Moral88 0.8.0__tar.gz → 0.9.0__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,419 @@
1
+ import numpy as np
2
+ import warnings
3
+ from typing import Union, List, Tuple
4
+ from scipy import sparse
5
+
6
+ class DataValidator:
7
+ def __init__(self):
8
+ pass
9
+
10
+ def check_device_cpu(self, device):
11
+ if device not in {"cpu", None}:
12
+ raise ValueError(f"Unsupported device: {device!r}. Only 'cpu' is supported.")
13
+
14
+ def is_1d_array(self, array: Union[np.ndarray, list], warn: bool = False) -> np.ndarray:
15
+ """
16
+ Ensures input is a 1D array. Raises an error if it's not 1D or convertible to 1D.
17
+ """
18
+ array = np.asarray(array)
19
+ shape = array.shape
20
+
21
+ if len(shape) == 1:
22
+ return array
23
+ elif len(shape) == 2 and shape[1] == 1:
24
+ if warn:
25
+ warnings.warn("Input is 2D but will be converted to 1D.", UserWarning)
26
+ return array.ravel()
27
+ else:
28
+ raise ValueError(f"Input must be 1D. Found shape {shape}.")
29
+
30
+ def check_samples(self, array: Union[np.ndarray, list]) -> int:
31
+ """
32
+ Returns the number of samples in the array.
33
+ """
34
+ array = np.asarray(array)
35
+ if hasattr(array, 'shape') and len(array.shape) > 0:
36
+ return array.shape[0]
37
+ else:
38
+ raise TypeError("Input must be an array-like object with at least one dimension.")
39
+
40
+ def check_consistent_length(self, *arrays: Union[np.ndarray, list]):
41
+ """
42
+ Ensures all input arrays have the same length.
43
+ """
44
+ lengths = [self.check_samples(arr) for arr in arrays]
45
+ if len(set(lengths)) > 1:
46
+ raise ValueError(f"Inconsistent lengths: {lengths}")
47
+
48
+ def validate_regression_targets(self, y_true, y_pred, dtype=np.float64):
49
+ """
50
+ Ensures regression target values are consistent and converted to the specified dtype.
51
+ """
52
+ y_true = np.asarray(y_true, dtype=dtype)
53
+ y_pred = np.asarray(y_pred, dtype=dtype)
54
+
55
+ if y_true.shape != y_pred.shape:
56
+ raise ValueError(f"Shapes of y_true {y_true.shape} and y_pred {y_pred.shape} do not match.")
57
+
58
+ return y_true, y_pred
59
+
60
+ def check_array(self, array, ensure_2d: bool = True, dtype=np.float64, allow_nan: bool = False):
61
+ """
62
+ Validates input array and converts it to specified dtype.
63
+ """
64
+ array = np.asarray(array, dtype=dtype)
65
+
66
+ if ensure_2d and array.ndim == 1:
67
+ array = array.reshape(-1, 1)
68
+
69
+ if not allow_nan and np.isnan(array).any():
70
+ raise ValueError("Input contains NaN values, which are not allowed.")
71
+
72
+ return array
73
+
74
+ def check_sparse(self, array, accept_sparse: Tuple[str] = ('csr', 'csc')):
75
+ """
76
+ Validates sparse matrices and converts to an acceptable format.
77
+ """
78
+ if sparse.issparse(array):
79
+ if array.format not in accept_sparse:
80
+ return array.asformat(accept_sparse[0])
81
+ return array
82
+ else:
83
+ raise ValueError("Input is not a sparse matrix.")
84
+
85
+ def validate_r2_score_inputs(self, y_true, y_pred, sample_weight=None):
86
+ """
87
+ Ensures inputs for R2 score computation are valid.
88
+ """
89
+ y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
90
+ if sample_weight is not None:
91
+ sample_weight = self.is_1d_array(sample_weight)
92
+ return y_true, y_pred, sample_weight
93
+
94
+ def validate_mae_mse_inputs(self, y_true, y_pred, library=None):
95
+ """
96
+ Ensures inputs for MAE and MSE computation are valid.
97
+ """
98
+ y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
99
+ if library not in {None, 'sklearn', 'torch', 'tensorflow', 'Moral88'}:
100
+ raise ValueError(f"Invalid library: {library}. Choose from {{'Moral88', 'sklearn', 'torch', 'tensorflow'}}.")
