HomOpt 0.1.0__tar.gz → 0.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt/HomM.py +1 -1
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt/__init__.py +0 -2
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt.egg-info/PKG-INFO +21 -1
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt.egg-info/SOURCES.txt +2 -6
- homopt-0.1.1/MANIFEST.in +2 -0
- {homopt-0.1.0 → homopt-0.1.1}/PKG-INFO +21 -1
- homopt-0.1.1/README.md +18 -0
- {homopt-0.1.0 → homopt-0.1.1}/setup.py +7 -8
- homopt-0.1.0/README.md +0 -0
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt.egg-info/dependency_links.txt +0 -0
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt.egg-info/requires.txt +0 -0
- {homopt-0.1.0 → homopt-0.1.1}/HomOpt.egg-info/top_level.txt +0 -0
- {homopt-0.1.0 → homopt-0.1.1}/LICENSE +0 -0
- {homopt-0.1.0 → homopt-0.1.1}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: HomOpt
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.1
|
4
4
|
Summary: A collection of homogeneous optimizers for PyTorch
|
5
5
|
Home-page: https://github.com/Yu-Zhou-1/HomOpt
|
6
6
|
Author: Yu Zhou
|
@@ -19,6 +19,7 @@ Requires-Dist: torch>=1.6.0
|
|
19
19
|
Dynamic: author
|
20
20
|
Dynamic: author-email
|
21
21
|
Dynamic: classifier
|
22
|
+
Dynamic: description
|
22
23
|
Dynamic: description-content-type
|
23
24
|
Dynamic: home-page
|
24
25
|
Dynamic: keywords
|
@@ -27,3 +28,22 @@ Dynamic: license-file
|
|
27
28
|
Dynamic: requires-dist
|
28
29
|
Dynamic: requires-python
|
29
30
|
Dynamic: summary
|
31
|
+
|
32
|
+
# HomOpt
|
33
|
+
|
34
|
+
HomOpt is a collection of homogeneous optimizers for PyTorch, designed to improve the performance of deep learning models. The optimizers are based on homogeneous dynamical systems and aim to provide more stable and efficient training.
|
35
|
+
|
36
|
+
## Features
|
37
|
+
|
38
|
+
- A set of homogeneous optimizers for PyTorch, including the `HomM` optimizer.
|
39
|
+
- Optimizers designed to improve the training stability and convergence rates for deep learning tasks.
|
40
|
+
- Easy-to-use and integrate into your PyTorch training workflows.
|
41
|
+
|
42
|
+
## Installation
|
43
|
+
|
44
|
+
You can install `HomOpt` using pip. First, ensure that you have Python 3.6 or later and PyTorch 1.6.0 or later installed.
|
45
|
+
|
46
|
+
To install directly from PyPI:
|
47
|
+
|
48
|
+
```bash
|
49
|
+
pip install HomOpt
|
@@ -1,4 +1,5 @@
|
|
1
1
|
LICENSE
|
2
|
+
MANIFEST.in
|
2
3
|
README.md
|
3
4
|
setup.py
|
4
5
|
HomOpt/HomM.py
|
@@ -7,9 +8,4 @@ HomOpt.egg-info/PKG-INFO
|
|
7
8
|
HomOpt.egg-info/SOURCES.txt
|
8
9
|
HomOpt.egg-info/dependency_links.txt
|
9
10
|
HomOpt.egg-info/requires.txt
|
10
|
-
HomOpt.egg-info/top_level.txt
|
11
|
-
homopt.egg-info/PKG-INFO
|
12
|
-
homopt.egg-info/SOURCES.txt
|
13
|
-
homopt.egg-info/dependency_links.txt
|
14
|
-
homopt.egg-info/requires.txt
|
15
|
-
homopt.egg-info/top_level.txt
|
11
|
+
HomOpt.egg-info/top_level.txt
|
homopt-0.1.1/MANIFEST.in
ADDED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: HomOpt
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.1
|
4
4
|
Summary: A collection of homogeneous optimizers for PyTorch
|
5
5
|
Home-page: https://github.com/Yu-Zhou-1/HomOpt
|
6
6
|
Author: Yu Zhou
|
@@ -19,6 +19,7 @@ Requires-Dist: torch>=1.6.0
|
|
19
19
|
Dynamic: author
|
20
20
|
Dynamic: author-email
|
21
21
|
Dynamic: classifier
|
22
|
+
Dynamic: description
|
22
23
|
Dynamic: description-content-type
|
23
24
|
Dynamic: home-page
|
24
25
|
Dynamic: keywords
|
@@ -27,3 +28,22 @@ Dynamic: license-file
|
|
27
28
|
Dynamic: requires-dist
|
28
29
|
Dynamic: requires-python
|
29
30
|
Dynamic: summary
|
31
|
+
|
32
|
+
# HomOpt
|
33
|
+
|
34
|
+
HomOpt is a collection of homogeneous optimizers for PyTorch, designed to improve the performance of deep learning models. The optimizers are based on homogeneous dynamical systems and aim to provide more stable and efficient training.
