FindAFactor 4.0.0__tar.gz → 4.1.0__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,1242 @@
1
+ ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
2
+ //
3
+ // (C) Daniel Strano and the Qrack contributors 2017-2025. All rights reserved.
4
+ //
5
+ // "A quantum-inspired Monte Carlo integer factoring algorithm"
6
+ //
7
+ // This library was originally called ["Qimcifa"](https://github.com/vm6502q/qimcifa) and demonstrated a (Shor's-like) "quantum-inspired" algorithm for integer factoring. It has
8
+ // since been developed into a general factoring algorithm and tool.
9
+ //
10
+ // `FindAFactor` uses heavily wheel-factorized brute-force "exhaust" numbers as "smooth" inputs to Quadratic Sieve, widely regarded as the asymptotically second fastest algorithm
11
+ // class known for cryptographically relevant semiprime factoring. `FindAFactor` is C++ based, with `pybind11`, which tends to make it faster than pure Python approaches. For the
12
+ // quick-and-dirty application of finding _any single_ nontrivial factor, something like at least 80% of positive integers will factorize in a fraction of a second, but the most
13
+ // interesting cases to consider are semiprime numbers, for which `FindAFactor` should be about as asymptotically competitive as similar Quadratic Sieve implementations.
14
+ //
15
+ // Our original contribution to Quadratic Sieve seems to be wheel factorization to 13 or 17 and maybe the idea of using the "exhaust" of a brute-force search for smooth number
16
+ // inputs for Quadratic Sieve. For wheel factorization (or "gear factorization"), we collect a short list of the first primes and remove all of their multiples from a "brute-force"
17
+ // guessing range by mapping a dense contiguous integer set, to a set without these multiples, relying on both a traditional "wheel," up to a middle prime number (of `11`), and a
18
+ // "gear-box" that stores increment values per prime according to the principles of wheel factorization, but operating semi-independently, to reduce space of storing the full
19
+ // wheel.
20
+ //
21
+ // Beyond this, we gain a functional advantage of a square-root over a more naive approach, by setting the brute force guessing range only between the highest prime in wheel
22
+ // factorization and the (modular) square root of the number to factor: if the number is semiprime, there is exactly one correct answer in this range, but including both factors in
23
+ // the range to search would cost us the square root advantage.
24
+ //
25
+ // Factoring this way is surprisingly easy to distribute: basically 0 network communication is needed to coordinate an arbitrarily high amount of parallelism to factor a single
26
+ // number. Each brute-force trial division instance is effectively 100% independent of all others (i.e. entirely "embarrassingly parallel"), and these guesses can seed independent
27
+ // Gaussian elimination matrices, so `FindAFactor` offers an extremely simply interface that allows work to be split between an arbitrarily high number of nodes with absolutely no
28
+ // network communication at all. In terms of incentives of those running different, cooperating nodes in the context of this specific number of integer factoring, all one
29
+ // ultimately cares about is knowing the correct factorization answer _by any means._ For pratical applications, there is no point at all in factoring a number whose factors are
30
+ // already known. When a hypothetical answer is forwarded to the (0-communication) "network" of collaborating nodes, _it is trivial to check whether the answer is correct_ (such as
31
+ // by simply entering the multiplication and equality check with the original number into a Python shell console)! Hence, collaborating node operators only need to trust that all
32
+ // participants in the "network" are actually performing their alloted segment of guesses and would actually communicate the correct answer to the entire group of collaborating
33
+ // nodes if any specific invidual happened to find the answer, but any purported answer is still trivial to verify.
34
+ //
35
+ //**Special thanks to OpenAI GPT "Elara," for indicated region of contributed code!**
36
+ //
37
+ // Licensed under the GNU Lesser General Public License V3.
38
+ // See LICENSE.md in the project root or
39
+ // https://www.gnu.org/licenses/lgpl-3.0.en.html for details.
40
+
41
+ #include "dispatchqueue.hpp"
42
+
43
+ #include <algorithm>
44
+ #include <future>
45
+ #include <iostream>
46
+ #include <map>
47
+ #include <memory>
48
+ #include <mutex>
49
+ #include <random>
50
+ #include <stdlib.h>
51
+ #include <string>
52
+
53
+ #include <boost/dynamic_bitset.hpp>
54
+ #include <boost/multiprecision/cpp_int.hpp>
55
+
56
+ #include <pybind11/pybind11.h>
57
+ #include <pybind11/stl.h>
58
+
59
+ namespace Qimcifa {
60
+
61
+ typedef boost::multiprecision::cpp_int BigInteger;
62
+
63
+ const unsigned CpuCount = std::thread::hardware_concurrency();
64
+ DispatchQueue dispatch(CpuCount);
65
+
66
+ enum Wheel { ERROR = 0, WHEEL1 = 1, WHEEL2 = 2, WHEEL3 = 6, WHEEL5 = 30, WHEEL7 = 210, WHEEL11 = 2310, WHEEL13 = 30030 };
67
+
68
+ Wheel wheelByPrimeCardinal(int i) {
69
+ switch (i) {
70
+ case 0:
71
+ return WHEEL1;
72
+ case 1:
73
+ return WHEEL2;
74
+ case 2:
75
+ return WHEEL3;
76
+ case 3:
77
+ return WHEEL5;
78
+ case 4:
79
+ return WHEEL7;
80
+ case 5:
81
+ return WHEEL11;
82
+ default:
83
+ return ERROR;
84
+ }
85
+ }
86
+
87
+ // See https://stackoverflow.com/questions/101439/the-most-efficient-way-to-implement-an-integer-based-power-function-powint-int
88
+ BigInteger ipow(BigInteger base, unsigned exp) {
89
+ BigInteger result = 1U;
90
+ for (;;) {
91
+ if (exp & 1U) {
92
+ result *= base;
93
+ }
94
+ exp >>= 1U;
95
+ if (!exp) {
96
+ break;
97
+ }
98
+ base *= base;
99
+ }
100
+
101
+ return result;
102
+ }
103
+
104
+ inline size_t log2(BigInteger n) {
105
+ size_t pow = 0U;
106
+ while (n >>= 1U) {
107
+ ++pow;
108
+ }
109
+ return pow;
110
+ }
111
+
112
+ inline BigInteger gcd(const BigInteger& n1, const BigInteger& n2) {
113
+ if (!n2) {
114
+ return n1;
115
+ }
116
+ return gcd(n2, n1 % n2);
117
+ }
118
+
119
+ BigInteger sqrt(const BigInteger &toTest) {
120
+ // Otherwise, find b = sqrt(b^2).
121
+ BigInteger start = 1U, end = toTest >> 1U, ans = 0U;
122
+ do {
123
+ const BigInteger mid = (start + end) >> 1U;
124
+
125
+ // If toTest is a perfect square
126
+ const BigInteger sqr = mid * mid;
127
+ if (sqr == toTest) {
128
+ return mid;
129
+ }
130
+
131
+ if (sqr < toTest) {
132
+ // Since we need floor, we update answer when mid*mid is smaller than p, and move closer to sqrt(p).
133
+ start = mid + 1U;
134
+ ans = mid;
135
+ } else {
136
+ // If mid*mid is greater than p
137
+ end = mid - 1U;
138
+ }
139
+ } while (start <= end);
140
+
141
+ return ans;
142
+ }
143
+
144
+ size_t _sqrt(const size_t &toTest) {
145
+ // Otherwise, find b = sqrt(b^2).
146
+ size_t start = 1U, end = toTest >> 1U, ans = 0U;
147
+ do {
148
+ const size_t mid = (start + end) >> 1U;
149
+
150
+ // If toTest is a perfect square
151
+ const size_t sqr = mid * mid;
152
+ if (sqr == toTest) {
153
+ return mid;
154
+ }
155
+
156
+ if (sqr < toTest) {
157
+ // Since we need floor, we update answer when mid*mid is smaller than p, and move closer to sqrt(p).
158
+ start = mid + 1U;
159
+ ans = mid;
160
+ } else {
161
+ // If mid*mid is greater than p
162
+ end = mid - 1U;
163
+ }
164
+ } while (start <= end);
165
+
166
+ return ans;
167
+ }
168
+
169
+ // We are multiplying out the first distinct primes, below.
170
+
171
+ // Make this NOT a multiple of 2.
172
+ inline size_t forward2(const size_t &p) { return (p << 1U) | 1U; }
173
+
174
+ inline size_t backward2(const size_t &p) { return (size_t)(p >> 1U); }
175
+
176
+ // Make this NOT a multiple of 2 or 3.
177
+ inline size_t forward3(const size_t &p) { return (p << 1U) + (~(~p | 1U)) - 1U; }
178
+
179
+ inline size_t backward3(const size_t &n) { return (size_t)((~(~n | 1U)) / 3U) + 1U; }
180
+
181
+ constexpr unsigned char wheel5[8U] = {1U, 7U, 11U, 13U, 17U, 19U, 23U, 29U};
182
+
183
+ // Make this NOT a multiple of 2, 3, or 5.
184
+ size_t forward5(const size_t &p) { return wheel5[p & 7U] + (p >> 3U) * 30U; }
185
+
186
+ size_t backward5(const size_t &n) { return std::distance(wheel5, std::lower_bound(wheel5, wheel5 + 8U, (size_t)(n % 30U))) + 8U * (size_t)(n / 30U) + 1U; }
187
+
188
+ constexpr unsigned char wheel7[48U] = {1U, 11U, 13U, 17U, 19U, 23U, 29U, 31U, 37U, 41U, 43U, 47U, 53U, 59U, 61U, 67U,
189
+ 71U, 73U, 79U, 83U, 89U, 97U, 101U, 103U, 107U, 109U, 113U, 121U, 127U, 131U, 137U, 139U,
190
+ 143U, 149U, 151U, 157U, 163U, 167U, 169U, 173U, 179U, 181U, 187U, 191U, 193U, 197U, 199U, 209U};
191
+
192
+ // Make this NOT a multiple of 2, 3, 5, or 7.