101
+ return y_true, y_pred
102
+
103
+
104
+
105
+ def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
106
+ """
107
+ Computes Mean Bias Deviation (MBD).
108
+ """
109
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
110
+
111
+ if flatten and y_true.ndim > 1:
112
+ y_true = y_true.flatten()
113
+ y_pred = y_pred.flatten()
114
+
115
+ if library == 'sklearn':
116
+ # Sklearn does not have a direct implementation for MBD
117
+ raise NotImplementedError("Mean Bias Deviation is not implemented in sklearn.")
118
+
119
+ if library == 'torch':
120
+ import torch
121
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
122
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
123
+ bias = torch.mean(y_pred_tensor - y_true_tensor).item()
124
+ return bias
125
+
126
+ if library == 'tensorflow':
127
+ import tensorflow as tf
128
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
129
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
130
+ bias = tf.reduce_mean(y_pred_tensor - y_true_tensor).numpy()
131
+ return bias
132
+
133
+ # Default implementation
134
+ return np.mean(y_pred - y_true)
135
+ def __init__(self):
136
+ self.validator = DataValidator()
137
+
138
+ def r2_score(self, y_true, y_pred, sample_weight=None, library=None, flatten=True):
139
+ """
140
+ Computes R2 score.
141
+ """
142
+ y_true, y_pred, sample_weight = self.validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
143
+
144
+ if flatten and y_true.ndim > 1:
145
+ y_true = y_true.flatten()
146
+ y_pred = y_pred.flatten()
147
+
148
+ if library == 'sklearn':
149
+ from sklearn.metrics import r2_score as sklearn_r2
150
+ return sklearn_r2(y_true, y_pred, sample_weight=sample_weight)
151
+
152
+ if library == 'statsmodels':
153
+ import statsmodels.api as sm
154
+ model = sm.OLS(y_true, sm.add_constant(y_pred)).fit()
155
+ return model.rsquared
156
+
157
+ numerator = np.sum((y_true - y_pred) ** 2)
158
+ denominator = np.sum((y_true - np.mean(y_true)) ** 2)
159
+
160
+ if denominator == 0:
161
+ return 0.0
162
+ return 1 - (numerator / denominator)
163
+
164
+ def mean_absolute_error(self, y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
165
+ """
166
+ Computes Mean Absolute Error (MAE).
167
+ """
168
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
169
+
170
+ if flatten:
171
+ y_true = y_true.ravel()
172
+ y_pred = y_pred.ravel()
173
+
174
+ if library == 'Moral88':
175
+ if threshold is not None:
176
+ y_pred = np.clip(y_pred, threshold[0], threshold[1])
177
+
178
+ if y_true.ndim > 1 and flatten:
179
+ y_true = y_true.flatten()
180
+ y_pred = y_pred.flatten()
181
+ absolute_errors = np.abs(y_true - y_pred)
182
+
183
+ if method == 'mean':
184
+ result = np.mean(absolute_errors)
185
+ elif method == 'sum':
186
+ result = np.sum(absolute_errors)
187
+ elif method == 'none':
188
+ result = absolute_errors
189
+ else:
190
+ raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
191
+
192
+ # if normalize and method != 'none':
193
+ # range_y = np.ptp(y_true)
194
+ # result = result / max(abs(range_y), 1)
195
+
196
+ return result
197
+
198
+ elif library == 'sklearn':
199
+ from sklearn.metrics import mean_absolute_error as sklearn_mae
200
+ return sklearn_mae(y_true, y_pred)
201
+
202
+ elif library == 'torch':
203
+ import torch
204
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
205
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
206
+ return torch.mean(torch.abs(y_true_tensor - y_pred_tensor)).item()
207
+
208
+ elif library == 'tensorflow':
209
+ import tensorflow as tf
210
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
211
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
212
+ return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
213
+
214
+ def mean_squared_error(self, y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
215
+ """
216
+ Computes Mean Squared Error (MSE).
