pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html).
85
72
 
86
73
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
87
74
  |----------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
88
- | `*nets` | [`MLP`](#mlp-mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
75
+ | `*nets` | [`MLP`](#mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
89
76
  | `inputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en entrée au réseau. |
90
77
  | `outputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en sortie au réseau. |
91
78
  | `test_size` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Proportion des données à utiliser pendant l'entrainement. Si None : utilise toutes les données. Default: `None` |
92
- | `optim` | [`optim`](#optims-optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
79
+ | `optim` | [`optim`](#optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
93
80
  | `init_lr` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taux d’apprentissage initial pour l’optimiseur. Default: `1e-3` |
94
- | `crit` | [`crit`](#crits-crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
81
+ | `crit` | [`crit`](#crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
95
82
  | `batch_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des minibatchs. Default: `1024` |
96
83
 
97
84
  #### **Trainer.train**
98
85
 
99
- Lancement d'un entrainement avec le trainer définit
86
+ Lancement d'un entrainement avec le trainer définit.
100
87
 
101
88
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
102
89
  |-----------------|------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
@@ -172,7 +159,7 @@ Affiche les taux d'apprentissage en fonction des époques d'entrainement des ré
172
159
 
173
160
  ## **device**
174
161
 
175
- variable principale d'allocation des performances
162
+ Variable principale d'allocation des performances.
176
163
 
177
164
  ### **Apple Silicon (macOS)**
178
165
  - Si le système d'exploitation est macOS (nommé `darwin` dans `platform.system()`), la fonction vérifie si l'accélérateur **Metal Performance Shaders** (MPS) est disponible sur l'appareil.
@@ -16,8 +16,6 @@ Cette classe fournit :
16
16
 
17
17
  ---
18
18
 
19
- #### **Paramètres**
20
-
21
19
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
22
20
  |----------------------|--------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
23
21
  | `input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des données en entrée au réseau. Default: `1` |
@@ -26,47 +24,36 @@ Cette classe fournit :
26
24
  | `sigmas` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Oui | Liste de sigma pour encodages RFF. Si None : passthrough. Default: `None` |
27
25
  | `fourier_input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | WIP. Default: `2` |
28
26
  | `nb_fourier` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Nombre de fréquences utilisées pour les Fourier Features. Default: `8` |
29
- | `norm` | [`norm`](#norms-norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
27
+ | `norm` | [`norm`](#norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
30
28
  | `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Oui | Nom du réseau pour identification ou affichage. Default: `'Net'` |
31
29
 
32
- #### **Attributs**
33
-
34
- - `losses : list[float]` Historique des pertes cumulées lors de l'entraînement
35
- - `learnings : list[float]` Historique des taux d'apprentissage utilisées lors de l'entraînement
36
- - `model : nn.Sequential` MLP complet construit dynamiquement
37
- - `name : str` Nom du réseau
38
-
39
- | **Attributs** | **Type** | **Description** |
40
- |---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
41
- | `losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
42
- | `learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
43
- | `model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
44
- | `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
30
+ | **Attributs** | **Type** | **Description** |
31
+ |-----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
32
+ | `MLP.losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
33
+ | `MLP.learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
34
+ | `MLP.model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
35
+ | `MLP.name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
45
36
 
46
37
  ---
47
38
 
48
39
  ### **Trainer**
49
40
 
50
- Cette classe fournit :
51
-
52
- - Méthode pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html)
53
-
54
- #### **Paramètres**
41
+ Classe pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html).
55
42
 
56
43
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
57
44
  |----------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
58
- | `*nets` | [`MLP`](#mlp-mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
45
+ | `*nets` | [`MLP`](#mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
59
46
  | `inputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en entrée au réseau. |
60
47
  | `outputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en sortie au réseau. |
61
48
  | `test_size` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Proportion des données à utiliser pendant l'entrainement. Si None : utilise toutes les données. Default: `None` |
62
- | `optim` | [`optim`](#optims-optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
49
+ | `optim` | [`optim`](#optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
63
50
  | `init_lr` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taux d’apprentissage initial pour l’optimiseur. Default: `1e-3` |
64
- | `crit` | [`crit`](#crits-crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
51
+ | `crit` | [`crit`](#crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
65
52
  | `batch_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des minibatchs. Default: `1024` |
66
53
 
67
54
  #### **Trainer.train**
68
55
 
69
- Lancement d'un entrainement avec le trainer définit
56
+ Lancement d'un entrainement avec le trainer définit.
70
57
 
71
58
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
72
59
  |-----------------|------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
@@ -142,7 +129,7 @@ Affiche les taux d'apprentissage en fonction des époques d'entrainement des ré
142
129
 
143
130
  ## **device**
144
131
 
145
- variable principale d'allocation des performances
132
+ Variable principale d'allocation des performances.
146
133
 
147
134
  ### **Apple Silicon (macOS)**
148
135
  - Si le système d'exploitation est macOS (nommé `darwin` dans `platform.system()`), la fonction vérifie si l'accélérateur **Metal Performance Shaders** (MPS) est disponible sur l'appareil.
@@ -15,4 +15,4 @@ from .Trainer import Trainer
15
15
 
