Moral88 0.9.0__tar.gz → 0.10.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- Moral88-0.10.0/Moral88/__init__.py +1 -0
- {Moral88-0.9.0 → Moral88-0.10.0}/Moral88/regression.py +30 -135
- Moral88-0.10.0/Moral88/utils.py +101 -0
- {Moral88-0.9.0 → Moral88-0.10.0/Moral88.egg-info}/PKG-INFO +1 -1
- {Moral88-0.9.0 → Moral88-0.10.0}/Moral88.egg-info/SOURCES.txt +4 -2
- {Moral88-0.9.0 → Moral88-0.10.0}/Moral88.egg-info/top_level.txt +1 -0
- {Moral88-0.9.0/Moral88.egg-info → Moral88-0.10.0}/PKG-INFO +1 -1
- {Moral88-0.9.0 → Moral88-0.10.0}/setup.py +1 -1
- Moral88-0.10.0/tests/test_regression.py +99 -0
- Moral88-0.9.0/Moral88/segmentation.py +0 -38
- {Moral88-0.9.0 → Moral88-0.10.0}/LICENSE +0 -0
- {Moral88-0.9.0 → Moral88-0.10.0}/Moral88.egg-info/dependency_links.txt +0 -0
- {Moral88-0.9.0 → Moral88-0.10.0}/Moral88.egg-info/requires.txt +0 -0
- {Moral88-0.9.0 → Moral88-0.10.0}/README.md +0 -0
- {Moral88-0.9.0 → Moral88-0.10.0}/setup.cfg +0 -0
- {Moral88-0.9.0/Moral88 → Moral88-0.10.0/tests}/__init__.py +0 -0
@@ -0,0 +1 @@
|
|
1
|
+
from .regression import mean_absolute_error, mean_squared_error, r2_score, mean_bias_deviation, adjusted_r2_score, root_mean_squared_error, mean_absolute_percentage_error, explained_variance_score
|
@@ -1,112 +1,13 @@
|
|
1
1
|
import numpy as np
|
2
|
-
import
|
3
|
-
from typing import Union, List, Tuple
|
4
|
-
from scipy import sparse
|
5
|
-
|
6
|
-
class DataValidator:
|
7
|
-
def __init__(self):
|
8
|
-
pass
|
9
|
-
|
10
|
-
def check_device_cpu(self, device):
|
11
|
-
if device not in {"cpu", None}:
|
12
|
-
raise ValueError(f"Unsupported device: {device!r}. Only 'cpu' is supported.")
|
13
|
-
|
14
|
-
def is_1d_array(self, array: Union[np.ndarray, list], warn: bool = False) -> np.ndarray:
|
15
|
-
"""
|
16
|
-
Ensures input is a 1D array. Raises an error if it's not 1D or convertible to 1D.
|
17
|
-
"""
|
18
|
-
array = np.asarray(array)
|
19
|
-
shape = array.shape
|
20
|
-
|
21
|
-
if len(shape) == 1:
|
22
|
-
return array
|
23
|
-
elif len(shape) == 2 and shape[1] == 1:
|
24
|
-
if warn:
|
25
|
-
warnings.warn("Input is 2D but will be converted to 1D.", UserWarning)
|
26
|
-
return array.ravel()
|
27
|
-
else:
|
28
|
-
raise ValueError(f"Input must be 1D. Found shape {shape}.")
|
29
|
-
|
30
|
-
def check_samples(self, array: Union[np.ndarray, list]) -> int:
|
31
|
-
"""
|
32
|
-
Returns the number of samples in the array.
|
33
|
-
"""
|
34
|
-
array = np.asarray(array)
|
35
|
-
if hasattr(array, 'shape') and len(array.shape) > 0:
|
36
|
-
return array.shape[0]
|
37
|
-
else:
|
38
|
-
raise TypeError("Input must be an array-like object with at least one dimension.")
|
39
|
-
|
40
|
-
def check_consistent_length(self, *arrays: Union[np.ndarray, list]):
|
41
|
-
"""
|
42
|
-
Ensures all input arrays have the same length.