217
+ """
218
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
219
+
220
+ if flatten:
221
+ y_true = y_true.ravel()
222
+ y_pred = y_pred.ravel()
223
+
224
+ if library == 'Moral88':
225
+ if threshold is not None:
226
+ y_pred = np.clip(y_pred, threshold[0], threshold[1])
227
+
228
+ if y_true.ndim > 1 and flatten:
229
+ y_true = y_true.flatten()
230
+ y_pred = y_pred.flatten()
231
+ squared_errors = (y_true - y_pred) ** 2
232
+
233
+ if method == 'mean':
234
+ result = np.mean(squared_errors)
235
+ elif method == 'sum':
236
+ result = np.sum(squared_errors)
237
+ elif method == 'none':
238
+ result = squared_errors
239
+ else:
240
+ raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
241
+
242
+ # if normalize and method != 'none':
243
+ # range_y = np.ptp(y_true)
244
+ # result = result / max(abs(range_y), 1)
245
+
246
+ return result
247
+
248
+ elif library == 'sklearn':
249
+ from sklearn.metrics import mean_squared_error as sklearn_mse
250
+ return sklearn_mse(y_true, y_pred)
251
+
252
+ elif library == 'torch':
253
+ import torch
254
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
255
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
256
+ return torch.mean((y_true_tensor - y_pred_tensor) ** 2).item()
257
+
258
+ elif library == 'tensorflow':
259
+ import tensorflow as tf
260
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
261
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
262
+ return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
263
+
264
+ def root_mean_squared_error(self, y_true, y_pred, library=None):
265
+ """
266
+ Computes Root Mean Squared Error (RMSE).
267
+ """
268
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
269
+
270
+ if library == 'sklearn':
271
+ from sklearn.metrics import mean_squared_error as sklearn_mse
272
+ return np.sqrt(sklearn_mse(y_true, y_pred))
273
+
274
+ if library == 'torch':
275
+ import torch
276
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
277
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
278
+ return torch.sqrt(torch.mean((y_true_tensor - y_pred_tensor) ** 2)).item()
279
+
280
+ if library == 'tensorflow':
281
+ import tensorflow as tf
282
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
283
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
284
+ return tf.sqrt(tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor))).numpy()
285
+
286
+ mse = self.mean_squared_error(y_true, y_pred)
287
+ return np.sqrt(mse)
288
+
289
+ def mean_absolute_percentage_error(self, y_true, y_pred, library=None):
290
+ """
291
+ Computes Mean Absolute Percentage Error (MAPE).
292
+ """
293
+ y_true, y_pred = self.validator.validate_regression_targets(y_true, y_pred)
294
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
295
+ y_true = np.clip(y_true, 1e-8, None)
296
+
297
+ if library == 'sklearn':
298
+ from sklearn.metrics import mean_absolute_percentage_error as sklearn_mape
299
+ return sklearn_mape(y_true, y_pred) * 100
300
+
301
+ if library == 'torch':
302
+ import torch
303
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
304
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
305
+ return torch.mean(torch.abs((y_true_tensor - y_pred_tensor) / torch.clamp(y_true_tensor, min=1e-8))).item() * 100
306
+
307
+ if library == 'tensorflow':
308
+ import tensorflow as tf
309
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
310
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
311
+ return tf.reduce_mean(tf.abs((y_true_tensor - y_pred_tensor) / tf.clip_by_value(y_true_tensor, 1e-8, tf.float32.max))).numpy() * 100
312
+
313
+ return np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-8, None))) * 100
314
+
315
+ def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
316
+ """
317
+ Computes Explained Variance Score.
318
+ """
319
+ y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
320
+
321
+ if library == 'sklearn':
322
+ from sklearn.metrics import explained_variance_score as sklearn_evs
323
+ return sklearn_evs(y_true, y_pred)
324
+
325
+ if library == 'torch':
326
+ import torch
327
+ y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
328
+ y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
329
+ variance_residual = torch.var(y_true_tensor - y_pred_tensor)
330
+ variance_y = torch.var(y_true_tensor)
331
+ return 1 - variance_residual / variance_y if variance_y != 0 else 0
332
+
333
+ if library == 'tensorflow':
334
+ import tensorflow as tf
335
+ y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
336
+ y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
337
+ variance_residual = tf.math.reduce_variance(y_true_tensor - y_pred_tensor)
338
+ variance_y = tf.math.reduce_variance(y_true_tensor)
339
+ return 1 - variance_residual / variance_y if variance_y != 0 else 0
340
+
341
+ numerator = np.var(y_true - y_pred)
342
+ denominator = np.var(y_true)
343
+ return 1 - numerator / denominator if denominator != 0 else 0
344
+
345
+ def adjusted_r2_score(self, y_true, y_pred, n_features, library=None, flatten=True):
346
+ """
347
+ Computes Adjusted R-Squared Score.
