Moral88 0.1.0__tar.gz → 0.3.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- Moral88-0.3.0/Moral88/regression.py +266 -0
- Moral88-0.3.0/Moral88/segmentation.py +38 -0
- {Moral88-0.1.0 → Moral88-0.3.0/Moral88.egg-info}/PKG-INFO +1 -1
- {Moral88-0.1.0 → Moral88-0.3.0}/Moral88.egg-info/SOURCES.txt +1 -0
- {Moral88-0.1.0/Moral88.egg-info → Moral88-0.3.0}/PKG-INFO +1 -1
- {Moral88-0.1.0 → Moral88-0.3.0}/setup.py +1 -1
- Moral88-0.1.0/Moral88/regression.py +0 -25
- {Moral88-0.1.0 → Moral88-0.3.0}/LICENSE +0 -0
- {Moral88-0.1.0 → Moral88-0.3.0}/Moral88/__init__.py +0 -0
- {Moral88-0.1.0 → Moral88-0.3.0}/Moral88.egg-info/dependency_links.txt +0 -0
- {Moral88-0.1.0 → Moral88-0.3.0}/Moral88.egg-info/requires.txt +0 -0
- {Moral88-0.1.0 → Moral88-0.3.0}/Moral88.egg-info/top_level.txt +0 -0
- {Moral88-0.1.0 → Moral88-0.3.0}/README.md +0 -0
- {Moral88-0.1.0 → Moral88-0.3.0}/setup.cfg +0 -0
@@ -0,0 +1,266 @@
|
|
1
|
+
import numpy as np
|
2
|
+
|
3
|
+
def validate_inputs(y_true, y_pred):
|
4
|
+
"""
|
5
|
+
Validate the inputs for type and length.
|
6
|
+
"""
|
7
|
+
if not isinstance(y_true, (list, tuple, np.ndarray)) or not isinstance(y_pred, (list, tuple, np.ndarray)):
|
8
|
+
raise TypeError("Both y_true and y_pred must be lists, tuples, or numpy arrays.")
|
9
|
+
|
10
|
+
y_true = np.array(y_true)
|
11
|
+
y_pred = np.array(y_pred)
|
12
|
+
|
13
|
+
if y_true.shape != y_pred.shape:
|
14
|
+
raise ValueError("Shapes of y_true and y_pred must be the same.")
|
15
|
+
|
16
|
+
if not np.issubdtype(y_true.dtype, np.number) or not np.issubdtype(y_pred.dtype, np.number):
|
17
|
+
raise TypeError("All elements in y_true and y_pred must be numeric.")
|
18
|
+
|
19
|
+
def mean_absolute_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
|
20
|
+
"""
|
21
|
+
Calculate Mean Absolute Error (MAE) for single or multi-dimensional data.
|
22
|
+
"""
|
23
|
+
validate_inputs(y_true, y_pred)
|
24
|
+
|
25
|
+
# y_true = np.array(y_true)
|
26
|
+
# y_pred = np.array(y_pred)
|
27
|
+
|
28
|
+
if flatten:
|
29
|
+
y_true = y_true.ravel()
|
30
|
+
y_pred = y_pred.ravel()
|
31
|
+
|
32
|
+
if library == 'Moral88':
|
33
|
+
if threshold is not None:
|
34
|
+
y_pred = np.clip(y_pred, threshold[0], threshold[1])
|
35
|
+
|
36
|
+
absolute_errors = np.abs(y_true - y_pred)
|
37
|
+
|
38
|
+
if method == 'mean':
|
39
|
+
result = np.mean(absolute_errors)
|
40
|
+
elif method == 'sum':
|
41
|
+
result = np.sum(absolute_errors)
|
42
|
+
elif method == 'none':
|
43
|
+
result = absolute_errors
|
44
|
+
else:
|
45
|
+
raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
|
46
|
+
|
47
|
+
if normalize and method != 'none':
|
48
|
+
range_y = np.ptp(y_true)
|
49
|
+
result = result / max(abs(range_y), 1)
|
50
|
+
|
51
|
+
return result
|
52
|
+
|
53
|
+
elif library == 'sklearn':
|
54
|
+
from sklearn.metrics import mean_absolute_error as sklearn_mae
|
55
|
+
return sklearn_mae(y_true, y_pred)
|
56
|
+
|
57
|
+
elif library == 'torch':
|
58
|
+
import torch
|
59
|
+
y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
|
60
|
+
y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
|
61
|
+
return torch.mean(torch.abs(y_true_tensor - y_pred_tensor)).item()
|
62
|
+
|
63
|
+
elif library == 'tensorflow':
|
64
|
+
import tensorflow as tf
|
65
|
+
y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
|
66
|
+
y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
|
67
|
+
return tf.reduce_mean(tf.abs(y_true_tensor - y_pred_tensor)).numpy()
|
68
|
+
|
69
|
+
else:
|
70
|
+
raise ValueError(f"Invalid library: {library}. Choose from {'Moral88', 'sklearn', 'torch', 'tensorflow'}.")