|
43
|
-
"""
|
44
|
-
lengths = [self.check_samples(arr) for arr in arrays]
|
45
|
-
if len(set(lengths)) > 1:
|
46
|
-
raise ValueError(f"Inconsistent lengths: {lengths}")
|
47
|
-
|
48
|
-
def validate_regression_targets(self, y_true, y_pred, dtype=np.float64):
|
49
|
-
"""
|
50
|
-
Ensures regression target values are consistent and converted to the specified dtype.
|
51
|
-
"""
|
52
|
-
y_true = np.asarray(y_true, dtype=dtype)
|
53
|
-
y_pred = np.asarray(y_pred, dtype=dtype)
|
54
|
-
|
55
|
-
if y_true.shape != y_pred.shape:
|
56
|
-
raise ValueError(f"Shapes of y_true {y_true.shape} and y_pred {y_pred.shape} do not match.")
|
57
|
-
|
58
|
-
return y_true, y_pred
|
59
|
-
|
60
|
-
def check_array(self, array, ensure_2d: bool = True, dtype=np.float64, allow_nan: bool = False):
|
61
|
-
"""
|
62
|
-
Validates input array and converts it to specified dtype.
|
63
|
-
"""
|
64
|
-
array = np.asarray(array, dtype=dtype)
|
65
|
-
|
66
|
-
if ensure_2d and array.ndim == 1:
|
67
|
-
array = array.reshape(-1, 1)
|
68
|
-
|
69
|
-
if not allow_nan and np.isnan(array).any():
|
70
|
-
raise ValueError("Input contains NaN values, which are not allowed.")
|
71
|
-
|
72
|
-
return array
|
73
|
-
|
74
|
-
def check_sparse(self, array, accept_sparse: Tuple[str] = ('csr', 'csc')):
|
75
|
-
"""
|
76
|
-
Validates sparse matrices and converts to an acceptable format.
|
77
|
-
"""
|
78
|
-
if sparse.issparse(array):
|
79
|
-
if array.format not in accept_sparse:
|
80
|
-
return array.asformat(accept_sparse[0])
|
81
|
-
return array
|
82
|
-
else:
|
83
|
-
raise ValueError("Input is not a sparse matrix.")
|
84
|
-
|
85
|
-
def validate_r2_score_inputs(self, y_true, y_pred, sample_weight=None):
|
86
|
-
"""
|
87
|
-
Ensures inputs for R2 score computation are valid.
|
88
|
-
"""
|
89
|
-
y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
|
90
|
-
if sample_weight is not None:
|
91
|
-
sample_weight = self.is_1d_array(sample_weight)
|
92
|
-
return y_true, y_pred, sample_weight
|
93
|
-
|
94
|
-
def validate_mae_mse_inputs(self, y_true, y_pred, library=None):
|
95
|
-
"""
|
96
|
-
Ensures inputs for MAE and MSE computation are valid.
|
97
|
-
"""
|
98
|
-
y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
|
99
|
-
if library not in {None, 'sklearn', 'torch', 'tensorflow', 'Moral88'}:
|
100
|
-
raise ValueError(f"Invalid library: {library}. Choose from {{'Moral88', 'sklearn', 'torch', 'tensorflow'}}.")
|
101
|
-
return y_true, y_pred
|
102
|
-
|
2
|
+
from Moral88.utils import DataValidator
|
103
3
|
|
4
|
+
validator = DataValidator()
|
104
5
|
|
105
|
-
def mean_bias_deviation(
|
6
|
+
def mean_bias_deviation( y_true, y_pred, library=None, flatten=True):
|
106
7
|
"""
|
107
8
|
Computes Mean Bias Deviation (MBD).
|
108
9
|
"""
|
109
|
-
y_true, y_pred =
|
10
|
+
y_true, y_pred = validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
110
11
|
|
111
12
|
if flatten and y_true.ndim > 1:
|
112
13
|
y_true = y_true.flatten()
|
@@ -132,14 +33,12 @@ def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
|
|
132
33
|
|
133
34
|
# Default implementation
|
134
35
|
return np.mean(y_pred - y_true)
|
135
|
-
def __init__(self):
|
136
|
-
self.validator = DataValidator()
|
137
36
|
|
138
|
-
def r2_score(
|
37
|
+
def r2_score( y_true, y_pred, sample_weight=None, library=None, flatten=True):
|
139
38
|
"""
|
140
39
|
Computes R2 score.