16
16
  from .UI import *
17
17
 
18
- __version__ = "0.2.4"
18
+ __version__ = "0.2.5"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: NeuralNetworks
3
- Version: 0.2.4
3
+ Version: 0.2.5
4
4
  Summary: Multi-Layer Perceptrons with multi-Fourier encoding, variable learning rate, visualization and PyTorch compilation
5
5
  Author-email: Alexandre Brun <alexandre51160@gmail.com>
6
6
  License: GPL-3.0-or-later
@@ -46,8 +46,6 @@ Cette classe fournit :
46
46
 
47
47
  ---
48
48
 
49
- #### **Paramètres**
50
-
51
49
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
52
50
  |----------------------|--------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|
53
51
  | `input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des données en entrée au réseau. Default: `1` |
@@ -56,47 +54,36 @@ Cette classe fournit :
56
54
  | `sigmas` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Oui | Liste de sigma pour encodages RFF. Si None : passthrough. Default: `None` |
57
55
  | `fourier_input_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | WIP. Default: `2` |
58
56
  | `nb_fourier` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Nombre de fréquences utilisées pour les Fourier Features. Default: `8` |
59
- | `norm` | [`norm`](#norms-norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
57
+ | `norm` | [`norm`](#norms) | Oui | Type de normalisation / activation pour les couches cachées. Default: `'Relu'` |
60
58
  | `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Oui | Nom du réseau pour identification ou affichage. Default: `'Net'` |
61
59
 
62
- #### **Attributs**
63
-
64
- - `losses : list[float]` Historique des pertes cumulées lors de l'entraînement
65
- - `learnings : list[float]` Historique des taux d'apprentissage utilisées lors de l'entraînement
66
- - `model : nn.Sequential` MLP complet construit dynamiquement
67
- - `name : str` Nom du réseau
68
-
69
- | **Attributs** | **Type** | **Description** |
70
- |---------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
71
- | `losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
72
- | `learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
73
- | `model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
74
- | `name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
60
+ | **Attributs** | **Type** | **Description** |
61
+ |-----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
62
+ | `MLP.losses` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des pertes cumulées lors de l'entraînement |
63
+ | `MLP.learnings` | [`list[float]`](https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range) | Historique des taux d'apprentissage utilisées lors de l'entraînement |
64
+ | `MLP.model` | [`nn.Sequential`](https://docs.pytorch.org/docs/stable/generated/torch.nn.Sequential.html) | MLP complet construit dynamiquement |
65
+ | `MLP.name` | [`str`](https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str) | Nom du réseau |
75
66
 
76
67
  ---
77
68
 
78
69
  ### **Trainer**
79
70
 
80
- Cette classe fournit :
81
-
82
- - Méthode pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html)
83
-
84
- #### **Paramètres**
71
+ Classe pour entraîner des réseaux avec mini-batchs et [Automatic Mixed Precision](https://docs.pytorch.org/tutorials/recipes/recipes/amp_recipe.html).
85
72
 
86
73
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
87
74
  |----------------|-------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
88
- | `*nets` | [`MLP`](#mlp-mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
75
+ | `*nets` | [`MLP`](#mlp) | Non | Réseaux pour lesquels le trainer va entrainer. |
89
76
  | `inputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en entrée au réseau. |
90
77
  | `outputs` | [`numpy.array(list[float])`](https://numpy.org/doc/stable/reference/generated/numpy.array.html) | Non | Données en sortie au réseau. |
91
78
  | `test_size` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Proportion des données à utiliser pendant l'entrainement. Si None : utilise toutes les données. Default: `None` |
92
- | `optim` | [`optim`](#optims-optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
79
+ | `optim` | [`optim`](#optims) | Oui | Nom de l’optimiseur à utiliser (doit exister dans `optims()`). Default: `'Adam'` |
93
80
  | `init_lr` | [`float`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taux d’apprentissage initial pour l’optimiseur. Default: `1e-3` |
94
- | `crit` | [`crit`](#crits-crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
81
+ | `crit` | [`crit`](#crits) | Oui | Fonction de perte à utiliser (doit exister dans `crits()`). Default: `MSE'` |
95
82
  | `batch_size` | [`int`](https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex) | Oui | Taille des minibatchs. Default: `1024` |
96
83
 
97
84
  #### **Trainer.train**
98
85
 
99
- Lancement d'un entrainement avec le trainer définit
86
+ Lancement d'un entrainement avec le trainer définit.
100
87
 
101
88
  | **Paramètres** | **Type** | **Optionnel** | **Description** |
102
89
  |-----------------|------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
@@ -172,7 +159,7 @@ Affiche les taux d'apprentissage en fonction des époques d'entrainement des ré
172
159
 
173
160
  ## **device**
174
161
 
175
- variable principale d'allocation des performances
162
+ Variable principale d'allocation des performances.
176
163
 
177
164
  ### **Apple Silicon (macOS)**
178
165
  - Si le système d'exploitation est macOS (nommé `darwin` dans `platform.system()`), la fonction vérifie si l'accélérateur **Metal Performance Shaders** (MPS) est disponible sur l'appareil.
File without changes
File without changes