193
+ size_t forward7(const size_t &p) { return wheel7[p % 48U] + (p / 48U) * 210U; }
194
+
195
+ size_t backward7(const size_t &n) { return std::distance(wheel7, std::lower_bound(wheel7, wheel7 + 48U, (size_t)(n % 210U))) + 48U * (size_t)(n / 210U) + 1U; }
196
+
197
+ constexpr unsigned short wheel11[480U] = {
198
+ 1U, 13U, 17U, 19U, 23U, 29U, 31U, 37U, 41U, 43U, 47U, 53U, 59U, 61U, 67U, 71U, 73U, 79U, 83U, 89U, 97U, 101U, 103U, 107U,
199
+ 109U, 113U, 127U, 131U, 137U, 139U, 149U, 151U, 157U, 163U, 167U, 169U, 173U, 179U, 181U, 191U, 193U, 197U, 199U, 211U, 221U, 223U, 227U, 229U,
200
+ 233U, 239U, 241U, 247U, 251U, 257U, 263U, 269U, 271U, 277U, 281U, 283U, 289U, 293U, 299U, 307U, 311U, 313U, 317U, 323U, 331U, 337U, 347U, 349U,
201
+ 353U, 359U, 361U, 367U, 373U, 377U, 379U, 383U, 389U, 391U, 397U, 401U, 403U, 409U, 419U, 421U, 431U, 433U, 437U, 439U, 443U, 449U, 457U, 461U,
202
+ 463U, 467U, 479U, 481U, 487U, 491U, 493U, 499U, 503U, 509U, 521U, 523U, 527U, 529U, 533U, 541U, 547U, 551U, 557U, 559U, 563U, 569U, 571U, 577U,
203
+ 587U, 589U, 593U, 599U, 601U, 607U, 611U, 613U, 617U, 619U, 629U, 631U, 641U, 643U, 647U, 653U, 659U, 661U, 667U, 673U, 677U, 683U, 689U, 691U,
204
+ 697U, 701U, 703U, 709U, 713U, 719U, 727U, 731U, 733U, 739U, 743U, 751U, 757U, 761U, 767U, 769U, 773U, 779U, 787U, 793U, 797U, 799U, 809U, 811U,
205
+ 817U, 821U, 823U, 827U, 829U, 839U, 841U, 851U, 853U, 857U, 859U, 863U, 871U, 877U, 881U, 883U, 887U, 893U, 899U, 901U, 907U, 911U, 919U, 923U,
206
+ 929U, 937U, 941U, 943U, 947U, 949U, 953U, 961U, 967U, 971U, 977U, 983U, 989U, 991U, 997U, 1003U, 1007U, 1009U, 1013U, 1019U, 1021U, 1027U, 1031U, 1033U,
207
+ 1037U, 1039U, 1049U, 1051U, 1061U, 1063U, 1069U, 1073U, 1079U, 1081U, 1087U, 1091U, 1093U, 1097U, 1103U, 1109U, 1117U, 1121U, 1123U, 1129U, 1139U, 1147U, 1151U, 1153U,
208
+ 1157U, 1159U, 1163U, 1171U, 1181U, 1187U, 1189U, 1193U, 1201U, 1207U, 1213U, 1217U, 1219U, 1223U, 1229U, 1231U, 1237U, 1241U, 1247U, 1249U, 1259U, 1261U, 1271U, 1273U,
209
+ 1277U, 1279U, 1283U, 1289U, 1291U, 1297U, 1301U, 1303U, 1307U, 1313U, 1319U, 1321U, 1327U, 1333U, 1339U, 1343U, 1349U, 1357U, 1361U, 1363U, 1367U, 1369U, 1373U, 1381U,
210
+ 1387U, 1391U, 1399U, 1403U, 1409U, 1411U, 1417U, 1423U, 1427U, 1429U, 1433U, 1439U, 1447U, 1451U, 1453U, 1457U, 1459U, 1469U, 1471U, 1481U, 1483U, 1487U, 1489U, 1493U,
211
+ 1499U, 1501U, 1511U, 1513U, 1517U, 1523U, 1531U, 1537U, 1541U, 1543U, 1549U, 1553U, 1559U, 1567U, 1571U, 1577U, 1579U, 1583U, 1591U, 1597U, 1601U, 1607U, 1609U, 1613U,
212
+ 1619U, 1621U, 1627U, 1633U, 1637U, 1643U, 1649U, 1651U, 1657U, 1663U, 1667U, 1669U, 1679U, 1681U, 1691U, 1693U, 1697U, 1699U, 1703U, 1709U, 1711U, 1717U, 1721U, 1723U,
213
+ 1733U, 1739U, 1741U, 1747U, 1751U, 1753U, 1759U, 1763U, 1769U, 1777U, 1781U, 1783U, 1787U, 1789U, 1801U, 1807U, 1811U, 1817U, 1819U, 1823U, 1829U, 1831U, 1843U, 1847U,
214
+ 1849U, 1853U, 1861U, 1867U, 1871U, 1873U, 1877U, 1879U, 1889U, 1891U, 1901U, 1907U, 1909U, 1913U, 1919U, 1921U, 1927U, 1931U, 1933U, 1937U, 1943U, 1949U, 1951U, 1957U,
215
+ 1961U, 1963U, 1973U, 1979U, 1987U, 1993U, 1997U, 1999U, 2003U, 2011U, 2017U, 2021U, 2027U, 2029U, 2033U, 2039U, 2041U, 2047U, 2053U, 2059U, 2063U, 2069U, 2071U, 2077U,
216
+ 2081U, 2083U, 2087U, 2089U, 2099U, 2111U, 2113U, 2117U, 2119U, 2129U, 2131U, 2137U, 2141U, 2143U, 2147U, 2153U, 2159U, 2161U, 2171U, 2173U, 2179U, 2183U, 2197U, 2201U,
217
+ 2203U, 2207U, 2209U, 2213U, 2221U, 2227U, 2231U, 2237U, 2239U, 2243U, 2249U, 2251U, 2257U, 2263U, 2267U, 2269U, 2273U, 2279U, 2281U, 2287U, 2291U, 2293U, 2297U, 2309U};
218
+
219
+ // Make this NOT a multiple of 2, 3, 5, 7, or 11.
220
+ size_t forward11(const size_t &p) { return wheel11[p % 480U] + (p / 480U) * 2310U; }
221
+
222
+ size_t backward11(const size_t &n) { return std::distance(wheel11, std::lower_bound(wheel11, wheel11 + 480U, (size_t)(n % 2310U))) + 480U * (size_t)(n / 2310U) + 1U; }
223
+
224
+ constexpr unsigned short wheel13[5760U] =
225
+ {
226
+ 1, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109,
227
+ 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241,
228
+ 251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367, 373,
229
+ 379, 383, 389, 391, 397, 401, 409, 419, 421, 431, 433, 437, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 493, 499,
230
+ 503, 509, 521, 523, 527, 529, 541, 547, 551, 557, 563, 569, 571, 577, 587, 589, 593, 599, 601, 607, 613, 617, 619, 629,
231
+ 631, 641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 691, 697, 701, 703, 709, 713, 719, 727, 731, 733, 739, 743, 751,
232
+ 757, 761, 769, 773, 779, 787, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839, 841, 851, 853, 857, 859, 863, 877, 881,
233
+ 883, 887, 893, 899, 901, 907, 911, 919, 929, 937, 941, 943, 947, 953, 961, 967, 971, 977, 983, 989, 991, 997, 1003, 1007,
234
+ 1009, 1013, 1019, 1021, 1031, 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1081, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123,
235
+ 1129, 1139, 1147, 1151, 1153, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213, 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249,
236
+ 1259, 1271, 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1333, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
237
+ 1381, 1387, 1399, 1403, 1409, 1411, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1457, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1501,
238
+ 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549, 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609, 1613, 1619, 1621,
239
+ 1627, 1633, 1637, 1643, 1649, 1657, 1663, 1667, 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1709, 1711, 1717, 1721, 1723, 1733, 1739, 1741, 1747,
240
+ 1751, 1753, 1759, 1763, 1769, 1777, 1783, 1787, 1789, 1801, 1811, 1817, 1819, 1823, 1829, 1831, 1843, 1847, 1849, 1853, 1861, 1867, 1871, 1873,
241
+ 1877, 1879, 1889, 1891, 1901, 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1943, 1949, 1951, 1957, 1961, 1973, 1979, 1987, 1993, 1997, 1999,
242
+ 2003, 2011, 2017, 2021, 2027, 2029, 2033, 2039, 2047, 2053, 2059, 2063, 2069, 2071, 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2129,
243
+ 2131, 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2173, 2179, 2183, 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2251, 2257,
244
+ 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297, 2309, 2311, 2323, 2329, 2333, 2339, 2341, 2347, 2351, 2357, 2363, 2369, 2371, 2377,
245
+ 2381, 2383, 2389, 2393, 2399, 2407, 2411, 2413, 2417, 2419, 2423, 2437, 2441, 2447, 2449, 2459, 2461, 2467, 2473, 2477, 2479, 2489, 2491, 2501,
246
+ 2503, 2507, 2521, 2531, 2533, 2537, 2539, 2543, 2549, 2551, 2557, 2567, 2573, 2579, 2581, 2591, 2593, 2599, 2603, 2609, 2617, 2621, 2623, 2627,
247
+ 2633, 2641, 2647, 2657, 2659, 2663, 2669, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2701, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2747, 2749,
248
+ 2753, 2759, 2767, 2771, 2773, 2777, 2789, 2791, 2797, 2801, 2803, 2809, 2813, 2819, 2831, 2833, 2837, 2839, 2843, 2851, 2857, 2861, 2867, 2869,
249
+ 2879, 2881, 2887, 2897, 2903, 2909, 2911, 2917, 2921, 2923, 2927, 2929, 2939, 2941, 2953, 2957, 2963, 2969, 2971, 2983, 2987, 2993, 2999, 3001,
250