|
71
|
+
|
72
|
+
def mean_squared_error(y_true, y_pred, normalize=True, threshold=None, method='mean', library='Moral88', flatten=True):
|
73
|
+
"""
|
74
|
+
Calculate Mean Squared Error (MSE) for single or multi-dimensional data.
|
75
|
+
"""
|
76
|
+
validate_inputs(y_true, y_pred)
|
77
|
+
|
78
|
+
# y_true = np.array(y_true)
|
79
|
+
# y_pred = np.array(y_pred)
|
80
|
+
|
81
|
+
if flatten:
|
82
|
+
y_true = y_true.ravel()
|
83
|
+
y_pred = y_pred.ravel()
|
84
|
+
|
85
|
+
if library == 'Moral88':
|
86
|
+
if threshold is not None:
|
87
|
+
y_pred = np.clip(y_pred, threshold[0], threshold[1])
|
88
|
+
|
89
|
+
squared_errors = (y_true - y_pred) ** 2
|
90
|
+
|
91
|
+
if method == 'mean':
|
92
|
+
result = np.mean(squared_errors)
|
93
|
+
elif method == 'sum':
|
94
|
+
result = np.sum(squared_errors)
|
95
|
+
elif method == 'none':
|
96
|
+
result = squared_errors
|
97
|
+
else:
|
98
|
+
raise ValueError("Invalid method. Choose from {'mean', 'sum', 'none'}.")
|
99
|
+
|
100
|
+
if normalize and method != 'none':
|
101
|
+
range_y = np.ptp(y_true)
|
102
|
+
result = result / max(abs(range_y), 1)
|
103
|
+
|
104
|
+
return result
|
105
|
+
|
106
|
+
elif library == 'sklearn':
|
107
|
+
from sklearn.metrics import mean_squared_error as sklearn_mse
|
108
|
+
return sklearn_mse(y_true, y_pred)
|
109
|
+
|
110
|
+
elif library == 'torch':
|
111
|
+
import torch
|
112
|
+
y_true_tensor = torch.tensor(y_true, dtype=torch.float32)
|
113
|
+
y_pred_tensor = torch.tensor(y_pred, dtype=torch.float32)
|
114
|
+
return torch.mean((y_true_tensor - y_pred_tensor) ** 2).item()
|
115
|
+
|
116
|
+
elif library == 'tensorflow':
|
117
|
+
import tensorflow as tf
|
118
|
+
y_true_tensor = tf.convert_to_tensor(y_true, dtype=tf.float32)
|
119
|
+
y_pred_tensor = tf.convert_to_tensor(y_pred, dtype=tf.float32)
|
120
|
+
return tf.reduce_mean(tf.square(y_true_tensor - y_pred_tensor)).numpy()
|
121
|
+
|
122
|
+
else:
|
123
|
+
raise ValueError(f"Invalid library: {library}. Choose from {'Moral88', 'sklearn', 'torch', 'tensorflow'}.")
|
124
|
+
|
125
|
+
def r_squared(y_true, y_pred, flatten=True):
|
126
|
+
"""
|
127
|
+
Compute R-Squared for single or multi-dimensional data.
|
128
|
+
"""
|
129
|
+
validate_inputs(y_true, y_pred)
|
130
|
+
|
131
|
+
y_true = np.array(y_true)
|
132
|
+
y_pred = np.array(y_pred)
|
133
|
+
|
134
|
+
if flatten:
|
135
|
+
y_true = y_true.ravel()
|
136
|
+
y_pred = y_pred.ravel()
|
137
|
+
|
138
|
+
ss_total = np.sum((y_true - np.mean(y_true)) ** 2)
|
139
|
+
ss_residual = np.sum((y_true - y_pred) ** 2)
|
140
|
+
return 1 - (ss_residual / ss_total)
|
141
|
+
|
142
|
+
import numpy as np
|
143
|
+
import warnings
|
144
|
+
from typing import Union, List, Tuple
|
145
|
+
from scipy import sparse
|
146
|
+
|
147
|
+
class DataValidator:
|
148
|
+
def __init__(self):
|
149
|
+
pass
|
150
|
+
|
151
|
+
def check_device_cpu(self, device):
|
152
|
+
if device not in {"cpu", None}:
|
153
|
+
raise ValueError(f"Unsupported device: {device!r}. Only 'cpu' is supported.")