348
+
349
+ Parameters:
350
+ y_true: array-like of shape (n_samples,)
351
+ Ground truth (correct) target values.
352
+
353
+ y_pred: array-like of shape (n_samples,)
354
+ Estimated target values.
355
+
356
+ n_features: int
357
+ Number of independent features in the model.
358
+
359
+ library: str, optional (default=None)
360
+ Library to use for computation. Supports {'sklearn', 'statsmodels', None}.
361
+
362
+ flatten: bool, optional (default=True)
363
+ If True, flattens multidimensional arrays before computation.
364
+ """
365
+ # Validate inputs
366
+ y_true, y_pred, _ = self.validator.validate_r2_score_inputs(y_true, y_pred)
367
+
368
+ # Ensure inputs are 1D arrays
369
+ if y_true.ndim == 0 or y_pred.ndim == 0:
370
+ y_true = np.array([y_true])
371
+ y_pred = np.array([y_pred])
372
+
373
+ if flatten and y_true.ndim > 1:
374
+ y_true = y_true.flatten()
375
+ y_pred = y_pred.flatten()
376
+
377
+ if library == 'sklearn':
378
+ from sklearn.metrics import r2_score
379
+ r2 = r2_score(y_true, y_pred)
380
+ elif library == 'statsmodels':
381
+ import statsmodels.api as sm
382
+ X = sm.add_constant(y_pred)
383
+ model = sm.OLS(y_true, X).fit()
384
+ r2 = model.rsquared
385
+ else:
386
+ numerator = np.sum((y_true - y_pred) ** 2)
387
+ denominator = np.sum((y_true - np.mean(y_true)) ** 2)
388
+ r2 = 1 - (numerator / denominator) if denominator != 0 else 0.0
389
+
390
+ n_samples = len(y_true)
391
+ if n_samples <= n_features + 1:
392
+ raise ValueError("Number of samples must be greater than number of features plus one for adjusted R-squared computation.")
393
+
394
+ adjusted_r2 = 1 - (1 - r2) * (n_samples - 1) / (n_samples - n_features - 1)
395
+ return adjusted_r2
396
+
397
+ if __name__ == '__main__':
398
+ # Example usage
399
+ validator = DataValidator()
400
+ metrics = Metrics()
401
+
402
+ # Test validation
403
+ arr = [[1], [2], [3]]
404
+ print("1D array:", validator.is_1d_array(arr))
405
+ print("Samples:", validator.check_samples(arr))
406
+
407
+ # Test MAE, MSE, R2, MBD, EV, MAPE, RMSE
408
+ y_true = [3, -0.5, 2, 7]
409
+ y_pred = [2.5, 0.0, 2, 8]
410
+
411
+ print("Mean Absolute Error:", metrics.mean_absolute_error(y_true, y_pred))
412
+ print("Mean Squared Error:", metrics.mean_squared_error(y_true, y_pred))
413
+ print("R2 Score:", metrics.r2_score(y_true, y_pred))
414
+ print("Mean Bias Deviation: ", metrics.mean_bias_deviation(y_true, y_pred))
415
+ print("Explained Variance Score: ", metrics.explained_variance_score(y_true, y_pred))
416
+ print("Mean Absolute Percentage Error: ", metrics.mean_absolute_percentage_error(y_true, y_pred))
417
+ print("Root Mean Squared Error: ", metrics.root_mean_squared_error(y_true, y_pred))
418
+ print("adjusted_r2_score: ", metrics.adjusted_r2_score(y_true, y_pred, 2))
419
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: Moral88
3
- Version: 0.8.0
3
+ Version: 0.9.0
4
4
  Summary: A library for regression evaluation metrics.
