Myosotis-Researches 0.1.7__tar.gz → 0.1.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8/Myosotis_Researches.egg-info}/PKG-INFO +1 -1
- {myosotis_researches-0.1.7/Myosotis_Researches.egg-info → myosotis_researches-0.1.8}/PKG-INFO +1 -1
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/__init__.py +2 -1
- myosotis_researches-0.1.8/myosotis_researches/CcGAN/utils/train.py +156 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/setup.py +1 -1
- myosotis_researches-0.1.7/myosotis_researches/CcGAN/utils/train.py +0 -65
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/LICENSE +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/Myosotis_Researches.egg-info/SOURCES.txt +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/Myosotis_Researches.egg-info/dependency_links.txt +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/Myosotis_Researches.egg-info/top_level.txt +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/README.md +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/internal/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/internal/install_datasets.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/internal/show_datasets.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/internal/uninstall_datasets.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/CcGAN_SAGAN.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/ResNet_class_eval.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/ResNet_embed.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/ResNet_regre_eval.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/autoencoder.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/cGAN_SAGAN.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_128/cGAN_concat_SAGAN.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/CcGAN_SAGAN.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/ResNet_class_eval.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/ResNet_embed.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/ResNet_regre_eval.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/autoencoder.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/cGAN_SAGAN.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/models_256/cGAN_concat_SAGAN.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/DiffAugment_pytorch.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/eval_metrics.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/opts.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/pretrain_AE.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/pretrain_CNN_class.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/pretrain_CNN_regre.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/train_ccgan.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/train_cgan.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/train_cgan_concat.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/train_net_for_label_embed.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/utils.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/DiffAugment_pytorch.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/eval_metrics.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/opts.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/pretrain_AE.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_class.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/pretrain_CNN_regre.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/train_ccgan.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/train_cgan.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/train_cgan_concat.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/train_net_for_label_embed.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128_output_10/utils.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/IMGs_dataset.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/SimpleProgressBar.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/concat_image.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/make_h5.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/opts.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/print_hdf5.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/__init__.py +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/pyproject.toml +0 -0
- {myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/setup.cfg +0 -0
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/__init__.py
RENAMED
@@ -3,7 +3,7 @@ from .concat_image import concat_image
|
|
3
3
|
from .make_h5 import make_h5
|
4
4
|
from .SimpleProgressBar import SimpleProgressBar
|
5
5
|
from .IMGs_dataset import IMGs_dataset
|
6
|
-
from .train import PlotLoss, compute_entropy, predict_class_labels
|
6
|
+
from .train import PlotLoss, compute_entropy, predict_class_labels, DiffAugment
|
7
7
|
from .opts import parse_opts
|
8
8
|
|
9
9
|
__all__ = [
|
@@ -15,5 +15,6 @@ __all__ = [
|
|
15
15
|
"PlotLoss",
|
16
16
|
"compute_entropy",
|
17
17
|
"predict_class_labels",
|
18
|
+
"DiffAugment",
|
18
19
|
"parse_opts"
|
19
20
|
]
|
@@ -0,0 +1,156 @@
|
|
1
|
+
import matplotlib as mpl
|
2
|
+
import matplotlib.pyplot as plt
|
3
|
+
import numpy as np
|
4
|
+
import torch
|
5
|
+
import torch.nn.functional as F
|
6
|
+
|
7
|
+
|
8
|
+
def PlotLoss(loss, filename):
|
9
|
+
x_axis = np.arange(start=1, stop=len(loss) + 1)
|
10
|
+
plt.switch_backend("agg")
|
11
|
+
mpl.style.use("seaborn")
|
12
|
+
fig = plt.figure()
|
