Moral88 0.1.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- Moral88-0.1.0/LICENSE +0 -0
- Moral88-0.1.0/Moral88/__init__.py +0 -0
- Moral88-0.1.0/Moral88/regression.py +25 -0
- Moral88-0.1.0/Moral88.egg-info/PKG-INFO +12 -0
- Moral88-0.1.0/Moral88.egg-info/SOURCES.txt +10 -0
- Moral88-0.1.0/Moral88.egg-info/dependency_links.txt +1 -0
- Moral88-0.1.0/Moral88.egg-info/requires.txt +1 -0
- Moral88-0.1.0/Moral88.egg-info/top_level.txt +1 -0
- Moral88-0.1.0/PKG-INFO +12 -0
- Moral88-0.1.0/README.md +18 -0
- Moral88-0.1.0/setup.cfg +4 -0
- Moral88-0.1.0/setup.py +19 -0
Moral88-0.1.0/LICENSE
ADDED
File without changes
|
File without changes
|
@@ -0,0 +1,25 @@
|
|
1
|
+
# Moral88/regression.py
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
def mean_absolute_error(y_true, y_pred):
|
5
|
+
"""
|
6
|
+
Compute MAE (Mean Absolute Error)
|
7
|
+
"""
|
8
|
+
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
9
|
+
return np.mean(np.abs(y_true - y_pred))
|
10
|
+
|
11
|
+
def mean_squared_error(y_true, y_pred):
|
12
|
+
"""
|
13
|
+
Compute MSE (Mean Squared Error)
|
14
|
+
"""
|
15
|
+
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
16
|
+
return np.mean((y_true - y_pred) ** 2)
|
17
|
+
|
18
|
+
def r_squared(y_true, y_pred):
|
19
|
+
"""
|
20
|
+
Compute R-Squared
|
21
|
+
"""
|
22
|
+
y_true, y_pred = np.array(y_true), np.array(y_pred)
|
23
|
+
ss_total = np.sum((y_true - np.mean(y_true)) ** 2)
|
24
|
+
ss_residual = np.sum((y_true - y_pred) ** 2)
|
25
|
+
return 1 - (ss_residual / ss_total)
|
@@ -0,0 +1,12 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: Moral88
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: A library for regression evaluation metrics.
|
5
|
+
Author: Morteza Alizadeh
|
6
|
+
Author-email: alizadeh.c2m@gmail.com
|
7
|
+
License: MIT
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
10
|
+
Classifier: Operating System :: OS Independent
|
11
|
+
Requires-Python: >=3.6
|
12
|
+
License-File: LICENSE
|
@@ -0,0 +1 @@
|
|
1
|
+
|
@@ -0,0 +1 @@
|
|
1
|
+
numpy
|
@@ -0,0 +1 @@
|
|
1
|
+
Moral88
|
Moral88-0.1.0/PKG-INFO
ADDED
@@ -0,0 +1,12 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: Moral88
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: A library for regression evaluation metrics.
|
5
|
+
Author: Morteza Alizadeh
|
6
|
+
Author-email: alizadeh.c2m@gmail.com
|
7
|
+
License: MIT
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
10
|
+
Classifier: Operating System :: OS Independent
|
11
|
+
Requires-Python: >=3.6
|
12
|
+
License-File: LICENSE
|
Moral88-0.1.0/README.md
ADDED
@@ -0,0 +1,18 @@
|
|
1
|
+
# Moral88
|
2
|
+
A Python library for regression evaluation metrics.
|
3
|
+
|
4
|
+
## Installation
|
5
|
+
To use the library, simply clone the repository and add it to your project.
|
6
|
+
|
7
|
+
## Usage
|
8
|
+
```python
|
9
|
+
from Moral88.regression import mean_absolute_error, mean_squared_error, r_squared
|
10
|
+
|
11
|
+
y_true = [1, 2, 3]
|
12
|
+
y_pred = [1, 2, 4]
|
13
|
+
|
14
|
+
mae = mean_absolute_error(y_true, y_pred)
|
15
|
+
mse = mean_squared_error(y_true, y_pred)
|
16
|
+
r2 = r_squared(y_true, y_pred)
|
17
|
+
|
18
|
+
print(f"MAE: {mae}, MSE: {mse}, R²: {r2}")
|
Moral88-0.1.0/setup.cfg
ADDED
Moral88-0.1.0/setup.py
ADDED
@@ -0,0 +1,19 @@
|
|
1
|
+
from setuptools import setup, find_packages
|
2
|
+
|
3
|
+
setup(
|
4
|
+
name='Moral88',
|
5
|
+
version='0.1.0',
|
6
|
+
description='A library for regression evaluation metrics.',
|
7
|
+
author='Morteza Alizadeh',
|
8
|
+
author_email='alizadeh.c2m@gmail.com',
|
9
|
+
# url='https://github.com/yourusername/morteza',
|
10
|
+
packages=find_packages(),
|
11
|
+
install_requires=['numpy'],
|
12
|
+
license='MIT',
|
13
|
+
classifiers=[
|
14
|
+
'Programming Language :: Python :: 3',
|
15
|
+
'License :: OSI Approved :: MIT License',
|
16
|
+
'Operating System :: OS Independent',
|
17
|
+
],
|
18
|
+
python_requires='>=3.6',
|
19
|
+
)
|