|
141
40
|
"""
|
142
|
-
y_true, y_pred, sample_weight =
|
41
|
+
y_true, y_pred, sample_weight = validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
|
143
42
|
|
144
43
|
if flatten and y_true.ndim > 1:
|
145
44
|
y_true = y_true.flatten()
|
@@ -161,11 +60,11 @@ def r2_score(self, y_true, y_pred, sample_weight=None, library=None, flatten=Tru
|
|
161
60
|
return 0.0
|
162
61
|
return 1 - (numerator / denominator)
|
163
62
|
|
164
|
-
def mean_absolute_error(
|
63
|
+
def mean_absolute_error( y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
|
165
64
|
"""
|
166
65
|
Computes Mean Absolute Error (MAE).
|
167
66
|
"""
|
168
|
-
y_true, y_pred =
|
67
|
+
y_true, y_pred = validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
169
68
|
|
170
69
|
if flatten:
|
171
70
|
y_true = y_true.ravel()
|
@@ -211,11 +110,11 @@ def mean_absolute_error(self, y_true, y_pred, normalize=True, threshold=None, me
|
|
211
110
|
y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
|
212
111
|
return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
|
213
112
|
|
214
|
-
def mean_squared_error(
|
113
|
+
def mean_squared_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
|
215
114
|
"""
|
216
115
|
Computes Mean Squared Error (MSE).
|
217
116
|
"""
|
218
|
-
y_true, y_pred =
|
117
|
+
y_true, y_pred = validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
219
118
|
|
220
119
|
if flatten:
|
221
120
|
y_true = y_true.ravel()
|
@@ -239,10 +138,6 @@ def mean_squared_error(self, y_true, y_pred, normalize=True, threshold=None, met
|
|
239
138
|
else:
|
240
139
|
raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
|
241
140
|
|
242
|
-
# if normalize and method != 'none':
|
243
|
-
# range_y = np.ptp(y_true)
|
244
|
-
# result = result / max(abs(range_y), 1)
|
245
|
-
|
246
141
|
return result
|
247
142
|
|
248
143
|
elif library == 'sklearn':
|
@@ -261,11 +156,11 @@ def mean_squared_error(self, y_true, y_pred, normalize=True, threshold=None, met
|
|
261
156
|
y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
|
262
157
|
return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
|
263
158
|
|
264
|
-
def root_mean_squared_error(
|
159
|
+
def root_mean_squared_error(y_true, y_pred, library=None):
|
265
160
|
"""
|
266
161
|
Computes Root Mean Squared Error (RMSE).
|
267
162
|
"""
|
268
|
-
y_true, y_pred =
|
163
|
+
y_true, y_pred = validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
269
164
|
|
270
165
|
if library == 'sklearn':
|
271
166
|
from sklearn.metrics import mean_squared_error as sklearn_mse
|
@@ -283,15 +178,15 @@ def root_mean_squared_error(self, y_true, y_pred, library=None):
|
|
283
178
|
y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
|
284
179
|
return tf.sqrt(tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor))).numpy()
|
285
180
|
|
286
|
-
mse =
|
181
|
+
mse = mean_squared_error(y_true, y_pred)
|
287
182
|
return np.sqrt(mse)
|
288
183
|
|
289
|
-
def mean_absolute_percentage_error(
|
184
|
+
def mean_absolute_percentage_error(y_true, y_pred, library=None):
|
290
185
|
"""
|
291
186
|
Computes Mean Absolute Percentage Error (MAPE).
|
292
187
|
"""
|
293
|
-
y_true, y_pred =
|
294
|
-
y_true, y_pred =
|
188
|
+
y_true, y_pred = validator.validate_regression_targets(y_true, y_pred)
|
189
|
+
y_true, y_pred = validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
295
190
|
y_true = np.clip(y_true, 1e-8, None)
|
296
191
|
|
297
192
|
if library == 'sklearn':
|
@@ -312,11 +207,11 @@ def mean_absolute_percentage_error(self, y_true, y_pred, library=None):
|
|
312
207
|
|
313
208
|
return np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-8, None))) * 100
|
314
209
|
|
315
|
-
def explained_variance_score(
|
210
|
+
def explained_variance_score(y_true, y_pred, library=None, flatten=True):
|
316
211
|
"""
|
317
212
|
Computes Explained Variance Score.