13
|
+
ax = plt.subplot(111)
|
14
|
+
ax.plot(x_axis, np.array(loss))
|
15
|
+
plt.xlabel("epoch")
|
16
|
+
plt.ylabel("training loss")
|
17
|
+
plt.legend()
|
18
|
+
# ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), shadow=True, ncol=3)
|
19
|
+
# plt.title('Training Loss')
|
20
|
+
plt.savefig(filename)
|
21
|
+
|
22
|
+
|
23
|
+
# compute entropy of class labels; labels is a numpy array
|
24
|
+
def compute_entropy(labels, base=None):
|
25
|
+
value, counts = np.unique(labels, return_counts=True)
|
26
|
+
norm_counts = counts / counts.sum()
|
27
|
+
base = np.e if base is None else base
|
28
|
+
return -(norm_counts * np.log(norm_counts) / np.log(base)).sum()
|
29
|
+
|
30
|
+
|
31
|
+
def predict_class_labels(net, images, batch_size=500, verbose=False, num_workers=0):
|
32
|
+
net = net.cuda()
|
33
|
+
net.eval()
|
34
|
+
|
35
|
+
n = len(images)
|
36
|
+
if batch_size > n:
|
37
|
+
batch_size = n
|
38
|
+
dataset_pred = IMGs_dataset(images, normalize=False)
|
39
|
+
dataloader_pred = torch.utils.data.DataLoader(
|
40
|
+
dataset_pred, batch_size=batch_size, shuffle=False, num_workers=num_workers
|
41
|
+
)
|
42
|
+
|
43
|
+
class_labels_pred = np.zeros(n + batch_size)
|
44
|
+
with torch.no_grad():
|
45
|
+
nimgs_got = 0
|
46
|
+
if verbose:
|
47
|
+
pb = SimpleProgressBar()
|
48
|
+
for batch_idx, batch_images in enumerate(dataloader_pred):
|
49
|
+
batch_images = batch_images.type(torch.float).cuda()
|
50
|
+
batch_size_curr = len(batch_images)
|
51
|
+
|
52
|
+
outputs, _ = net(batch_images)
|
53
|
+
_, batch_class_labels_pred = torch.max(outputs.data, 1)
|
54
|
+
class_labels_pred[nimgs_got : (nimgs_got + batch_size_curr)] = (
|
55
|
+
batch_class_labels_pred.detach().cpu().numpy().reshape(-1)
|
56
|
+
)
|
57
|
+
|
58
|
+
nimgs_got += batch_size_curr
|
59
|
+
if verbose:
|
60
|
+
pb.update((float(nimgs_got) / n) * 100)
|
61
|
+
# end for batch_idx
|
62
|
+
class_labels_pred = class_labels_pred[0:n]
|
63
|
+
return class_labels_pred
|
64
|
+
|
65
|
+
|
66
|
+
def DiffAugment(x, policy="", channels_first=True):
|
67
|
+
if policy:
|
68
|
+
if not channels_first:
|
69
|
+
x = x.permute(0, 3, 1, 2)
|
70
|
+
for p in policy.split(","):
|
71
|
+
for f in AUGMENT_FNS[p]:
|
72
|
+
x = f(x)
|
73
|
+
if not channels_first:
|
74
|
+
x = x.permute(0, 2, 3, 1)
|
75
|
+
x = x.contiguous()
|
76
|
+
return x
|
77
|
+
|
78
|
+
|
79
|
+
def rand_brightness(x):
|
80
|
+
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
|
81
|
+
return x
|
82
|
+
|
83
|
+
|
84
|
+
def rand_saturation(x):
|
85
|
+
x_mean = x.mean(dim=1, keepdim=True)
|
86
|
+
x = (x - x_mean) * (
|
87
|
+
torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2
|
88
|
+
) + x_mean
|
89
|
+
return x
|
90
|
+
|
91
|
+
|
92
|
+
def rand_contrast(x):
|
93
|
+
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
|
94
|
+
x = (x - x_mean) * (
|
95
|
+
torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5
|
96
|
+
) + x_mean
|
97
|
+
return x
|
98
|
+
|
99
|
+
|
100
|
+
def rand_translation(x, ratio=0.125):
|
101
|
+
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
102
|
+
translation_x = torch.randint(
|
103
|
+
-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device
|
104
|
+
)
|
105
|
+
translation_y = torch.randint(
|
106
|
+
-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device
|
107
|
+
)
|
108
|
+
grid_batch, grid_x, grid_y = torch.meshgrid(
|
109
|
+
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
110
|
+
torch.arange(x.size(2), dtype=torch.long, device=x.device),
|
111
|
+
torch.arange(x.size(3), dtype=torch.long, device=x.device),
|
112
|
+
)
|
113
|
+
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
|
114
|
+
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
|
115
|
+
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
|
116
|
+
x = (
|
117
|
+
x_pad.permute(0, 2, 3, 1)
|
118
|
+
.contiguous()[grid_batch, grid_x, grid_y]
|
119
|
+
.permute(0, 3, 1, 2)
|
120
|
+
)
|
121
|
+
return x
|
122
|
+
|
123
|
+
|
124
|
+
def rand_cutout(x, ratio=0.5):
|
125
|
+
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
126
|
+
offset_x = torch.randint(
|
127
|
+
0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device
|
128
|
+
)
|
129
|
+
offset_y = torch.randint(
|
130
|
+
0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device
|
131
|
+
)
|
132
|
+
grid_batch, grid_x, grid_y = torch.meshgrid(
|
133
|
+
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
134
|
+
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
|
135
|
+
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
|
136
|
+
)
|
137
|
+
grid_x = torch.clamp(
|
138
|
+
grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1
|
139
|
+
)
|
140
|
+
grid_y = torch.clamp(
|
141
|
+
grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1
|
142
|
+
)
|
143
|
+
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
|
144
|
+
mask[grid_batch, grid_x, grid_y] = 0
|
145
|
+
x = x * mask.unsqueeze(1)
|
146
|
+
return x
|
147
|
+
|
148
|
+
|
149
|
+
AUGMENT_FNS = {
|
150
|
+
"color": [rand_brightness, rand_saturation, rand_contrast],
|
151
|
+
"translation": [rand_translation],
|
152
|
+
"cutout": [rand_cutout],
|
153
|
+
}
|
154
|
+
|
155
|
+
|
156
|
+
__all__ = ["PlotLoss", "compute_entropy", "predict_class_labels", "DiffAugment"]
|
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
|
2
2
|
|
3
3
|
setup(
|
4
4
|
name="Myosotis-Researches",
|
5
|
-
version="0.1.