|
35
|
+
|
36
|
+
## Features
|
37
|
+
|
38
|
+
- A set of homogeneous optimizers for PyTorch, including the `HomM` optimizer.
|
39
|
+
- Optimizers designed to improve the training stability and convergence rates for deep learning tasks.
|
40
|
+
- Easy-to-use and integrate into your PyTorch training workflows.
|
41
|
+
|
42
|
+
## Installation
|
43
|
+
|
44
|
+
You can install `HomOpt` using pip. First, ensure that you have Python 3.6 or later and PyTorch 1.6.0 or later installed.
|
45
|
+
|
46
|
+
To install directly from PyPI:
|
47
|
+
|
48
|
+
```bash
|
49
|
+
pip install HomOpt
|
homopt-0.1.1/README.md
ADDED
@@ -0,0 +1,18 @@
|
|
1
|
+
# HomOpt
|
2
|
+
|
3
|
+
HomOpt is a collection of homogeneous optimizers for PyTorch, designed to improve the performance of deep learning models. The optimizers are based on homogeneous dynamical systems and aim to provide more stable and efficient training.
|
4
|
+
|
5
|
+
## Features
|
6
|
+
|
7
|
+
- A set of homogeneous optimizers for PyTorch, including the `HomM` optimizer.
|
8
|
+
- Optimizers designed to improve the training stability and convergence rates for deep learning tasks.
|
9
|
+
- Easy-to-use and integrate into your PyTorch training workflows.
|
10
|
+
|
11
|
+
## Installation
|
12
|
+
|
13
|
+
You can install `HomOpt` using pip. First, ensure that you have Python 3.6 or later and PyTorch 1.6.0 or later installed.
|
14
|
+
|
15
|
+
To install directly from PyPI:
|
16
|
+
|
17
|
+
```bash
|
18
|
+
pip install HomOpt
|
@@ -1,18 +1,18 @@
|
|
1
1
|
from setuptools import setup, find_packages
|
2
2
|
import pathlib
|
3
3
|
|
4
|
-
#
|
4
|
+
# Read the README.md file for the long description
|
5
5
|
here = pathlib.Path(__file__).parent
|
6
6
|
long_description = (here / "README.md").read_text(encoding="utf-8")
|
7
7
|
|
8
8
|
setup(
|
9
9
|
name="HomOpt",
|
10
|
-
version="0.1.
|
10
|
+
version="0.1.1",
|
11
11
|
packages=find_packages(),
|
12
12
|
install_requires=[
|
13
|
-
"torch>=1.6.0", #
|
13
|
+
"torch>=1.6.0", # Specify minimum required version of torch
|
14
14
|
],
|
15
|
-
python_requires=">=3.6", #
|
15
|
+
python_requires=">=3.6", # Specify Python version requirement
|
16
16
|
author="Yu Zhou",
|
17
17
|
author_email="yu_zhou@yeah.net",
|
18
18
|
description="A collection of homogeneous optimizers for PyTorch",
|
@@ -26,8 +26,7 @@ setup(
|
|
26
26
|
"Intended Audience :: Science/Research",
|
27
27
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
28
28
|
],
|
29
|
-
license="MIT",
|
29
|
+
license="MIT", # Specify the license type here
|
30
30
|
keywords="pytorch optimizer deep-learning",
|
31
|
-
#
|
32
|
-
|
33
|
-
)
|
31
|
+
include_package_data=True, # Ensure non-Python files are included
|
32
|
+
)
|
homopt-0.1.0/README.md
DELETED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|