|
318
213
|
"""
|
319
|
-
y_true, y_pred =
|
214
|
+
y_true, y_pred = validator.validate_mae_mse_inputs(y_true, y_pred, library)
|
320
215
|
|
321
216
|
if library == 'sklearn':
|
322
217
|
from sklearn.metrics import explained_variance_score as sklearn_evs
|
@@ -342,7 +237,7 @@ def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
|
|
342
237
|
denominator = np.var(y_true)
|
343
238
|
return 1 - numerator / denominator if denominator != 0 else 0
|
344
239
|
|
345
|
-
def adjusted_r2_score(
|
240
|
+
def adjusted_r2_score(y_true, y_pred, n_features, library=None, flatten=True):
|
346
241
|
"""
|
347
242
|
Computes Adjusted R-Squared Score.
|
348
243
|
|
@@ -363,7 +258,7 @@ def adjusted_r2_score(self, y_true, y_pred, n_features, library=None, flatten=Tr
|
|
363
258
|
If True, flattens multidimensional arrays before computation.
|
364
259
|
"""
|
365
260
|
# Validate inputs
|
366
|
-
y_true, y_pred, _ =
|
261
|
+
y_true, y_pred, _ = validator.validate_r2_score_inputs(y_true, y_pred)
|
367
262
|
|
368
263
|
# Ensure inputs are 1D arrays
|
369
264
|
if y_true.ndim == 0 or y_pred.ndim == 0:
|
@@ -395,9 +290,9 @@ def adjusted_r2_score(self, y_true, y_pred, n_features, library=None, flatten=Tr
|
|
395
290
|
return adjusted_r2
|
396
291
|
|
397
292
|
if __name__ == '__main__':
|
398
|
-
|
293
|
+
# Example usage
|
399
294
|
validator = DataValidator()
|
400
|
-
|
295
|
+
|
401
296
|
|
402
297
|
# Test validation
|
403
298
|
arr = [[1], [2], [3]]
|
@@ -408,12 +303,12 @@ if __name__ == '__main__':
|
|
408
303
|
y_true = [3, -0.5, 2, 7]
|
409
304
|
y_pred = [2.5, 0.0, 2, 8]
|
410
305
|
|
411
|
-
print("Mean Absolute Error:",
|
412
|
-
print("Mean Squared Error:",
|
413
|
-
print("R2 Score:",
|
414
|
-
print("Mean Bias Deviation: ",
|
415
|
-
print("Explained Variance Score: ",
|
416
|
-
print("Mean Absolute Percentage Error: ",
|
417
|
-
print("Root Mean Squared Error: ",
|
418
|
-
print("adjusted_r2_score: ",
|
306
|
+
print("Mean Absolute Error:", mean_absolute_error(y_true, y_pred))
|
307
|
+
print("Mean Squared Error:", mean_squared_error(y_true, y_pred))
|
308
|
+
print("R2 Score:", r2_score(y_true, y_pred))
|
309
|
+
print("Mean Bias Deviation: ", mean_bias_deviation(y_true, y_pred))
|
310
|
+
print("Explained Variance Score: ", explained_variance_score(y_true, y_pred))
|
311
|
+
print("Mean Absolute Percentage Error: ", mean_absolute_percentage_error(y_true, y_pred))
|
312
|
+
print("Root Mean Squared Error: ", root_mean_squared_error(y_true, y_pred))
|
313
|
+
print("adjusted_r2_score: ", adjusted_r2_score(y_true, y_pred, 2))
|
419
314
|
|
@@ -0,0 +1,101 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import warnings
|
3
|
+
from typing import Union, List, Tuple
|
4
|
+
from scipy import sparse
|
5
|
+
|
6
|
+
class DataValidator:
|
7
|
+
def __init__(self):
|
8
|
+
pass
|
9
|
+
|
10
|
+
def check_device_cpu(self, device):
|
11
|
+
if device not in {"cpu", None}:
|
12
|
+
raise ValueError(f"Unsupported device: {device!r}. Only 'cpu' is supported.")