+ 3007, 3011, 3013, 3019, 3023, 3037, 3041, 3043, 3049, 3053, 3061, 3067, 3071, 3077, 3079, 3083, 3089, 3097, 3103, 3109, 3119, 3121, 3127, 3131,
251
+ 3137, 3139, 3149, 3151, 3161, 3163, 3167, 3169, 3173, 3181, 3187, 3191, 3193, 3197, 3203, 3209, 3217, 3221, 3229, 3233, 3239, 3247, 3251, 3253,
252
+ 3257, 3259, 3271, 3277, 3281, 3287, 3293, 3299, 3301, 3307, 3313, 3317, 3319, 3323, 3329, 3331, 3337, 3343, 3347, 3349, 3359, 3361, 3371, 3373,
253
+ 3379, 3383, 3389, 3391, 3397, 3401, 3403, 3407, 3413, 3427, 3431, 3433, 3439, 3449, 3457, 3461, 3463, 3467, 3469, 3473, 3481, 3491, 3499, 3503,
254
+ 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3551, 3557, 3559, 3569, 3571, 3581, 3583, 3587, 3589, 3593, 3599, 3607, 3611, 3613, 3617, 3623,
255
+ 3629, 3631, 3637, 3643, 3649, 3659, 3667, 3671, 3673, 3677, 3683, 3691, 3697, 3701, 3709, 3713, 3719, 3721, 3727, 3733, 3737, 3739, 3743, 3749,
256
+ 3761, 3763, 3767, 3769, 3779, 3781, 3791, 3793, 3797, 3799, 3803, 3811, 3821, 3823, 3827, 3833, 3841, 3847, 3851, 3853, 3859, 3863, 3869, 3877,
257
+ 3881, 3889, 3893, 3901, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3937, 3943, 3947, 3953, 3959, 3961, 3967, 3973, 3977, 3979, 3989, 4001, 4003,
258
+ 4007, 4009, 4013, 4019, 4021, 4027, 4031, 4033, 4049, 4051, 4057, 4061, 4063, 4073, 4079, 4087, 4091, 4093, 4097, 4099, 4111, 4117, 4127, 4129,
259
+ 4133, 4139, 4141, 4153, 4157, 4159, 4163, 4171, 4177, 4181, 4183, 4187, 4189, 4201, 4211, 4217, 4219, 4223, 4229, 4231, 4237, 4241, 4243, 4247,
260
+ 4253, 4259, 4261, 4267, 4271, 4273, 4283, 4289, 4297, 4307, 4309, 4313, 4321, 4327, 4331, 4337, 4339, 4343, 4349, 4351, 4357, 4363, 4369, 4373,
261
+ 4379, 4387, 4391, 4393, 4397, 4399, 4409, 4421, 4423, 4427, 4429, 4439, 4441, 4447, 4451, 4453, 4457, 4463, 4469, 4471, 4481, 4483, 4489, 4493,
262
+ 4507, 4513, 4517, 4519, 4523, 4531, 4541, 4547, 4549, 4553, 4559, 4561, 4567, 4573, 4577, 4579, 4583, 4591, 4597, 4601, 4603, 4607, 4619, 4621,
263
+ 4633, 4637, 4639, 4643, 4649, 4651, 4657, 4661, 4663, 4673, 4679, 4681, 4687, 4691, 4699, 4703, 4709, 4717, 4721, 4723, 4727, 4729, 4733, 4747,
264
+ 4751, 4757, 4759, 4769, 4777, 4783, 4787, 4789, 4793, 4799, 4801, 4811, 4813, 4817, 4819, 4831, 4841, 4843, 4847, 4853, 4859, 4861, 4867, 4871,
265
+ 4877, 4883, 4889, 4891, 4897, 4903, 4909, 4913, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4981, 4987, 4993, 4997, 4999, 5003,
266
+ 5009, 5011, 5017, 5021, 5023, 5029, 5039, 5041, 5051, 5053, 5059, 5063, 5069, 5077, 5081, 5087, 5099, 5101, 5107, 5111, 5113, 5119, 5123, 5129,
267
+ 5141, 5143, 5147, 5149, 5153, 5167, 5171, 5177, 5179, 5183, 5189, 5191, 5197, 5207, 5209, 5219, 5221, 5227, 5231, 5233, 5237, 5249, 5251, 5261,
268
+ 5263, 5267, 5273, 5279, 5281, 5287, 5293, 5297, 5303, 5309, 5311, 5321, 5323, 5329, 5333, 5339, 5347, 5351, 5353, 5359, 5363, 5371, 5377, 5381,
269
+ 5387, 5389, 5393, 5399, 5407, 5413, 5417, 5419, 5429, 5431, 5437, 5441, 5443, 5449, 5459, 5461, 5471, 5477, 5479, 5483, 5491, 5497, 5501, 5503,
270
+ 5507, 5513, 5519, 5521, 5527, 5531, 5539, 5543, 5549, 5557, 5561, 5563, 5567, 5569, 5573, 5581, 5587, 5591, 5597, 5609, 5611, 5617, 5623, 5627,
271
+ 5633, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5671, 5683, 5689, 5693, 5699, 5701, 5711, 5713, 5717, 5723, 5729, 5737, 5741, 5743, 5749,
272
+ 5767, 5771, 5773, 5777, 5779, 5783, 5791, 5801, 5807, 5809, 5813, 5821, 5827, 5833, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881,
273
+ 5891, 5893, 5897, 5899, 5903, 5909, 5911, 5917, 5921, 5923, 5927, 5933, 5939, 5947, 5953, 5959, 5963, 5969, 5977, 5981, 5983, 5987, 5989, 6001,
274
+ 6007, 6011, 6023, 6029, 6031, 6037, 6043, 6047, 6049, 6053, 6059, 6067, 6073, 6077, 6079, 6089, 6091, 6101, 6103, 6107, 6109, 6113, 6119, 6121,
275
+ 6131, 6133, 6137, 6143, 6151, 6157, 6161, 6163, 6169, 6173, 6179, 6187, 6191, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6233, 6239, 6241, 6247,
276
+ 6257, 6263, 6269, 6271, 6277, 6283, 6287, 6289, 6299, 6301, 6311, 6313, 6317, 6319, 6323, 6329, 6337, 6341, 6343, 6353, 6359, 6361, 6367, 6371,
277
+ 6373, 6379, 6389, 6397, 6401, 6403, 6407, 6421, 6427, 6431, 6437, 6439, 6443, 6449, 6451, 6463, 6467, 6469, 6473, 6481, 6491, 6493, 6497, 6499,
278
+ 6509, 6511, 6521, 6527, 6529, 6533, 6541, 6547, 6551, 6553, 6557, 6563, 6569, 6571, 6577, 6581, 6583, 6593, 6599, 6607, 6613, 6619, 6623, 6631,
279
+ 6637, 6641, 6647, 6649, 6653, 6659, 6661, 6667, 6673, 6679, 6683, 6689, 6691, 6697, 6701, 6703, 6707, 6709, 6719, 6731, 6733, 6737, 6739, 6749,
280
+ 6751, 6757, 6761, 6763, 6767, 6779, 6781, 6791, 6793, 6803, 6817, 6821, 6823, 6827, 6829, 6833, 6841, 6847, 6857, 6859, 6863, 6869, 6871, 6883,
281
+ 6887, 6889, 6893, 6899, 6901, 6907, 6911, 6913, 6917, 6931, 6943, 6947, 6949, 6953, 6959, 6961, 6967, 6971, 6973, 6977, 6983, 6989, 6991, 6997,
282
+ 7001, 7003, 7009, 7013, 7019, 7027, 7031, 7037, 7039, 7043, 7057, 7061, 7067, 7069, 7079, 7081, 7087, 7093, 7097, 7099, 7103, 7109, 7121, 7123,
283
+ 7127, 7129, 7141, 7151, 7153, 7157, 7159, 7169, 7171, 7177, 7181, 7187, 7193, 7199, 7201, 7207, 7211, 7213, 7219, 7223, 7229, 7237, 7243, 7247,
284
+ 7253, 7261, 7277, 7279, 7283, 7289, 7291, 7297, 7303, 7307, 7309, 7313, 7321, 7327, 7331, 7333, 7339, 7349, 7351, 7361, 7363, 7367, 7369, 7373,
285
+ 7379, 7387, 7391, 7393, 7409, 7411, 7417, 7421, 7429, 7433, 7439, 7451, 7453, 7457, 7459, 7463, 7471, 7477, 7481, 7487, 7489, 7493, 7499, 7507,
286
+ 7517, 7519, 7523, 7529, 7531, 7537, 7541, 7543, 7547, 7549, 7559, 7561, 7571, 7573, 7577, 7583, 7589, 7591, 7597, 7603, 7607, 7613, 7619, 7621,
287
+ 7627, 7633, 7639, 7643, 7649, 7661, 7663, 7669, 7673, 7681, 7687, 7691, 7697, 7699, 7703, 7717, 7723, 7727, 7729, 7739, 7741, 7747, 7751, 7753,
288
+ 7757, 7759, 7769, 7771, 7781, 7783, 7789, 7793, 7801, 7807, 7811, 7817, 7823, 7829, 7831, 7837, 7841, 7849, 7853, 7859, 7867, 7871, 7873, 7877,
289
+ 7879, 7883, 7897, 7901, 7907, 7913, 7919, 7921, 7927, 7933, 7937, 7939, 7949, 7951, 7957, 7961, 7963, 7967, 7979, 7981, 7991, 7993, 7999, 8003,
290
+ 8009, 8011, 8017, 8023, 8027, 8033, 8039, 8051, 8053, 8059, 8069, 8077, 8081, 8083, 8087, 8089, 8093, 8101, 8111, 8117, 8119, 8123, 8131, 8137,
291
+ 8143, 8147, 8149, 8153, 8159, 8161, 8167, 8171, 8179, 8189, 8191, 8201, 8207, 8209, 8213, 8219, 8221, 8227, 8231, 8233, 8237, 8243, 8249, 8251,
292
+ 8257, 8263, 8269, 8273, 8279, 8287, 8291, 8293, 8297, 8299, 8303, 8311, 8317, 8321, 8329, 8339, 8341, 8347, 8353, 8357, 8363, 8369, 8377, 8381,
293
+ 8383, 8387, 8389, 8399, 8401, 8413, 8417, 8419, 8423, 8429, 8431, 8441, 8443, 8447, 8453, 8461, 8467, 8471, 8473, 8479, 8483, 8497, 8501, 8507,
294
+ 8509, 8513, 8521, 8527, 8531, 8537, 8539, 8543, 8549, 8551, 8557, 8563, 8573, 8579, 8581, 8587, 8597, 8599, 8609, 8611, 8621, 8623, 8627, 8629,
295
+ 8633, 8639, 8641, 8647, 8651, 8653, 8663, 8669, 8677, 8681, 8683, 8689, 8693, 8699, 8707, 8711, 8713, 8717, 8719, 8731, 8737, 8741, 8747, 8753,
296
+ 8759, 8761, 8773, 8777, 8779, 8783, 8791, 8797, 8803, 8807, 8809, 8819, 8821, 8831, 8837, 8839, 8843, 8849, 8851, 8857, 8861, 8863, 8867, 8873,
297
+ 8881, 8887, 8891, 8893, 8903, 8909, 8917, 8923, 8927, 8929, 8933, 8941, 8947, 8951, 8959, 8963, 8969, 8971, 8977, 8989, 8993, 8999, 9001, 9007,
298