5
5
  Author: Morteza Alizadeh
6
6
  Author-email: alizadeh.c2m@gmail.com
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: Moral88
3
- Version: 0.8.0
3
+ Version: 0.9.0
4
4
  Summary: A library for regression evaluation metrics.
5
5
  Author: Morteza Alizadeh
6
6
  Author-email: alizadeh.c2m@gmail.com
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name='Moral88',
5
- version='0.8.0',
5
+ version='0.9.0',
6
6
  description='A library for regression evaluation metrics.',
7
7
  author='Morteza Alizadeh',
8
8
  author_email='alizadeh.c2m@gmail.com',
@@ -1,421 +0,0 @@
1
- import numpy as np
2
- import warnings
3
- from typing import Union, List, Tuple
4
- from scipy import sparse
5
-
6
- class DataValidator:
7
- def __init__(self):
8
- pass
9
-
10
- def check_device_cpu(self, device):
11
- if device not in {"cpu", None}:
12
- raise ValueError(f"Unsupported device: {device!r}. Only 'cpu' is supported.")
13
-
14
- def is_1d_array(self, array: Union[np.ndarray, list], warn: bool = False) -> np.ndarray:
15
- """
16
- Ensures input is a 1D array. Raises an error if it's not 1D or convertible to 1D.
17
- """
18
- array = np.asarray(array)
19
- shape = array.shape
20
-
21
- if len(shape) == 1:
22
- return array
23
- elif len(shape) == 2 and shape[1] == 1:
24
- if warn:
25
- warnings.warn("Input is 2D but will be converted to 1D.", UserWarning)
26
- return array.ravel()
27
- else:
28
- raise ValueError(f"Input must be 1D. Found shape {shape}.")
29
-
30
- def check_samples(self, array: Union[np.ndarray, list]) -> int:
31
- """
32
- Returns the number of samples in the array.
33
- """
34
- array = np.asarray(array)
35
- if hasattr(array, 'shape') and len(array.shape) > 0:
36
- return array.shape[0]
37
- else:
38
- raise TypeError("Input must be an array-like object with at least one dimension.")
39
-
40
- def check_consistent_length(self, *arrays: Union[np.ndarray, list]):
41
- """
42
- Ensures all input arrays have the same length.
43
- """
44
- lengths = [self.check_samples(arr) for arr in arrays]
45
- if len(set(lengths)) > 1:
46
- raise ValueError(f"Inconsistent lengths: {lengths}")
47
-
48
- def validate_regression_targets(self, y_true, y_pred, dtype=np.float64):
49
- """
50
- Ensures regression target values are consistent and converted to the specified dtype.
51
- """
52
- y_true = np.asarray(y_true, dtype=dtype)
53
- y_pred = np.asarray(y_pred, dtype=dtype)
54
-
55
- if y_true.shape != y_pred.shape:
56
- raise ValueError(f"Shapes of y_true {y_true.shape} and y_pred {y_pred.shape} do not match.")
57
-
58
- return y_true, y_pred
59
-
60
- def check_array(self, array, ensure_2d: bool = True, dtype=np.float64, allow_nan: bool = False):
61
- """
62
- Validates input array and converts it to specified dtype.
63
- """
64
- array = np.asarray(array, dtype=dtype)
65
-
66
- if ensure_2d and array.ndim == 1:
67
- array = array.reshape(-1, 1)
68
-
69
- if not allow_nan and np.isnan(array).any():
70
- raise ValueError("Input contains NaN values, which are not allowed.")
71
-
72
- return array
73
-
74
- def check_sparse(self, array, accept_sparse: Tuple[str] = ('csr', 'csc')):
75
- """
76
- Validates sparse matrices and converts to an acceptable format.
77
- """
78
- if sparse.issparse(array):
79
- if array.format not in accept_sparse:
80
- return array.asformat(accept_sparse[0])
81
- return array
82
- else:
83
- raise ValueError("Input is not a sparse matrix.")
84
-
85
- def validate_r2_score_inputs(self, y_true, y_pred, sample_weight=None):
86
- """
87
- Ensures inputs for R2 score computation are valid.