|
13
|
+
|
14
|
+
def is_1d_array(self, array: Union[np.ndarray, list], warn: bool = False) -> np.ndarray:
|
15
|
+
"""
|
16
|
+
Ensures input is a 1D array. Raises an error if it's not 1D or convertible to 1D.
|
17
|
+
"""
|
18
|
+
array = np.asarray(array)
|
19
|
+
shape = array.shape
|
20
|
+
|
21
|
+
if len(shape) == 1:
|
22
|
+
return array
|
23
|
+
elif len(shape) == 2 and shape[1] == 1:
|
24
|
+
if warn:
|
25
|
+
warnings.warn("Input is 2D but will be converted to 1D.", UserWarning)
|
26
|
+
return array.ravel()
|
27
|
+
else:
|
28
|
+
raise ValueError(f"Input must be 1D. Found shape {shape}.")
|
29
|
+
|
30
|
+
def check_samples(self, array: Union[np.ndarray, list]) -> int:
|
31
|
+
"""
|
32
|
+
Returns the number of samples in the array.
|
33
|
+
"""
|
34
|
+
array = np.asarray(array)
|
35
|
+
if hasattr(array, 'shape') and len(array.shape) > 0:
|
36
|
+
return array.shape[0]
|
37
|
+
else:
|
38
|
+
raise TypeError("Input must be an array-like object with at least one dimension.")
|
39
|
+
|
40
|
+
def check_consistent_length(self, *arrays: Union[np.ndarray, list]):
|
41
|
+
"""
|
42
|
+
Ensures all input arrays have the same length.
|
43
|
+
"""
|
44
|
+
lengths = [self.check_samples(arr) for arr in arrays]
|
45
|
+
if len(set(lengths)) > 1:
|
46
|
+
raise ValueError(f"Inconsistent lengths: {lengths}")
|
47
|
+
|
48
|
+
def validate_regression_targets(self, y_true, y_pred, dtype=np.float64):
|
49
|
+
"""
|
50
|
+
Ensures regression target values are consistent and converted to the specified dtype.
|
51
|
+
"""
|
52
|
+
y_true = np.asarray(y_true, dtype=dtype)
|
53
|
+
y_pred = np.asarray(y_pred, dtype=dtype)
|
54
|
+
|
55
|
+
if y_true.shape != y_pred.shape:
|
56
|
+
raise ValueError(f"Shapes of y_true {y_true.shape} and y_pred {y_pred.shape} do not match.")
|
57
|
+
|
58
|
+
return y_true, y_pred
|
59
|
+
|
60
|
+
def check_array(self, array, ensure_2d: bool = True, dtype=np.float64, allow_nan: bool = False):
|
61
|
+
"""
|
62
|
+
Validates input array and converts it to specified dtype.
|
63
|
+
"""
|
64
|
+
array = np.asarray(array, dtype=dtype)
|
65
|
+
|
66
|
+
if ensure_2d and array.ndim == 1:
|
67
|
+
array = array.reshape(-1, 1)
|
68
|
+
|
69
|
+
if not allow_nan and np.isnan(array).any():
|
70
|
+
raise ValueError("Input contains NaN values, which are not allowed.")
|
71
|
+
|
72
|
+
return array
|
73
|
+
|
74
|
+
def check_sparse(self, array, accept_sparse: Tuple[str] = ('csr', 'csc')):
|
75
|
+
"""
|
76
|
+
Validates sparse matrices and converts to an acceptable format.
|
77
|
+
"""
|
78
|
+
if sparse.issparse(array):
|
79
|
+
if array.format not in accept_sparse:
|
80
|
+
return array.asformat(accept_sparse[0])
|
81
|
+
return array
|
82
|
+
else:
|
83
|
+
raise ValueError("Input is not a sparse matrix.")
|
84
|
+
|
85
|
+
def validate_r2_score_inputs(self, y_true, y_pred, sample_weight=None):
|
86
|
+
"""
|
87
|
+
Ensures inputs for R2 score computation are valid.
|
88
|
+
"""
|
89
|
+
y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
|
90
|
+
if sample_weight is not None:
|
91
|
+
sample_weight = self.is_1d_array(sample_weight)
|
92
|
+
return y_true, y_pred, sample_weight
|
93
|
+
|
94
|
+
def validate_mae_mse_inputs(self, y_true, y_pred, library=None):
|
95
|
+
"""
|
96
|
+
Ensures inputs for MAE and MSE computation are valid.