|
154
|
+
|
155
|
+
def is_1d_array(self, array: Union[np.ndarray, list], warn: bool = False) -> np.ndarray:
|
156
|
+
"""
|
157
|
+
Ensures input is a 1D array. Raises an error if it's not 1D or convertible to 1D.
|
158
|
+
"""
|
159
|
+
array = np.asarray(array)
|
160
|
+
shape = array.shape
|
161
|
+
|
162
|
+
if len(shape) == 1:
|
163
|
+
return array
|
164
|
+
elif len(shape) == 2 and shape[1] == 1:
|
165
|
+
if warn:
|
166
|
+
warnings.warn("Input is 2D but will be converted to 1D.", UserWarning)
|
167
|
+
return array.ravel()
|
168
|
+
else:
|
169
|
+
raise ValueError(f"Input must be 1D. Found shape {shape}.")
|
170
|
+
|
171
|
+
def check_samples(self, array: Union[np.ndarray, list]) -> int:
|
172
|
+
"""
|
173
|
+
Returns the number of samples in the array.
|
174
|
+
"""
|
175
|
+
if hasattr(array, 'shape') and len(array.shape) > 0:
|
176
|
+
return array.shape[0]
|
177
|
+
else:
|
178
|
+
raise TypeError("Input must be an array-like object with at least one dimension.")
|
179
|
+
|
180
|
+
def check_consistent_length(self, *arrays: Union[np.ndarray, list]):
|
181
|
+
"""
|
182
|
+
Ensures all input arrays have the same length.
|
183
|
+
"""
|
184
|
+
lengths = [self.check_samples(arr) for arr in arrays]
|
185
|
+
if len(set(lengths)) > 1:
|
186
|
+
raise ValueError(f"Inconsistent lengths: {lengths}")
|
187
|
+
|
188
|
+
def validate_regression_targets(self, y_true, y_pred, dtype=np.float64):
|
189
|
+
"""
|
190
|
+
Ensures regression target values are consistent and converted to the specified dtype.
|
191
|
+
"""
|
192
|
+
y_true = np.asarray(y_true, dtype=dtype)
|
193
|
+
y_pred = np.asarray(y_pred, dtype=dtype)
|
194
|
+
|
195
|
+
if y_true.shape != y_pred.shape:
|
196
|
+
raise ValueError(f"Shapes of y_true {y_true.shape} and y_pred {y_pred.shape} do not match.")
|
197
|
+
|
198
|
+
return y_true, y_pred
|
199
|
+
|
200
|
+
def check_array(self, array, ensure_2d: bool = True, dtype=np.float64, allow_nan: bool = False):
|
201
|
+
"""
|
202
|
+
Validates input array and converts it to specified dtype.
|
203
|
+
"""
|
204
|
+
array = np.asarray(array, dtype=dtype)
|
205
|
+
|
206
|
+
if ensure_2d and array.ndim == 1:
|
207
|
+
array = array.reshape(-1, 1)
|
208
|
+
|
209
|
+
if not allow_nan and np.isnan(array).any():
|
210
|
+
raise ValueError("Input contains NaN values, which are not allowed.")
|
211
|
+
|
212
|
+
return array
|
213
|
+
|
214
|
+
def check_sparse(self, array, accept_sparse: Tuple[str] = ('csr', 'csc')):
|
215
|
+
"""
|
216
|
+
Validates sparse matrices and converts to an acceptable format.
|
217
|
+
"""
|
218
|
+
if sparse.issparse(array):
|
219
|
+
if array.format not in accept_sparse:
|
220
|
+
return array.asformat(accept_sparse[0])
|
221
|
+
return array
|
222
|
+
else:
|
223
|
+
raise ValueError("Input is not a sparse matrix.")
|
224
|
+
|
225
|
+
def validate_r2_score_inputs(self, y_true, y_pred, sample_weight=None):
|
226
|
+
"""
|
227
|
+
Ensures inputs for R2 score computation are valid.
|
228
|
+
"""
|
229
|
+
y_true, y_pred = self.validate_regression_targets(y_true, y_pred)
|
230
|
+
if sample_weight is not None:
|
231
|
+
sample_weight = self.is_1d_array(sample_weight)
|
232
|
+
return y_true, y_pred, sample_weight
|
233
|
+
|
234
|
+
|
235
|
+
class Metrics:
|
236
|
+
def __init__(self):
|
237
|
+
self.validator = DataValidator()
|
238
|
+
|
239
|
+
def r2_score(self, y_true, y_pred, sample_weight=None):
|
240
|
+
"""
|
241
|
+
Computes R2 score.