+ 9011, 9013, 9017, 9019, 9029, 9041, 9043, 9047, 9049, 9059, 9067, 9071, 9073, 9077, 9083, 9089, 9091, 9101, 9103, 9109, 9127, 9131, 9133, 9137,
299
+ 9143, 9151, 9157, 9161, 9167, 9169, 9173, 9179, 9181, 9187, 9193, 9197, 9199, 9203, 9209, 9211, 9221, 9223, 9227, 9239, 9241, 9253, 9257, 9259,
300
+ 9263, 9271, 9277, 9281, 9283, 9287, 9293, 9299, 9301, 9307, 9311, 9313, 9319, 9323, 9329, 9337, 9341, 9343, 9349, 9353, 9367, 9371, 9377, 9379,
301
+ 9389, 9391, 9397, 9403, 9407, 9409, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9469, 9473, 9479, 9481, 9487, 9491, 9497, 9509,
302
+ 9511, 9517, 9521, 9523, 9533, 9539, 9547, 9551, 9553, 9557, 9563, 9571, 9577, 9587, 9589, 9593, 9599, 9601, 9613, 9617, 9619, 9623, 9629, 9631,
303
+ 9637, 9641, 9643, 9649, 9661, 9671, 9673, 9677, 9679, 9683, 9689, 9697, 9701, 9703, 9707, 9719, 9721, 9727, 9731, 9733, 9739, 9743, 9749, 9761,
304
+ 9767, 9769, 9773, 9781, 9787, 9791, 9797, 9799, 9803, 9809, 9811, 9817, 9827, 9829, 9833, 9839, 9847, 9851, 9853, 9857, 9859, 9869, 9871, 9881,
305
+ 9883, 9887, 9899, 9901, 9907, 9913, 9917, 9923, 9929, 9931, 9937, 9941, 9943, 9949, 9953, 9959, 9967, 9973, 9979, 9983, 9991, 10001, 10007, 10009,
306
+ 10013, 10019, 10027, 10033, 10037, 10039, 10051, 10057, 10061, 10063, 10067, 10069, 10079, 10081, 10091, 10093, 10097, 10099, 10103, 10111, 10117, 10121, 10123, 10133,
307
+ 10139, 10141, 10147, 10151, 10159, 10163, 10169, 10177, 10181, 10183, 10187, 10189, 10193, 10201, 10207, 10211, 10217, 10223, 10229, 10237, 10243, 10247, 10249, 10253,
308
+ 10259, 10261, 10267, 10271, 10273, 10277, 10279, 10289, 10291, 10301, 10303, 10313, 10319, 10321, 10327, 10331, 10333, 10337, 10343, 10349, 10357, 10363, 10369, 10379,
309
+ 10391, 10393, 10397, 10399, 10403, 10411, 10421, 10427, 10429, 10433, 10441, 10447, 10453, 10457, 10459, 10463, 10469, 10471, 10477, 10481, 10487, 10489, 10499, 10501,
310
+ 10511, 10513, 10519, 10523, 10529, 10531, 10537, 10541, 10547, 10553, 10559, 10561, 10567, 10573, 10579, 10583, 10589, 10597, 10601, 10603, 10607, 10609, 10613, 10627,
311
+ 10631, 10639, 10643, 10649, 10651, 10657, 10663, 10667, 10669, 10679, 10687, 10691, 10693, 10697, 10709, 10711, 10721, 10723, 10727, 10729, 10733, 10739, 10741, 10753,
312
+ 10757, 10763, 10771, 10781, 10783, 10789, 10793, 10799, 10807, 10811, 10817, 10819, 10823, 10831, 10837, 10841, 10847, 10849, 10853, 10859, 10861, 10867, 10873, 10877,
313
+ 10883, 10889, 10891, 10897, 10903, 10909, 10919, 10921, 10931, 10937, 10939, 10943, 10949, 10951, 10957, 10961, 10963, 10973, 10979, 10981, 10987, 10991, 10993, 10999,
314
+ 11003, 11009, 11017, 11021, 11023, 11027, 11029, 11041, 11047, 11051, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11101, 11107, 11111, 11113, 11117, 11119, 11129,
315
+ 11131, 11147, 11149, 11153, 11159, 11161, 11171, 11173, 11177, 11183, 11189, 11191, 11197, 11201, 11203, 11213, 11227, 11233, 11237, 11239, 11243, 11251, 11257, 11261,
316
+ 11267, 11269, 11273, 11279, 11281, 11287, 11293, 11299, 11303, 11309, 11311, 11317, 11321, 11327, 11329, 11339, 11351, 11353, 11357, 11359, 11369, 11371, 11377, 11381,
317
+ 11383, 11387, 11393, 11399, 11411, 11413, 11419, 11423, 11437, 11441, 11443, 11447, 11449, 11461, 11467, 11471, 11477, 11483, 11489, 11491, 11497, 11503, 11507, 11509,
318
+ 11513, 11519, 11521, 11527, 11533, 11537, 11549, 11551, 11563, 11567, 11569, 11573, 11579, 11581, 11587, 11591, 11593, 11597, 11603, 11611, 11617, 11621, 11623, 11629,
319
+ 11633, 11639, 11647, 11651, 11653, 11657, 11659, 11663, 11677, 11681, 11689, 11699, 11701, 11707, 11717, 11719, 11723, 11729, 11731, 11741, 11743, 11747, 11749, 11761,
320
+ 11771, 11773, 11777, 11779, 11783, 11789, 11797, 11801, 11807, 11813, 11819, 11821, 11827, 11831, 11833, 11839, 11849, 11857, 11861, 11863, 11867, 11873, 11881, 11887,
321
+ 11897, 11899, 11903, 11909, 11911, 11917, 11923, 11927, 11929, 11933, 11939, 11941, 11951, 11953, 11959, 11969, 11971, 11981, 11983, 11987, 11989, 11993, 12007, 12011,
322
+ 12013, 12017, 12029, 12031, 12037, 12041, 12043, 12049, 12053, 12059, 12071, 12073, 12079, 12083, 12091, 12097, 12101, 12107, 12109, 12113, 12119, 12121, 12127, 12137,
323
+ 12139, 12143, 12149, 12151, 12157, 12161, 12163, 12167, 12169, 12179, 12191, 12193, 12197, 12203, 12209, 12211, 12217, 12223, 12227, 12239, 12241, 12247, 12251, 12253,
324
+ 12263, 12269, 12277, 12281, 12283, 12289, 12293, 12301, 12307, 12317, 12319, 12323, 12329, 12343, 12347, 12349, 12359, 12361, 12367, 12371, 12373, 12377, 12379, 12391,
325
+ 12401, 12403, 12407, 12409, 12413, 12421, 12427, 12431, 12433, 12437, 12443, 12449, 12451, 12457, 12461, 12469, 12473, 12479, 12487, 12491, 12497, 12499, 12503, 12511,
326
+ 12517, 12521, 12527, 12533, 12539, 12541, 12547, 12553, 12557, 12559, 12563, 12569, 12577, 12581, 12583, 12587, 12589, 12599, 12601, 12611, 12613, 12619, 12629, 12631,
327
+ 12637, 12641, 12643, 12647, 12653, 12659, 12667, 12671, 12673, 12679, 12689, 12697, 12703, 12707, 12709, 12713, 12721, 12731, 12737, 12739, 12743, 12751, 12757, 12763,
328
+ 12767, 12769, 12773, 12781, 12787, 12791, 12797, 12799, 12809, 12811, 12821, 12823, 12827, 12829, 12833, 12839, 12841, 12847, 12851, 12853, 12863, 12869, 12871, 12877,
329
+ 12889, 12893, 12899, 12907, 12911, 12913, 12917, 12919, 12923, 12931, 12937, 12941, 12949, 12953, 12959, 12967, 12973, 12977, 12979, 12983, 12989, 12997, 13001, 13003,
330
+ 13007, 13009, 13019, 13021, 13031, 13033, 13037, 13043, 13049, 13051, 13061, 13063, 13067, 13073, 13081, 13087, 13093, 13099, 13103, 13109, 13121, 13127, 13129, 13133,
331
+ 13141, 13147, 13151, 13157, 13159, 13163, 13171, 13177, 13183, 13187, 13193, 13199, 13201, 13207, 13213, 13217, 13219, 13229, 13231, 13241, 13243, 13249, 13253, 13259,
332
+ 13261, 13267, 13271, 13283, 13289, 13291, 13297, 13301, 13303, 13309, 13313, 13319, 13327, 13331, 13333, 13337, 13339, 13357, 13361, 13367, 13369, 13373, 13379, 13381,
333
+ 13393, 13397, 13399, 13411, 13417, 13421, 13423, 13427, 13439, 13441, 13451, 13457, 13459, 13463, 13469, 13471, 13477, 13483, 13487, 13493, 13499, 13501, 13511, 13513,
334
+ 13523, 13529, 13537, 13543, 13547, 13549, 13553, 13561, 13567, 13571, 13577, 13579, 13583, 13589, 13591, 13597, 13603, 13609, 13613, 13619, 13621, 13627, 13631, 13633,
335
+ 13639, 13649, 13661, 13667, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13703, 13709, 13711, 13721, 13723, 13729, 13733, 13747, 13751, 13753, 13757, 13759, 13763,
336
+ 13771, 13777, 13781, 13787, 13789, 13799, 13801, 13807, 13813, 13817, 13823, 13829, 13831, 13837, 13841, 13843, 13847, 13859, 13861, 13873, 13877, 13879, 13883, 13889,
337
+ 13891, 13901, 13903, 13907, 13913, 13919, 13921, 13927, 13931, 13933, 13939, 13943, 13957, 13961, 13963, 13967, 13969, 13973, 13987, 13991, 13997, 13999, 14009, 14011,
338
+ 14017, 14023, 14029, 14033, 14039, 14041, 14051, 14057, 14059, 14071, 14081, 14083, 14087, 14089, 14093, 14099, 14101, 14107, 14111, 14117, 14123, 14129, 14137, 14141,
339
+ 14143, 14149, 14153, 14159, 14167, 14171, 14173, 14177, 14191, 14197, 14207, 14213, 14219, 14221, 14227, 14233, 14237, 14239, 14243, 14249, 14251, 14257, 14263, 14269,
340
+ 14279, 14281, 14291, 14293, 14297, 14299, 14303, 14309, 14317, 14321, 14323, 14327, 14341, 14347, 14351, 14353, 14359, 14363, 14369, 14381, 14383, 14387, 14389, 14393,
341