|
5
|
+
version="0.1.8",
|
6
6
|
description="A repository for storing my progress of researches.",
|
7
7
|
long_description=open("README.md").read(),
|
8
8
|
long_description_content_type="text/markdown",
|
@@ -1,65 +0,0 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import torch
|
3
|
-
import matplotlib.pyplot as plt
|
4
|
-
import matplotlib as mpl
|
5
|
-
|
6
|
-
|
7
|
-
def PlotLoss(loss, filename):
|
8
|
-
x_axis = np.arange(start=1, stop=len(loss) + 1)
|
9
|
-
plt.switch_backend("agg")
|
10
|
-
mpl.style.use("seaborn")
|
11
|
-
fig = plt.figure()
|
12
|
-
ax = plt.subplot(111)
|
13
|
-
ax.plot(x_axis, np.array(loss))
|
14
|
-
plt.xlabel("epoch")
|
15
|
-
plt.ylabel("training loss")
|
16
|
-
plt.legend()
|
17
|
-
# ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15), shadow=True, ncol=3)
|
18
|
-
# plt.title('Training Loss')
|
19
|
-
plt.savefig(filename)
|
20
|
-
|
21
|
-
|
22
|
-
# compute entropy of class labels; labels is a numpy array
|
23
|
-
def compute_entropy(labels, base=None):
|
24
|
-
value, counts = np.unique(labels, return_counts=True)
|
25
|
-
norm_counts = counts / counts.sum()
|
26
|
-
base = np.e if base is None else base
|
27
|
-
return -(norm_counts * np.log(norm_counts) / np.log(base)).sum()
|
28
|
-
|
29
|
-
|
30
|
-
def predict_class_labels(net, images, batch_size=500, verbose=False, num_workers=0):
|
31
|
-
net = net.cuda()
|
32
|
-
net.eval()
|
33
|
-
|
34
|
-
n = len(images)
|
35
|
-
if batch_size > n:
|
36
|
-
batch_size = n
|
37
|
-
dataset_pred = IMGs_dataset(images, normalize=False)
|
38
|
-
dataloader_pred = torch.utils.data.DataLoader(
|
39
|
-
dataset_pred, batch_size=batch_size, shuffle=False, num_workers=num_workers
|
40
|
-
)
|
41
|
-
|
42
|
-
class_labels_pred = np.zeros(n + batch_size)
|
43
|
-
with torch.no_grad():
|
44
|
-
nimgs_got = 0
|
45
|
-
if verbose:
|
46
|
-
pb = SimpleProgressBar()
|
47
|
-
for batch_idx, batch_images in enumerate(dataloader_pred):
|
48
|
-
batch_images = batch_images.type(torch.float).cuda()
|
49
|
-
batch_size_curr = len(batch_images)
|
50
|
-
|
51
|
-
outputs, _ = net(batch_images)
|
52
|
-
_, batch_class_labels_pred = torch.max(outputs.data, 1)
|
53
|
-
class_labels_pred[nimgs_got : (nimgs_got + batch_size_curr)] = (
|
54
|
-
batch_class_labels_pred.detach().cpu().numpy().reshape(-1)
|
55
|
-
)
|
56
|
-
|
57
|
-
nimgs_got += batch_size_curr
|
58
|
-
if verbose:
|
59
|
-
pb.update((float(nimgs_got) / n) * 100)
|
60
|
-
# end for batch_idx
|
61
|
-
class_labels_pred = class_labels_pred[0:n]
|
62
|
-
return class_labels_pred
|
63
|
-
|
64
|
-
|
65
|
-
__all__ = ["PlotLoss", "compute_entropy", "predict_class_labels"]
|
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/Myosotis_Researches.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/Myosotis_Researches.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/__init__.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/opts.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/train_128/utils.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/make_h5.py
RENAMED
File without changes
|
{myosotis_researches-0.1.7 → myosotis_researches-0.1.8}/myosotis_researches/CcGAN/utils/opts.py
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|