|
97
|
+
"""
|
98
|
+
y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
|
99
|
+
if library not in {None, 'sklearn', 'torch', 'tensorflow', 'Moral88'}:
|
100
|
+
raise ValueError(f"Invalid library: {library}. Choose from {{'Moral88', 'sklearn', 'torch', 'tensorflow'}}.")
|
101
|
+
return y_true, y_pred
|
@@ -3,9 +3,11 @@ README.md
|
|
3
3
|
setup.py
|
4
4
|
Moral88/__init__.py
|
5
5
|
Moral88/regression.py
|
6
|
-
Moral88/
|
6
|
+
Moral88/utils.py
|
7
7
|
Moral88.egg-info/PKG-INFO
|
8
8
|
Moral88.egg-info/SOURCES.txt
|
9
9
|
Moral88.egg-info/dependency_links.txt
|
10
10
|
Moral88.egg-info/requires.txt
|
11
|
-
Moral88.egg-info/top_level.txt
|
11
|
+
Moral88.egg-info/top_level.txt
|
12
|
+
tests/__init__.py
|
13
|
+
tests/test_regression.py
|
@@ -0,0 +1,99 @@
|
|
1
|
+
import pytest
|
2
|
+
import numpy as np
|
3
|
+
from Moral88.regression import (
|
4
|
+
mean_absolute_error,
|
5
|
+
mean_absolute_error,
|
6
|
+
mean_squared_error,
|
7
|
+
r2_score,
|
8
|
+
mean_bias_deviation,
|
9
|
+
adjusted_r2_score,
|
10
|
+
root_mean_squared_error,
|
11
|
+
mean_absolute_percentage_error,
|
12
|
+
explained_variance_score
|
13
|
+
)
|
14
|
+
import warnings
|
15
|
+
from Moral88.utils import DataValidator
|
16
|
+
|
17
|
+
validator = DataValidator()
|
18
|
+
|
19
|
+
def test_is_1d_array():
|
20
|
+
validator = DataValidator()
|
21
|
+
array = [[1], [2], [3]]
|
22
|
+
with warnings.catch_warnings():
|
23
|
+
warnings.simplefilter("ignore", UserWarning)
|
24
|
+
result = validator.is_1d_array(array, warn=True)
|
25
|
+
assert result.ndim == 1
|
26
|
+
assert np.array_equal(result, np.array([1, 2, 3]))
|
27
|
+
|
28
|
+
def test_check_samples():
|
29
|
+
validator = DataValidator()
|
30
|
+
array = [[1, 2], [3, 4], [5, 6]]
|
31
|
+
result = validator.check_samples(array)
|
32
|
+
assert result == 3
|
33
|
+
|
34
|
+
def test_check_consistent_length():
|
35
|
+
validator = DataValidator()
|
36
|
+
array1 = [1, 2, 3]
|
37
|
+
array2 = [4, 5, 6]
|
38
|
+
validator.check_consistent_length(array1, array2) # Should not raise an error
|
39
|
+
|
40
|
+
array3 = [7, 8]
|
41
|
+
with pytest.raises(ValueError):
|
42
|
+
validator.check_consistent_length(array1, array3)
|
43
|
+
|
44
|
+
def test_mean_absolute_error():
|
45
|
+
|
46
|
+
y_true = [3, -0.5, 2, 7]
|
47
|
+
y_pred = [2.5, 0.0, 2, 8]
|
48
|
+
result = mean_absolute_error(y_true, y_pred)
|
49
|
+
assert result == pytest.approx(0.5, rel=1e-2)
|
50
|
+
|
51
|
+
def test_mean_squared_error():
|
52
|
+
|
53
|
+
y_true = [3, -0.5, 2, 7]
|
54
|
+
y_pred = [2.5, 0.0, 2, 8]
|
55
|
+
result = mean_squared_error(y_true, y_pred)
|
56
|
+
assert result == pytest.approx(0.375, rel=1e-2)
|
57
|
+
|
58
|
+
def test_r2_score():
|
59
|
+
|
60
|
+
y_true = [3, -0.5, 2, 7]
|
61
|
+
y_pred = [2.5, 0.0, 2, 8]
|
62
|
+
result = r2_score(y_true, y_pred)
|
63
|
+