+ 14401, 14407, 14411, 14419, 14423, 14429, 14431, 14437, 14447, 14449, 14453, 14459, 14461, 14467, 14471, 14473, 14477, 14479, 14489, 14491, 14501, 14503, 14507, 14513,
342
+ 14519, 14527, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14569, 14579, 14587, 14591, 14593, 14603, 14611, 14617, 14621, 14627, 14629, 14633, 14639, 14647,
343
+ 14653, 14657, 14659, 14669, 14671, 14681, 14683, 14687, 14689, 14699, 14701, 14711, 14713, 14717, 14719, 14723, 14731, 14737, 14741, 14743, 14747, 14753, 14759, 14761,
344
+ 14767, 14771, 14779, 14783, 14789, 14797, 14801, 14803, 14809, 14813, 14821, 14827, 14831, 14837, 14843, 14849, 14851, 14857, 14863, 14867, 14869, 14873, 14879, 14881,
345
+ 14887, 14891, 14893, 14897, 14899, 14909, 14921, 14923, 14929, 14933, 14939, 14941, 14947, 14951, 14953, 14957, 14969, 14977, 14981, 14983, 14999, 15007, 15011, 15013,
346
+ 15017, 15019, 15023, 15031, 15047, 15049, 15053, 15061, 15073, 15077, 15079, 15083, 15089, 15091, 15097, 15101, 15107, 15109, 15121, 15131, 15133, 15137, 15139, 15143,
347
+ 15149, 15151, 15157, 15161, 15163, 15167, 15173, 15179, 15181, 15187, 15193, 15199, 15203, 15209, 15217, 15221, 15227, 15229, 15233, 15241, 15247, 15251, 15259, 15263,
348
+ 15269, 15271, 15277, 15283, 15287, 15289, 15293, 15299, 15307, 15311, 15313, 15317, 15319, 15329, 15331, 15341, 15343, 15347, 15349, 15359, 15361, 15371, 15373, 15377,
349
+ 15383, 15391, 15397, 15401, 15403, 15409, 15413, 15419, 15427, 15437, 15439, 15443, 15451, 15461, 15467, 15469, 15473, 15479, 15481, 15487, 15493, 15497, 15503, 15511,
350
+ 15517, 15523, 15527, 15529, 15539, 15541, 15551, 15553, 15557, 15559, 15563, 15569, 15571, 15577, 15581, 15583, 15593, 15599, 15601, 15607, 15611, 15619, 15623, 15629,
351
+ 15637, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15677, 15679, 15683, 15689, 15703, 15707, 15709, 15713, 15721, 15727, 15731, 15733, 15737, 15739, 15749, 15751,
352
+ 15761, 15767, 15773, 15779, 15781, 15787, 15791, 15793, 15797, 15803, 15809, 15811, 15817, 15823, 15833, 15839, 15853, 15857, 15859, 15863, 15871, 15877, 15881, 15887,
353
+ 15889, 15893, 15901, 15907, 15913, 15919, 15923, 15929, 15931, 15937, 15941, 15943, 15947, 15949, 15959, 15971, 15973, 15979, 15989, 15991, 15997, 16001, 16007, 16013,
354
+ 16019, 16021, 16031, 16033, 16039, 16043, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16099, 16103, 16109, 16111, 16117, 16123, 16127, 16129, 16139,
355
+ 16141, 16147, 16151, 16153, 16157, 16169, 16171, 16183, 16187, 16189, 16193, 16199, 16201, 16207, 16213, 16217, 16223, 16229, 16231, 16241, 16243, 16249, 16253, 16259,
356
+ 16267, 16271, 16273, 16277, 16279, 16283, 16297, 16301, 16307, 16309, 16319, 16321, 16327, 16333, 16337, 16339, 16343, 16349, 16351, 16361, 16363, 16369, 16381, 16391,
357
+ 16397, 16399, 16403, 16409, 16411, 16417, 16421, 16427, 16433, 16439, 16441, 16447, 16451, 16453, 16459, 16463, 16469, 16477, 16481, 16483, 16487, 16493, 16501, 16507,
358
+ 16517, 16519, 16529, 16531, 16537, 16543, 16547, 16553, 16559, 16561, 16567, 16571, 16573, 16579, 16589, 16591, 16603, 16607, 16609, 16613, 16619, 16631, 16633, 16637,
359
+ 16649, 16651, 16657, 16661, 16663, 16669, 16673, 16691, 16693, 16697, 16699, 16703, 16711, 16717, 16721, 16727, 16729, 16733, 16739, 16741, 16747, 16759, 16763, 16769,
360
+ 16771, 16777, 16781, 16787, 16789, 16799, 16801, 16811, 16813, 16817, 16823, 16829, 16831, 16837, 16843, 16847, 16853, 16859, 16867, 16871, 16873, 16879, 16883, 16889,
361
+ 16897, 16901, 16903, 16909, 16921, 16927, 16931, 16937, 16943, 16949, 16957, 16963, 16967, 16969, 16979, 16981, 16987, 16993, 16997, 16999, 17009, 17011, 17021, 17023,
362
+ 17027, 17029, 17033, 17041, 17047, 17051, 17053, 17057, 17063, 17071, 17077, 17081, 17089, 17093, 17099, 17107, 17111, 17113, 17117, 17119, 17123, 17131, 17137, 17141,
363
+ 17153, 17159, 17161, 17167, 17177, 17179, 17183, 17189, 17191, 17197, 17201, 17203, 17207, 17209, 17219, 17221, 17231, 17233, 17239, 17243, 17249, 17257, 17261, 17263,
364
+ 17267, 17273, 17279, 17287, 17291, 17293, 17299, 17309, 17317, 17321, 17323, 17327, 17333, 17341, 17351, 17357, 17359, 17363, 17371, 17377, 17383, 17387, 17389, 17393,
365
+ 17399, 17401, 17411, 17417, 17419, 17429, 17431, 17441, 17443, 17447, 17449, 17453, 17461, 17467, 17471, 17473, 17477, 17483, 17489, 17491, 17497, 17503, 17509, 17513,
366
+ 17519, 17527, 17531, 17533, 17539, 17543, 17551, 17557, 17561, 17569, 17573, 17579, 17581, 17587, 17593, 17597, 17599, 17603, 17609, 17617, 17621, 17623, 17627, 17629,
367
+ 17639, 17651, 17653, 17657, 17659, 17663, 17669, 17671, 17681, 17683, 17687, 17701, 17707, 17711, 17713, 17723, 17729, 17737, 17741, 17747, 17749, 17753, 17761, 17767,
368
+ 17777, 17779, 17783, 17789, 17791, 17803, 17807, 17813, 17819, 17821, 17827, 17833, 17837, 17839, 17851, 17861, 17863, 17867, 17869, 17873, 17879, 17881, 17887, 17891,
369
+ 17893, 17903, 17909, 17911, 17917, 17921, 17923, 17929, 17933, 17939, 17947, 17951, 17957, 17959, 17971, 17977, 17981, 17987, 17989, 17993, 17999, 18001, 18013, 18017,
370
+ 18019, 18023, 18037, 18041, 18043, 18047, 18049, 18059, 18061, 18071, 18077, 18079, 18089, 18091, 18097, 18101, 18103, 18107, 18113, 18119, 18121, 18127, 18131, 18133,
371
+ 18143, 18149, 18157, 18163, 18167, 18169, 18173, 18181, 18191, 18197, 18199, 18203, 18209, 18211, 18217, 18223, 18229, 18233, 18241, 18247, 18251, 18253, 18257, 18259,
372
+ 18269, 18281, 18283, 18287, 18289, 18299, 18301, 18307, 18311, 18313, 18323, 18329, 18331, 18341, 18349, 18353, 18367, 18371, 18373, 18377, 18379, 18383, 18391, 18397,
373
+ 18401, 18407, 18409, 18413, 18419, 18427, 18433, 18437, 18439, 18443, 18449, 18451, 18457, 18461, 18463, 18467, 18479, 18481, 18493, 18497, 18503, 18509, 18511, 18517,
374
+ 18521, 18523, 18527, 18533, 18539, 18541, 18547, 18553, 18559, 18563, 18569, 18581, 18583, 18587, 18589, 18593, 18607, 18611, 18617, 18619, 18631, 18637, 18643, 18647,
375
+ 18649, 18653, 18659, 18661, 18671, 18673, 18677, 18679, 18691, 18701, 18703, 18709, 18713, 18719, 18721, 18727, 18731, 18737, 18743, 18749, 18751, 18757, 18761, 18763,
376
+ 18769, 18773, 18779, 18787, 18791, 18793, 18797, 18803, 18817, 18827, 18829, 18833, 18839, 18841, 18847, 18853, 18857, 18859, 18869, 18871, 18877, 18881, 18883, 18899,
377
+ 18901, 18911, 18913, 18917, 18919, 18923, 18929, 18937, 18943, 18947, 18959, 18961, 18971, 18973, 18979, 18983, 18989, 19001, 19003, 19007, 19009, 19013, 19021, 19027,
378
+ 19031, 19037, 19039, 19043, 19049, 19051, 19057, 19067, 19069, 19073, 19079, 19081, 19087, 19091, 19093, 19099, 19109, 19111, 19121, 19127, 19133, 19139, 19141, 19147,
379
+ 19153, 19157, 19163, 19169, 19171, 19177, 19181, 19183, 19189, 19193, 19199, 19207, 19211, 19213, 19219, 19223, 19231, 19237, 19241, 19247, 19249, 19259, 19267, 19273,
380
+ 19277, 19289, 19291, 19297, 19301, 19303, 19307, 19309, 19319, 19321, 19333, 19337, 19339, 19343, 19351, 19361, 19363, 19367, 19373, 19379, 19381, 19387, 19391, 19399,
381
+ 19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19451, 19457, 19463, 19469, 19471, 19477, 19483, 19489, 19493, 19499, 19501, 19507, 19511, 19517, 19519,
382
+ 19529, 19531, 19541, 19543, 19549, 19553, 19559, 19561, 19567, 19571, 19573, 19577, 19583, 19589, 19597, 19601, 19603, 19609, 19619, 19627, 19631, 19633, 19637, 19639,
383