88
- """
89
- y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
90
- if sample_weight is not None:
91
- sample_weight = self.is_1d_array(sample_weight)
92
- return y_true, y_pred, sample_weight
93
-
94
- def validate_mae_mse_inputs(self, y_true, y_pred, library=None):
95
- """
96
- Ensures inputs for MAE and MSE computation are valid.
97
- """
98
- y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
99
- if library not in {None, 'sklearn', 'torch', 'tensorflow', 'Moral88'}:
100
- raise ValueError(f"Invalid library: {library}. Choose from {{'Moral88', 'sklearn', 'torch', 'tensorflow'}}.")
101
- return y_true, y_pred
102
-
103
-
104
- class metrics:
105
- def __init__(self):
106
- pass
107
- def mean_bias_deviation(self, y_true, y_pred, library=None, flatten=True):
108
- """
109
- Computes Mean Bias Deviation (MBD).
110
- """
111
- y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
112
-
113
- if flatten and y_true.ndim > 1:
114
- y_true = y_true.flatten()
115
- y_pred = y_pred.flatten()
116
-
117
- if library == 'sklearn':
118
- # Sklearn does not have a direct implementation for MBD
119
- raise NotImplementedError("Mean Bias Deviation is not implemented in sklearn.")
120
-
121
- if library == 'torch':
122
- import torch
123
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
124
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
125
- bias = torch.mean(y_pred_tensor - y_true_tensor).item()
126
- return bias
127
-
128
- if library == 'tensorflow':
129
- import tensorflow as tf
130
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
131
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
132
- bias = tf.reduce_mean(y_pred_tensor - y_true_tensor).numpy()
133
- return bias
134
-
135
- # Default implementation
136
- return np.mean(y_pred - y_true)
137
- def __init__(self):
138
- self.validator = DataValidator()
139
-
140
- def r2_score(self, y_true, y_pred, sample_weight=None, library=None, flatten=True):
141
- """
142
- Computes R2 score.
143
- """
144
- y_true, y_pred, sample_weight = self.validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
145
-
146
- if flatten and y_true.ndim > 1:
147
- y_true = y_true.flatten()
148
- y_pred = y_pred.flatten()
149
-
150
- if library == 'sklearn':
151
- from sklearn.metrics import r2_score as sklearn_r2
152
- return sklearn_r2(y_true, y_pred, sample_weight=sample_weight)
153
-
154
- if library == 'statsmodels':
155
- import statsmodels.api as sm
156
- model = sm.OLS(y_true, sm.add_constant(y_pred)).fit()
157
- return model.rsquared
158
-
159
- numerator = np.sum((y_true - y_pred) ** 2)
160
- denominator = np.sum((y_true - np.mean(y_true)) ** 2)
161
-
162
- if denominator == 0:
163
- return 0.0
164
- return 1 - (numerator / denominator)
165
-
166
- def mean_absolute_error(self, y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
167
- """
168
- Computes Mean Absolute Error (MAE).
169
- """
170
- y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
171
-
172
- if flatten:
173
- y_true = y_true.ravel()
174
- y_pred = y_pred.ravel()
175
-
176
- if library == 'Moral88':
177
- if threshold is not None:
178
- y_pred = np.clip(y_pred, threshold[0], threshold[1])
179
-
180
- if y_true.ndim > 1 and flatten:
181
- y_true = y_true.flatten()
182
- y_pred = y_pred.flatten()
183
- absolute_errors = np.abs(y_true - y_pred)
184
-
185
- if method == 'mean':
186
- result = np.mean(absolute_errors)
187
- elif method == 'sum':
188
- result = np.sum(absolute_errors)
189
- elif method == 'none':
190
- result = absolute_errors
191
- else:
192
- raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
193
-
194
- # if normalize and method != 'none':
195
- # range_y = np.ptp(y_true)
196
- # result = result / max(abs(range_y), 1)
197
-
198
- return result
199
-
200
- elif library == 'sklearn':
201
- from sklearn.metrics import mean_absolute_error as sklearn_mae
202
- return sklearn_mae(y_true, y_pred)
203
-
204
- elif library == 'torch':
205
- import torch
206
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
207
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
208
- return torch.mean(torch.abs(y_true_tensor - y_pred_tensor)).item()
209
-
210
- elif library == 'tensorflow':
211
- import tensorflow as tf
212
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
213
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
214
- return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
215
-
216
- def mean_squared_error(self, y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
217
- """
218
- Computes Mean Squared Error (MSE).