assert result == pytest.approx(0.948, rel=1e-2)
|
64
|
+
|
65
|
+
def test_mean_bias_deviation():
|
66
|
+
|
67
|
+
y_true = [3, -0.5, 2, 7]
|
68
|
+
y_pred = [2.5, 0.0, 2, 8]
|
69
|
+
result = mean_bias_deviation(y_true, y_pred)
|
70
|
+
assert result == pytest.approx(0.25, rel=1e-2)
|
71
|
+
|
72
|
+
def test_explained_variance_score():
|
73
|
+
|
74
|
+
y_true = [3, -0.5, 2, 7]
|
75
|
+
y_pred = [2.5, 0.0, 2, 8]
|
76
|
+
result = explained_variance_score(y_true, y_pred)
|
77
|
+
assert result == pytest.approx(0.957, rel=1e-2)
|
78
|
+
|
79
|
+
def test_mean_absolute_percentage_error():
|
80
|
+
|
81
|
+
y_true = [3, -0.5, 2, 7]
|
82
|
+
y_pred = [2.5, 0.0, 2, 8]
|
83
|
+
result = mean_absolute_percentage_error(y_true, y_pred)
|
84
|
+
assert result == pytest.approx(32.738095, rel=1e-2)
|
85
|
+
|
86
|
+
def test_root_mean_squared_error():
|
87
|
+
|
88
|
+
y_true = [3, -0.5, 2, 7]
|
89
|
+
y_pred = [2.5, 0.0, 2, 8]
|
90
|
+
result = root_mean_squared_error(y_true, y_pred)
|
91
|
+
assert result == pytest.approx(0.612, rel=1e-2)
|
92
|
+
|
93
|
+
def test_adjusted_r2_score():
|
94
|
+
|
95
|
+
y_true = [3, -0.5, 2, 7]
|
96
|
+
y_pred = [2.5, 0.0, 2, 8]
|
97
|
+
n_features = 2
|
98
|
+
result = adjusted_r2_score(y_true, y_pred, n_features)
|
99
|
+
assert result == pytest.approx(0.8458, rel=1e-2)
|
@@ -1,38 +0,0 @@
|
|
1
|
-
def validate_segmentation_inputs(y_true, y_pred):
|
2
|
-
"""
|
3
|
-
Validate the inputs for type and shape.
|
4
|
-
"""
|
5
|
-
if not isinstance(y_true, (list, tuple)) or not isinstance(y_pred, (list, tuple)):
|
6
|
-
raise TypeError("Both y_true and y_pred must be lists or tuples.")
|
7
|
-
|
8
|
-
if len(y_true) != len(y_pred):
|
9
|
-
raise ValueError("Length of y_true and y_pred must be the same.")
|
10
|
-
|
11
|
-
if not all(isinstance(x, (int, float)) for x in y_true + y_pred):
|
12
|
-
raise TypeError("All elements in y_true and y_pred must be numeric.")
|
13
|
-
|
14
|
-
def dice_score(y_true, y_pred, threshold=0.5):
|
15
|
-
"""
|
16
|
-
Compute the Dice Score.
|
17
|
-
|
18
|
-
Args:
|
19
|
-
y_true (list or tuple): Ground truth binary values.
|
20
|
-
y_pred (list or tuple): Predicted values (probabilities or binary).
|
21
|
-
threshold (float): Threshold to binarize y_pred if necessary.
|
22
|
-
|
23
|
-
Returns:
|
24
|
-
float: Dice Score.
|
25
|
-
"""
|
26
|
-
validate_segmentation_inputs(y_true, y_pred)
|
27
|
-
|
28
|
-
# Binarize predictions based on threshold
|
29
|
-
y_pred = [1 if p >= threshold else 0 for p in y_pred]
|
30
|
-
|
31
|
-
# Calculate intersection and union
|
32
|
-
intersection = sum(yt * yp for yt, yp in zip(y_true, y_pred))
|
33
|
-
total = sum(y_true) + sum(y_pred)
|
34
|
-
|
35
|
-
if total == 0:
|
36
|
-
return 1.0 # Perfect match if both are completely empty
|
37
|
-
|
38
|
-
return 2 * intersection / total
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|