+ 19651, 19661, 19667, 19673, 19681, 19687, 19693, 19697, 19699, 19703, 19709, 19711, 19717, 19727, 19729, 19739, 19741, 19751, 19753, 19757, 19759, 19763, 19769, 19771,
384
+ 19777, 19781, 19783, 19787, 19793, 19801, 19807, 19813, 19819, 19823, 19829, 19837, 19841, 19843, 19847, 19849, 19853, 19861, 19867, 19871, 19879, 19883, 19889, 19891,
385
+ 19897, 19907, 19909, 19913, 19919, 19927, 19931, 19933, 19937, 19939, 19949, 19951, 19961, 19963, 19967, 19969, 19973, 19979, 19991, 19993, 19997, 20003, 20011, 20017,
386
+ 20021, 20023, 20029, 20039, 20047, 20051, 20057, 20063, 20071, 20077, 20081, 20087, 20089, 20093, 20099, 20101, 20107, 20113, 20117, 20123, 20129, 20131, 20143, 20147,
387
+ 20149, 20159, 20161, 20171, 20173, 20177, 20179, 20183, 20191, 20197, 20201, 20203, 20213, 20219, 20221, 20227, 20231, 20233, 20239, 20243, 20249, 20257, 20261, 20263,
388
+ 20269, 20281, 20287, 20291, 20297, 20299, 20303, 20309, 20311, 20323, 20327, 20329, 20333, 20341, 20347, 20351, 20353, 20357, 20359, 20369, 20381, 20387, 20389, 20393,
389
+ 20399, 20401, 20407, 20411, 20413, 20417, 20429, 20431, 20437, 20441, 20443, 20453, 20459, 20467, 20473, 20477, 20479, 20483, 20491, 20497, 20507, 20509, 20513, 20519,
390
+ 20521, 20533, 20539, 20543, 20549, 20551, 20557, 20561, 20563, 20567, 20569, 20591, 20593, 20597, 20599, 20609, 20611, 20617, 20621, 20623, 20627, 20633, 20639, 20641,
391
+ 20651, 20653, 20659, 20663, 20677, 20681, 20687, 20689, 20693, 20701, 20707, 20711, 20717, 20719, 20723, 20729, 20731, 20737, 20743, 20747, 20749, 20753, 20759, 20767,
392
+ 20771, 20773, 20777, 20789, 20791, 20803, 20807, 20809, 20819, 20821, 20827, 20831, 20833, 20837, 20843, 20849, 20851, 20857, 20861, 20863, 20869, 20873, 20879, 20887,
393
+ 20893, 20897, 20899, 20903, 20921, 20927, 20929, 20939, 20941, 20947, 20953, 20957, 20959, 20963, 20971, 20981, 20983, 20987, 20989, 21001, 21011, 21013, 21017, 21019,
394
+ 21023, 21029, 21031, 21037, 21041, 21053, 21059, 21061, 21067, 21071, 21079, 21083, 21089, 21097, 21101, 21103, 21107, 21113, 21121, 21127, 21137, 21139, 21143, 21149,
395
+ 21157, 21163, 21167, 21169, 21173, 21179, 21181, 21187, 21191, 21193, 21199, 21209, 21211, 21221, 21223, 21227, 21233, 21239, 21247, 21251, 21253, 21257, 21269, 21271,
396
+ 21277, 21283, 21289, 21293, 21299, 21311, 21313, 21317, 21319, 21323, 21331, 21337, 21341, 21347, 21349, 21353, 21361, 21367, 21377, 21379, 21383, 21389, 21391, 21397,
397
+ 21401, 21403, 21407, 21409, 21419, 21421, 21431, 21433, 21443, 21449, 21451, 21457, 21467, 21473, 21479, 21481, 21487, 21491, 21493, 21499, 21503, 21509, 21517, 21521,
398
+ 21523, 21529, 21533, 21547, 21551, 21557, 21559, 21563, 21569, 21577, 21583, 21587, 21589, 21599, 21601, 21607, 21611, 21613, 21617, 21629, 21631, 21641, 21643, 21647,
399
+ 21649, 21653, 21661, 21667, 21673, 21677, 21683, 21689, 21691, 21701, 21709, 21713, 21719, 21727, 21731, 21733, 21737, 21739, 21743, 21751, 21757, 21761, 21767, 21773,
400
+ 21779, 21781, 21787, 21793, 21797, 21799, 21803, 21809, 21811, 21817, 21821, 21823, 21829, 21839, 21841, 21851, 21859, 21863, 21869, 21871, 21877, 21881, 21883, 21887,
401
+ 21893, 21899, 21907, 21911, 21913, 21919, 21929, 21937, 21941, 21943, 21947, 21949, 21953, 21961, 21971, 21977, 21979, 21991, 21997, 22003, 22007, 22013, 22019, 22021,
402
+ 22027, 22031, 22037, 22039, 22049, 22051, 22063, 22067, 22069, 22073, 22079, 22081, 22091, 22093, 22097, 22103, 22109, 22111, 22117, 22123, 22129, 22133, 22147, 22151,
403
+ 22153, 22157, 22159, 22163, 22171, 22177, 22181, 22189, 22193, 22199, 22201, 22207, 22213, 22219, 22223, 22229, 22237, 22241, 22247, 22249, 22259, 22261, 22271, 22273,
404
+ 22277, 22279, 22283, 22289, 22291, 22301, 22303, 22307, 22313, 22327, 22331, 22333, 22339, 22343, 22349, 22357, 22361, 22367, 22369, 22381, 22387, 22391, 22397, 22403,
405
+ 22409, 22411, 22417, 22423, 22427, 22433, 22439, 22441, 22447, 22453, 22457, 22459, 22469, 22471, 22481, 22483, 22487, 22489, 22493, 22499, 22501, 22507, 22511, 22513,
406
+ 22523, 22531, 22537, 22541, 22543, 22549, 22553, 22559, 22567, 22571, 22573, 22577, 22579, 22591, 22597, 22601, 22609, 22613, 22619, 22621, 22637, 22639, 22643, 22651,
407
+ 22657, 22661, 22663, 22667, 22669, 22679, 22681, 22691, 22697, 22699, 22703, 22709, 22717, 22721, 22723, 22727, 22733, 22739, 22741, 22747, 22751, 22753, 22769, 22777,
408
+ 22783, 22787, 22793, 22801, 22807, 22811, 22817, 22819, 22823, 22829, 22831, 22837, 22843, 22849, 22853, 22859, 22861, 22871, 22873, 22877, 22879, 22889, 22901, 22903,
409
+ 22907, 22909, 22921, 22927, 22931, 22933, 22937, 22943, 22949, 22951, 22961, 22963, 22969, 22973, 22987, 22991, 22993, 22999, 23003, 23011, 23017, 23021, 23027, 23029,
410
+ 23033, 23039, 23041, 23047, 23053, 23057, 23059, 23063, 23069, 23071, 23077, 23081, 23083, 23087, 23099, 23113, 23117, 23119, 23123, 23129, 23131, 23137, 23141, 23143,
411
+ 23147, 23159, 23161, 23167, 23171, 23173, 23183, 23189, 23197, 23201, 23203, 23207, 23209, 23213, 23227, 23237, 23239, 23249, 23251, 23263, 23267, 23269, 23273, 23279,
412
+ 23281, 23291, 23293, 23297, 23299, 23311, 23321, 23323, 23327, 23329, 23333, 23339, 23341, 23347, 23351, 23357, 23363, 23369, 23371, 23377, 23381, 23383, 23389, 23393,
413
+ 23399, 23407, 23411, 23417, 23423, 23431, 23437, 23447, 23449, 23453, 23459, 23461, 23467, 23473, 23477, 23479, 23483, 23489, 23497, 23501, 23503, 23509, 23519, 23521,
414
+ 23531, 23533, 23537, 23539, 23549, 23557, 23561, 23563, 23567, 23579, 23581, 23587, 23591, 23593, 23599, 23603, 23609, 23623, 23627, 23629, 23633, 23641, 23651, 23657,
415
+ 23659, 23663, 23669, 23671, 23677, 23687, 23689, 23693, 23701, 23707, 23711, 23713, 23717, 23719, 23729, 23731, 23741, 23743, 23747, 23753, 23759, 23761, 23767, 23773,
416
+ 23783, 23789, 23791, 23797, 23801, 23809, 23813, 23819, 23827, 23831, 23833, 23839, 23843, 23851, 23857, 23861, 23867, 23869, 23873, 23879, 23887, 23893, 23897, 23899,
417
+ 23909, 23911, 23917, 23921, 23923, 23927, 23929, 23939, 23941, 23951, 23953, 23957, 23963, 23971, 23977, 23981, 23983, 23987, 23993, 23999, 24001, 24007, 24019, 24023,
418
+ 24029, 24041, 24043, 24047, 24049, 24053, 24061, 24067, 24071, 24077, 24083, 24091, 24097, 24103, 24107, 24109, 24113, 24119, 24121, 24127, 24131, 24133, 24137, 24139,
419
+ 24149, 24151, 24161, 24163, 24169, 24173, 24179, 24181, 24187, 24191, 24197, 24203, 24209, 24217, 24221, 24223, 24229, 24239, 24247, 24251, 24253, 24257, 24259, 24263,
420
+ 24281, 24287, 24289, 24293, 24301, 24307, 24313, 24317, 24319, 24329, 24331, 24337, 24341, 24347, 24359, 24361, 24371, 24373, 24377, 24379, 24383, 24389, 24391, 24397,
421
+ 24403, 24407, 24413, 24419, 24421, 24433, 24439, 24443, 24449, 24457, 24461, 24463, 24467, 24469, 24473, 24481, 24487, 24491, 24499, 24503, 24509, 24511, 24517, 24523,
422
+ 24527, 24529, 24533, 24539, 24547, 24551, 24553, 24559, 24569, 24571, 24581, 24587, 24589, 24593, 24599, 24601, 24611, 24613, 24617, 24623, 24631, 24637, 24641, 24643,
423
+ 24649, 24653, 24659, 24667, 24671, 24677, 24679, 24683, 24691, 24697, 24701, 24707, 24709, 24719, 24721, 24727, 24733, 24737, 24743, 24749, 24751, 24757, 24763, 24767,
424
+ 24769, 24779, 24781, 24793, 24797, 24799, 24803, 24809, 24811, 24821, 24823, 24833, 24839, 24841, 24847, 24851, 24853, 24859, 24863, 24877, 24881, 24883, 24887, 24889,