219
- """
220
- y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
221
-
222
- if flatten:
223
- y_true = y_true.ravel()
224
- y_pred = y_pred.ravel()
225
-
226
- if library == 'Moral88':
227
- if threshold is not None:
228
- y_pred = np.clip(y_pred, threshold[0], threshold[1])
229
-
230
- if y_true.ndim > 1 and flatten:
231
- y_true = y_true.flatten()
232
- y_pred = y_pred.flatten()
233
- squared_errors = (y_true - y_pred) ** 2
234
-
235
- if method == 'mean':
236
- result = np.mean(squared_errors)
237
- elif method == 'sum':
238
- result = np.sum(squared_errors)
239
- elif method == 'none':
240
- result = squared_errors
241
- else:
242
- raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
243
-
244
- # if normalize and method != 'none':
245
- # range_y = np.ptp(y_true)
246
- # result = result / max(abs(range_y), 1)
247
-
248
- return result
249
-
250
- elif library == 'sklearn':
251
- from sklearn.metrics import mean_squared_error as sklearn_mse
252
- return sklearn_mse(y_true, y_pred)
253
-
254
- elif library == 'torch':
255
- import torch
256
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
257
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
258
- return torch.mean((y_true_tensor - y_pred_tensor) ** 2).item()
259
-
260
- elif library == 'tensorflow':
261
- import tensorflow as tf
262
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
263
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
264
- return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
265
-
266
- def root_mean_squared_error(self, y_true, y_pred, library=None):
267
- """
268
- Computes Root Mean Squared Error (RMSE).
269
- """
270
- y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
271
-
272
- if library == 'sklearn':
273
- from sklearn.metrics import mean_squared_error as sklearn_mse
274
- return np.sqrt(sklearn_mse(y_true, y_pred))
275
-
276
- if library == 'torch':
277
- import torch
278
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
279
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
280
- return torch.sqrt(torch.mean((y_true_tensor - y_pred_tensor) ** 2)).item()
281
-
282
- if library == 'tensorflow':
283
- import tensorflow as tf
284
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
285
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
286
- return tf.sqrt(tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor))).numpy()
287
-
288
- mse = self.mean_squared_error(y_true, y_pred)
289
- return np.sqrt(mse)
290
-
291
- def mean_absolute_percentage_error(self, y_true, y_pred, library=None):
292
- """
293
- Computes Mean Absolute Percentage Error (MAPE).
294
- """
295
- y_true, y_pred = self.validator.validate_regression_targets(y_true, y_pred)
296
- y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
297
- y_true = np.clip(y_true, 1e-8, None)
298
-
299
- if library == 'sklearn':
300
- from sklearn.metrics import mean_absolute_percentage_error as sklearn_mape
301
- return sklearn_mape(y_true, y_pred) * 100
302
-
303
- if library == 'torch':
304
- import torch
305
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
306
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
307
- return torch.mean(torch.abs((y_true_tensor - y_pred_tensor) / torch.clamp(y_true_tensor, min=1e-8))).item() * 100
308
-
309
- if library == 'tensorflow':
310
- import tensorflow as tf
311
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
312
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
313
- return tf.reduce_mean(tf.abs((y_true_tensor - y_pred_tensor) / tf.clip_by_value(y_true_tensor, 1e-8, tf.float32.max))).numpy() * 100
314
-
315
- return np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-8, None))) * 100
316
-
317
- def explained_variance_score(self, y_true, y_pred, library=None, flatten=True):
318
- """
319
- Computes Explained Variance Score.