|
242
|
+
"""
|
243
|
+
y_true, y_pred, sample_weight = self.validator.validate_r2_score_inputs(y_true, y_pred, sample_weight)
|
244
|
+
|
245
|
+
numerator = np.sum((y_true - y_pred) ** 2)
|
246
|
+
denominator = np.sum((y_true - np.mean(y_true)) ** 2)
|
247
|
+
|
248
|
+
if denominator == 0:
|
249
|
+
return 0.0
|
250
|
+
return 1 - (numerator / denominator)
|
251
|
+
|
252
|
+
|
253
|
+
if __name__ == '__main__':
|
254
|
+
# Example usage
|
255
|
+
validator = DataValidator()
|
256
|
+
metrics = Metrics()
|
257
|
+
|
258
|
+
# Test validation
|
259
|
+
arr = [[1], [2], [3]]
|
260
|
+
print("1D array:", validator.is_1d_array(arr))
|
261
|
+
print("Samples:", validator.check_samples(arr))
|
262
|
+
|
263
|
+
# Test R2 score
|
264
|
+
y_true = [3, -0.5, 2, 7]
|
265
|
+
y_pred = [2.5, 0.0, 2, 8]
|
266
|
+
print("R2 Score:", metrics.r2_score(y_true, y_pred))
|
@@ -0,0 +1,38 @@
|
|
1
|
+
def validate_segmentation_inputs(y_true, y_pred):
|
2
|
+
"""
|
3
|
+
Validate the inputs for type and shape.
|
4
|
+
"""
|
5
|
+
if not isinstance(y_true, (list, tuple)) or not isinstance(y_pred, (list, tuple)):
|
6
|
+
raise TypeError("Both y_true and y_pred must be lists or tuples.")
|
7
|
+
|
8
|
+
if len(y_true) != len(y_pred):
|
9
|
+
raise ValueError("Length of y_true and y_pred must be the same.")
|
10
|
+
|
11
|
+
if not all(isinstance(x, (int, float)) for x in y_true + y_pred):
|
12
|
+
raise TypeError("All elements in y_true and y_pred must be numeric.")
|
13
|
+
|
14
|
+
def dice_score(y_true, y_pred, threshold=0.5):
|
15
|
+
"""
|
16
|
+
Compute the Dice Score.
|
17
|
+
|
18
|
+
Args:
|
19
|
+
y_true (list or tuple): Ground truth binary values.
|
20
|
+
y_pred (list or tuple): Predicted values (probabilities or binary).
|
21
|
+
threshold (float): Threshold to binarize y_pred if necessary.
|
22
|
+
|
23
|
+
Returns:
|
24
|
+
float: Dice Score.
|
25
|
+
"""
|
26
|
+
validate_segmentation_inputs(y_true, y_pred)
|
27
|
+
|
28
|
+
# Binarize predictions based on threshold
|
29
|
+
y_pred = [1 if p >= threshold else 0 for p in y_pred]
|
30
|
+
|
31
|
+
# Calculate intersection and union
|
32
|
+
intersection = sum(yt * yp for yt, yp in zip(y_true, y_pred))
|
33
|
+
total = sum(y_true) + sum(y_pred)
|
34
|
+
|
35
|
+
if total == 0:
|
36
|
+
return 1.0 # Perfect match if both are completely empty
|
37
|
+
|
38
|
+
return 2 * intersection / total
|
@@ -1,25 +0,0 @@
|
|
1
|
-
# Moral88/regression.py
|
2
|
-
import numpy as np
|
3
|
-
|
4
|
-
def mean_absolute_error(y_true, y_pred):
|
5
|
-
"""
|
6
|
-
Compute MAE (Mean Absolute Error)
|
7
|
-
"""
|
8
|
-
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
9
|
-
return np.mean(np.abs(y_true - y_pred))
|
10
|
-
|
11
|
-
def mean_squared_error(y_true, y_pred):
|
12
|
-
"""
|
13
|
-
Compute MSE (Mean Squared Error)
|
14
|
-
"""
|
15
|
-
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
16
|
-
return np.mean((y_true - y_pred) ** 2)
|
17
|
-
|
18
|
-
def r_squared(y_true, y_pred):
|
19
|
-
"""
|
20
|
-
Compute R-Squared
|
21
|
-
"""
|
22
|
-
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
23
|
-
ss_total = np.sum((y_true - np.mean(y_true)) ** 2)
|
24
|
-
ss_residual = np.sum((y_true - y_pred) ** 2)
|
25
|
-
return 1 - (ss_residual / ss_total)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|