425
+ 24901, 24907, 24911, 24917, 24919, 24923, 24929, 24931, 24943, 24949, 24953, 24961, 24967, 24971, 24977, 24979, 24989, 24991, 25001, 25007, 25009, 25013, 25019, 25021,
426
+ 25027, 25031, 25033, 25037, 25043, 25049, 25057, 25061, 25063, 25073, 25079, 25087, 25093, 25097, 25099, 25111, 25117, 25121, 25127, 25133, 25139, 25141, 25147, 25153,
427
+ 25159, 25163, 25169, 25171, 25177, 25183, 25187, 25189, 25199, 25211, 25213, 25217, 25219, 25229, 25231, 25237, 25241, 25243, 25247, 25253, 25261, 25271, 25273, 25279,
428
+ 25283, 25297, 25301, 25303, 25307, 25309, 25313, 25321, 25327, 25331, 25339, 25343, 25349, 25351, 25357, 25367, 25369, 25373, 25379, 25381, 25387, 25391, 25393, 25397,
429
+ 25409, 25411, 25423, 25427, 25429, 25433, 25439, 25447, 25451, 25453, 25457, 25463, 25469, 25471, 25477, 25481, 25483, 25489, 25499, 25507, 25511, 25513, 25517, 25523,
430
+ 25537, 25541, 25547, 25549, 25559, 25561, 25567, 25573, 25577, 25579, 25583, 25589, 25591, 25601, 25603, 25607, 25609, 25621, 25631, 25633, 25637, 25639, 25643, 25651,
431
+ 25657, 25661, 25667, 25673, 25679, 25681, 25687, 25691, 25693, 25699, 25703, 25709, 25717, 25721, 25723, 25733, 25741, 25747, 25757, 25759, 25763, 25769, 25771, 25777,
432
+ 25783, 25787, 25789, 25793, 25799, 25801, 25807, 25811, 25813, 25819, 25829, 25841, 25843, 25847, 25849, 25853, 25859, 25867, 25871, 25873, 25877, 25889, 25891, 25897,
433
+ 25901, 25903, 25913, 25919, 25931, 25933, 25937, 25939, 25943, 25951, 25957, 25967, 25969, 25973, 25979, 25981, 25997, 25999, 26003, 26009, 26011, 26017, 26021, 26023,
434
+ 26027, 26029, 26041, 26051, 26053, 26057, 26063, 26069, 26071, 26077, 26083, 26087, 26093, 26099, 26101, 26107, 26111, 26113, 26119, 26123, 26129, 26137, 26141, 26149,
435
+ 26153, 26161, 26167, 26171, 26177, 26179, 26183, 26189, 26197, 26203, 26207, 26209, 26219, 26227, 26231, 26233, 26237, 26239, 26249, 26251, 26261, 26263, 26267, 26269,
436
+ 26281, 26287, 26291, 26293, 26297, 26303, 26309, 26311, 26317, 26321, 26329, 26333, 26339, 26347, 26353, 26357, 26359, 26363, 26371, 26381, 26387, 26393, 26399, 26401,
437
+ 26407, 26413, 26417, 26419, 26423, 26431, 26437, 26441, 26443, 26447, 26449, 26459, 26461, 26471, 26473, 26479, 26483, 26489, 26491, 26497, 26501, 26503, 26513, 26519,
438
+ 26527, 26531, 26539, 26549, 26557, 26561, 26563, 26567, 26569, 26573, 26581, 26591, 26597, 26599, 26603, 26617, 26623, 26627, 26629, 26633, 26639, 26641, 26647, 26651,
439
+ 26657, 26659, 26669, 26671, 26681, 26683, 26687, 26693, 26699, 26701, 26707, 26711, 26713, 26717, 26723, 26729, 26731, 26737, 26743, 26749, 26753, 26759, 26771, 26773,
440
+ 26777, 26779, 26783, 26791, 26797, 26801, 26809, 26813, 26821, 26827, 26833, 26837, 26839, 26843, 26849, 26857, 26861, 26863, 26867, 26869, 26879, 26881, 26891, 26893,
441
+ 26899, 26903, 26909, 26911, 26921, 26927, 26933, 26941, 26947, 26951, 26953, 26959, 26963, 26969, 26977, 26981, 26987, 26989, 26993, 27007, 27011, 27017, 27019, 27023,
442
+ 27029, 27031, 27037, 27043, 27047, 27059, 27061, 27067, 27073, 27077, 27089, 27091, 27101, 27103, 27107, 27109, 27113, 27119, 27121, 27127, 27133, 27143, 27149, 27151,
443
+ 27161, 27163, 27169, 27173, 27179, 27187, 27191, 27193, 27197, 27199, 27211, 27217, 27221, 27227, 27229, 27233, 27239, 27241, 27253, 27257, 27259, 27263, 27271, 27277,
444
+ 27281, 27283, 27289, 27299, 27301, 27311, 27317, 27319, 27323, 27329, 27331, 27337, 27341, 27343, 27347, 27353, 27359, 27361, 27367, 27371, 27373, 27383, 27389, 27397,
445
+ 27403, 27407, 27409, 27413, 27421, 27427, 27431, 27437, 27439, 27449, 27451, 27457, 27463, 27473, 27479, 27481, 27487, 27491, 27493, 27497, 27499, 27509, 27523, 27527,
446
+ 27529, 27539, 27541, 27551, 27553, 27557, 27563, 27569, 27571, 27581, 27583, 27589, 27593, 27607, 27611, 27613, 27617, 27619, 27623, 27631, 27637, 27641, 27647, 27649,
447
+ 27653, 27659, 27661, 27667, 27673, 27679, 27683, 27689, 27691, 27697, 27701, 27707, 27719, 27721, 27733, 27737, 27739, 27743, 27749, 27751, 27757, 27761, 27763, 27767,
448
+ 27773, 27779, 27787, 27791, 27793, 27799, 27803, 27809, 27817, 27821, 27823, 27827, 27829, 27847, 27851, 27857, 27869, 27871, 27877, 27883, 27887, 27889, 27893, 27899,
449
+ 27901, 27913, 27917, 27919, 27931, 27941, 27943, 27947, 27949, 27953, 27959, 27961, 27967, 27971, 27977, 27983, 27991, 27997, 28001, 28003, 28009, 28013, 28019, 28027,
450
+ 28031, 28033, 28037, 28043, 28051, 28057, 28069, 28073, 28079, 28081, 28087, 28097, 28099, 28103, 28109, 28111, 28117, 28121, 28123, 28129, 28139, 28141, 28151, 28153,
451
+ 28157, 28159, 28163, 28169, 28177, 28181, 28183, 28187, 28199, 28201, 28207, 28211, 28213, 28219, 28229, 28241, 28243, 28247, 28253, 28261, 28267, 28271, 28277, 28279,
452
+ 28283, 28289, 28291, 28297, 28307, 28309, 28313, 28319, 28321, 28331, 28333, 28337, 28339, 28349, 28351, 28361, 28363, 28367, 28373, 28381, 28387, 28393, 28397, 28403,
453
+ 28409, 28411, 28417, 28421, 28423, 28429, 28433, 28439, 28447, 28451, 28453, 28459, 28463, 28471, 28477, 28481, 28487, 28489, 28493, 28499, 28507, 28513, 28517, 28519,
454
+ 28529, 28531, 28537, 28541, 28543, 28547, 28549, 28559, 28571, 28573, 28577, 28579, 28583, 28591, 28597, 28601, 28603, 28607, 28619, 28621, 28627, 28631, 28643, 28649,
455
+ 28657, 28661, 28663, 28667, 28669, 28673, 28681, 28687, 28697, 28703, 28709, 28711, 28723, 28727, 28729, 28733, 28739, 28741, 28747, 28751, 28753, 28757, 28759, 28771,
456
+ 28781, 28783, 28789, 28793, 28799, 28801, 28807, 28811, 28813, 28817, 28823, 28829, 28837, 28841, 28843, 28849, 28859, 28867, 28871, 28877, 28879, 28883, 28891, 28901,
457
+ 28907, 28909, 28913, 28921, 28927, 28933, 28937, 28939, 28943, 28949, 28957, 28961, 28967, 28969, 28979, 28981, 28991, 28993, 28997, 28999, 29009, 29011, 29017, 29021,
458
+ 29023, 29027, 29033, 29039, 29041, 29047, 29053, 29059, 29063, 29069, 29077, 29083, 29087, 29089, 29093, 29101, 29111, 29119, 29123, 29129, 29131, 29137, 29143, 29147,
459
+ 29149, 29153, 29167, 29171, 29173, 29177, 29179, 29189, 29191, 29201, 29203, 29207, 29209, 29213, 29219, 29221, 29231, 29233, 29243, 29251, 29257, 29261, 29269, 29273,
460
+ 29279, 29287, 29291, 29297, 29299, 29303, 29311, 29317, 29321, 29327, 29329, 29333, 29339, 29347, 29353, 29357, 29363, 29369, 29371, 29377, 29383, 29387, 29389, 29399,
461
+ 29401, 29411, 29413, 29417, 29423, 29429, 29431, 29437, 29441, 29443, 29453, 29459, 29461, 29467, 29473, 29479, 29483, 29489, 29501, 29503, 29507, 29509, 29521, 29527,
462
+ 29531, 29537, 29539, 29543, 29551, 29563, 29567, 29569, 29573, 29581, 29587, 29591, 29593, 29597, 29599, 29609, 29611, 29621, 29629, 29633, 29639, 29641, 29647, 29651,
463
+ 29657, 29663, 29669, 29671, 29677, 29681, 29683, 29693, 29699, 29707, 29713, 29717, 29719, 29723, 29737, 29741, 29747, 29749, 29753, 29759, 29761, 29767, 29773, 29779,
464
+ 29789, 29791, 29797, 29801, 29803, 29807, 29819, 29831, 29833, 29837, 29839, 29849, 29851, 29857, 29863, 29867, 29873, 29879, 29881, 29891, 29893, 29899, 29903, 29917,
465
+ 29921, 29923, 29927, 29929, 29933, 29941, 29947, 29951, 29957, 29959, 29963, 29969, 29971, 29977, 29983, 29987, 29989, 29993, 29999, 30001, 30007, 30011, 30013, 30029
466
+ };
467
+
468
+ // Make this NOT a multiple of 2, 3, 5, 7, 11, or 13.