320
- """
321
- y_true, y_pred = self.validator.validate_mae_mse_inputs(y_true, y_pred, library)
322
-
323
- if library == 'sklearn':
324
- from sklearn.metrics import explained_variance_score as sklearn_evs
325
- return sklearn_evs(y_true, y_pred)
326
-
327
- if library == 'torch':
328
- import torch
329
- y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
330
- y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
331
- variance_residual = torch.var(y_true_tensor - y_pred_tensor)
332
- variance_y = torch.var(y_true_tensor)
333
- return 1 - variance_residual / variance_y if variance_y != 0 else 0
334
-
335
- if library == 'tensorflow':
336
- import tensorflow as tf
337
- y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
338
- y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
339
- variance_residual = tf.math.reduce_variance(y_true_tensor - y_pred_tensor)
340
- variance_y = tf.math.reduce_variance(y_true_tensor)
341
- return 1 - variance_residual / variance_y if variance_y != 0 else 0
342
-
343
- numerator = np.var(y_true - y_pred)
344
- denominator = np.var(y_true)
345
- return 1 - numerator / denominator if denominator != 0 else 0
346
-
347
- def adjusted_r2_score(self, y_true, y_pred, n_features, library=None, flatten=True):
348
- """
349
- Computes Adjusted R-Squared Score.
350
-
351
- Parameters:
352
- y_true: array-like of shape (n_samples,)
353
- Ground truth (correct) target values.
354
-
355
- y_pred: array-like of shape (n_samples,)
356
- Estimated target values.
357
-
358
- n_features: int
359
- Number of independent features in the model.
360
-
361
- library: str, optional (default=None)
362
- Library to use for computation. Supports {'sklearn', 'statsmodels', None}.
363
-
364
- flatten: bool, optional (default=True)
365
- If True, flattens multidimensional arrays before computation.
366
- """
367
- # Validate inputs
368
- y_true, y_pred, _ = self.validator.validate_r2_score_inputs(y_true, y_pred)
369
-
370
- # Ensure inputs are 1D arrays
371
- if y_true.ndim == 0 or y_pred.ndim == 0:
372
- y_true = np.array([y_true])
373
- y_pred = np.array([y_pred])
374
-
375
- if flatten and y_true.ndim > 1:
376
- y_true = y_true.flatten()
377
- y_pred = y_pred.flatten()
378
-
379
- if library == 'sklearn':
380
- from sklearn.metrics import r2_score
381
- r2 = r2_score(y_true, y_pred)
382
- elif library == 'statsmodels':
383
- import statsmodels.api as sm
384
- X = sm.add_constant(y_pred)
385
- model = sm.OLS(y_true, X).fit()
386
- r2 = model.rsquared
387
- else:
388
- numerator = np.sum((y_true - y_pred) ** 2)
389
- denominator = np.sum((y_true - np.mean(y_true)) ** 2)
390
- r2 = 1 - (numerator / denominator) if denominator != 0 else 0.0
391
-
392
- n_samples = len(y_true)
393
- if n_samples <= n_features + 1:
394
- raise ValueError("Number of samples must be greater than number of features plus one for adjusted R-squared computation.")
395
-
396
- adjusted_r2 = 1 - (1 - r2) * (n_samples - 1) / (n_samples - n_features - 1)
397
- return adjusted_r2
398
-
399
- if __name__ == '__main__':
400
- # Example usage
401
- validator = DataValidator()
402
- metrics = Metrics()
403
-
404
- # Test validation
405
- arr = [[1], [2], [3]]
406
- print("1D array:", validator.is_1d_array(arr))
407
- print("Samples:", validator.check_samples(arr))
408
-
409
- # Test MAE, MSE, R2, MBD, EV, MAPE, RMSE
410
- y_true = [3, -0.5, 2, 7]
411
- y_pred = [2.5, 0.0, 2, 8]
412
-
413
- print("Mean Absolute Error:", metrics.mean_absolute_error(y_true, y_pred))
414
- print("Mean Squared Error:", metrics.mean_squared_error(y_true, y_pred))
415
- print("R2 Score:", metrics.r2_score(y_true, y_pred))
416
- print("Mean Bias Deviation: ", metrics.mean_bias_deviation(y_true, y_pred))
417
- print("Explained Variance Score: ", metrics.explained_variance_score(y_true, y_pred))
418
- print("Mean Absolute Percentage Error: ", metrics.mean_absolute_percentage_error(y_true, y_pred))
419
- print("Root Mean Squared Error: ", metrics.root_mean_squared_error(y_true, y_pred))
420
- print("adjusted_r2_score: ", metrics.adjusted_r2_score(y_true, y_pred, 2))
421
-
File without changes
File without changes
File without changes
File without changes
File without changes