469
+ size_t forward13(const size_t &p) { return wheel13[p % 5760U] + (p / 5760U) * 30030U; }
470
+
471
+ size_t backward13(const size_t &n) { return std::distance(wheel13, std::lower_bound(wheel13, wheel13 + 5760U, (size_t)(n % 30030U))) + 5760U * (size_t)(n / 30030U) + 1U; }
472
+
473
+ inline BigInteger _forward2(const BigInteger &p) { return (p << 1U) | 1U; }
474
+
475
+ inline BigInteger _backward2(const BigInteger &n) { return n >> 1U; }
476
+
477
+ inline BigInteger _forward3(const BigInteger &p) { return (p << 1U) + (~(~p | 1U)) - 1U; }
478
+
479
+ inline BigInteger _backward3(const BigInteger &n) { return ((~(~n | 1U)) / 3U) + 1U; }
480
+
481
+ BigInteger _forward5(const BigInteger &p) { return wheel5[(size_t)(p & 7U)] + (p >> 3U) * 30U; }
482
+
483
+ BigInteger _backward5(const BigInteger &n) { return std::distance(wheel5, std::lower_bound(wheel5, wheel5 + 8U, (size_t)(n % 30U))) + 8U * (n / 30U) + 1U; }
484
+
485
+ BigInteger _forward7(const BigInteger &p) { return wheel7[(size_t)(p % 48U)] + (p / 48U) * 210U; }
486
+
487
+ BigInteger _backward7(const BigInteger &n) { return std::distance(wheel7, std::lower_bound(wheel7, wheel7 + 48U, n % 210U)) + 48U * (n / 210U) + 1U; }
488
+
489
+ BigInteger _forward11(const BigInteger &p) { return wheel11[(size_t)(p % 480U)] + (p / 480U) * 2310U; }
490
+
491
+ BigInteger _backward11(const BigInteger &n) { return std::distance(wheel11, std::lower_bound(wheel11, wheel11 + 480U, (size_t)(n % 2310U))) + 480U * (n / 2310U) + 1U; }
492
+
493
+ BigInteger _forward13(const BigInteger &p) { return wheel13[(size_t)(p % 5760U)] + (p / 5760U) * 30030U; }
494
+
495
+ BigInteger _backward13(const BigInteger &n) { return std::distance(wheel13, std::lower_bound(wheel13, wheel13 + 5760U, (size_t)(n % 30030U))) + 5760U * (n / 30030U) + 1U; }
496
+
497
+ typedef BigInteger (*ForwardFn)(const BigInteger &);
498
+ inline ForwardFn forward(const Wheel &w) {
499
+ switch (w) {
500
+ case WHEEL2:
501
+ return _forward2;
502
+ case WHEEL3:
503
+ return _forward3;
504
+ case WHEEL5:
505
+ return _forward5;
506
+ case WHEEL7:
507
+ return _forward7;
508
+ case WHEEL11:
509
+ return _forward11;
510
+ case WHEEL13:
511
+ return _forward13;
512
+ case WHEEL1:
513
+ default:
514
+ return [](const BigInteger &n) -> BigInteger { return n; };
515
+ }
516
+ }
517
+
518
+ inline ForwardFn backward(const Wheel &w) {
519
+ switch (w) {
520
+ case WHEEL2:
521
+ return _backward2;
522
+ case WHEEL3:
523
+ return _backward3;
524
+ case WHEEL5:
525
+ return _backward5;
526
+ case WHEEL7:
527
+ return _backward7;
528
+ case WHEEL11:
529
+ return _backward11;
530
+ case WHEEL13:
531
+ return _backward13;
532
+ case WHEEL1:
533
+ default:
534
+ return [](const BigInteger &n) -> BigInteger { return n; };
535
+ }
536
+ }
537
+
538
+ inline size_t GetWheel5and7Increment(unsigned short &wheel5, unsigned long long &wheel7) {
539
+ constexpr unsigned short wheel5Back = 1U << 9U;
540
+ constexpr unsigned long long wheel7Back = 1ULL << 55U;
541
+ size_t wheelIncrement = 0U;
542
+ bool is_wheel_multiple = false;
543
+ do {
544
+ is_wheel_multiple = (bool)(wheel5 & 1U);
545
+ wheel5 >>= 1U;
546
+ if (is_wheel_multiple) {
547
+ wheel5 |= wheel5Back;
548
+ ++wheelIncrement;
549
+ continue;
550
+ }
551
+
552
+ is_wheel_multiple = (bool)(wheel7 & 1U);
553
+ wheel7 >>= 1U;
554
+ if (is_wheel_multiple) {
555
+ wheel7 |= wheel7Back;
556
+ }
557
+ ++wheelIncrement;
558
+ } while (is_wheel_multiple);
559
+
560
+ return wheelIncrement;
561
+ }
562
+
563
+ std::vector<size_t> SieveOfEratosthenes(const size_t &n) {
564
+ std::vector<size_t> knownPrimes = {2U, 3U, 5U, 7U};
565
+ if (n < 2U) {
566
+ return std::vector<size_t>();
567
+ }
568
+
569
+ if (n < (knownPrimes.back() + 2U)) {
570
+ const auto highestPrimeIt = std::upper_bound(knownPrimes.begin(), knownPrimes.end(), n);
571
+ return std::vector<size_t>(knownPrimes.begin(), highestPrimeIt);
572
+ }
573
+
574
+ knownPrimes.reserve((size_t)(((double)n) / log((double)n)));
575
+
576
+ // We are excluding multiples of the first few
577
+ // small primes from outset. For multiples of
578
+ // 2, 3, and 5 this reduces complexity to 4/15.
579
+ const size_t cardinality = backward5(n);
580
+
581
+ // Create a boolean array "prime[0..cardinality]"
582
+ // and initialize all entries it as true. Rather,
583
+ // reverse the true/false meaning, so we can use
584
+ // default initialization. A value in notPrime[i]
585
+ // will finally be false only if i is a prime.
586
+ std::unique_ptr<bool[]> uNotPrime(new bool[cardinality + 1U]());
587
+ bool *notPrime = uNotPrime.get();
588
+
589
+ // Get the remaining prime numbers.
590
+ unsigned short wheel5 = 129U;
591
+ unsigned long long wheel7 = 9009416540524545ULL;
592
+ size_t o = 1U;
593
+ for (;;) {
594
+ o += GetWheel5and7Increment(wheel5, wheel7);
595
+
596
+ const size_t p = forward3(o);
597
+ if ((p * p) > n) {
598
+ break;
599
+ }
600
+
601
+ if (notPrime[backward5(p)]) {
602
+ continue;
603
+ }
604
+
605
+ knownPrimes.push_back(p);
606
+
607
+ // We are skipping multiples of 2, 3, and 5
608
+ // for space complexity, for 4/15 the bits.
609
+ // More are skipped by the wheel for time.
610
+ const size_t p2 = p << 1U;
611
+ const size_t p4 = p << 2U;
612
+ size_t i = p * p;
613
+
614
+ // "p" already definitely not a multiple of 3.
615
+ // Its remainder when divided by 3 can be 1 or 2.
616
+ // If it is 2, we can do a "half iteration" of the
617
+ // loop that would handle remainder of 1, and then
618
+ // we can proceed with the 1 remainder loop.
619
+ // This saves 2/3 of updates (or modulo).
620
+ if ((p % 3U) == 2U) {
621
+ notPrime[backward5(i)] = true;
622
+ i += p2;
623
+ if (i > n) {
624
+ continue;
625
+ }
626
+ }
627
+
628
+ for (;;) {
629
+ if (i % 5U) {
630
+ notPrime[backward5(i)] = true;
631
+ }
632
+ i += p4;
633
+ if (i > n) {
634
+ break;
635
+ }
636
+
637
+ if (i % 5U) {
638
+ notPrime[backward5(i)] = true;
639
+ }
640
+ i += p2;
641
+ if (i > n) {
642
+ break;
643
+ }
644
+ }
645
+ }
646
+
647
+ for (;;) {
648
+ const size_t p = forward3(o);
649
+ if (p > n) {
650
+ break;
651
+ }
652
+
653
+ o += GetWheel5and7Increment(wheel5, wheel7);
654
+
655
+ if (notPrime[backward5(p)]) {
656
+ continue;
657
+ }
658
+
659
+ knownPrimes.push_back(p);
660
+ }
661
+
662
+ return knownPrimes;
663
+ }
664
+
665
+ bool isMultiple(const BigInteger &p, const std::vector<size_t> &knownPrimes) {
666
+ for (const size_t &prime : knownPrimes) {
667
+ if (!(p % prime)) {
668
+ return true;
669
+ }
670
+ }
671
+
672
+ return false;
673
+ }
674
+
675
+ boost::dynamic_bitset<size_t> wheel_inc(std::vector<size_t> primes) {
676
+ BigInteger radius = 1U;
677
+ for (const size_t &i : primes) {
678
+ radius *= i;
679
+ }
680
+ const size_t prime = primes.back();
681
+ primes.pop_back();
682
+ boost::dynamic_bitset<size_t> o;
683
+ for (BigInteger i = 1U; i <= radius; ++i) {
684
+ if (!isMultiple(i, primes)) {
685
+ o.push_back(!(i % prime));
686
+ }
687
+ }
688
+ o >>= 1U;
689
+
690
+ return o;
691
+ }
692
+
693
+ std::vector<boost::dynamic_bitset<size_t>> wheel_gen(const std::vector<size_t> &primes) {
694
+ std::vector<boost::dynamic_bitset<size_t>> output;
695
+ std::vector<size_t> wheelPrimes;
696
+ for (const size_t &p : primes) {
697
+ wheelPrimes.push_back(p);
698
+ output.push_back(wheel_inc(wheelPrimes));
699
+ }
700
+
701
+ return output;
702
+ }
703
+
704
+ size_t GetWheelIncrement(std::vector<boost::dynamic_bitset<size_t>> *inc_seqs) {
705
+ size_t wheelIncrement = 0U;
706
+ bool is_wheel_multiple = false;
707
+ do {
708
+ for (size_t i = 0U; i < inc_seqs->size(); ++i) {
709
+ boost::dynamic_bitset<size_t> &wheel = (*inc_seqs)[i];
710
+ is_wheel_multiple = wheel.test(0U);
711
+ wheel >>= 1U;
712
+ if (is_wheel_multiple) {
713
+ wheel[wheel.size() - 1U] = true;
714
+ break;
715
+ }
716
+ }
717
+ ++wheelIncrement;
718
+ } while (is_wheel_multiple);
719
+
720
+ return wheelIncrement;
721
+ }
722
+
723
+ ////////////////////////////////////////////////////////////////////////////////////////////////////////////
724
+ // WRITTEN WITH ELARA (GPT) BELOW //
725
+ ////////////////////////////////////////////////////////////////////////////////////////////////////////////
726
+
727
+ // Utility to perform modular exponentiation
728
+ inline BigInteger modExp(BigInteger base, BigInteger exp, const BigInteger &mod) {
729
+ BigInteger result = 1U;
730
+ while (exp) {
731
+ if (exp & 1U) {
732
+ result = (result * base) % mod;
733
+ }
734
+ base = (base * base) % mod;
735
+ exp >>= 1U;
736
+ }
737
+
738
+ return result;
739
+ }
740
+
741
+ ////////////////////////////////////////////////////////////////////////////////////////////////////////////
742
+ // WRITTEN WITH ELARA (GPT) ABOVE //
743
+ ////////////////////////////////////////////////////////////////////////////////////////////////////////////
744
+
745
+ struct Factorizer {
746
+ std::mutex batchMutex;
747
+ std::default_random_engine rng;
748
+ std::mt19937_64 gen;
749
+ std::uniform_int_distribution<size_t> dis;
750
+ BigInteger toFactorSqr;
751
+ BigInteger toFactor;
752
+ BigInteger toFactorSqrt;
753
+ BigInteger batchRange;
754
+ BigInteger batchNumber;
755
+ BigInteger batchOffset;
756
+ BigInteger batchTotal;
757
+ BigInteger wheelRadius;
758
+ size_t wheelEntryCount;
759
+ size_t smoothPartsLimit;
760
+ size_t rowOffset;
761
+ bool isIncomplete;
762
+ std::vector<size_t> primes;
763
+ std::vector<BigInteger> bigPrimes;
764
+ std::vector<BigInteger> sqrPrimes;
765
+ std::vector<boost::dynamic_bitset<size_t>> primeFactors;
766
+ ForwardFn forwardFn;
767
+
768
+ Factorizer(const BigInteger &tfsqr, const BigInteger &tf, const BigInteger &tfsqrt, const BigInteger &range, size_t nodeCount, size_t nodeId, size_t w, size_t spl,
769
+ const std::vector<size_t> &p, ForwardFn fn)
770
+ : rng({}), gen(rng()), dis(0U, p.size() - 1U), toFactorSqr(tfsqr), toFactor(tf), toFactorSqrt(tfsqrt), batchRange(range), batchNumber(0U), batchOffset(nodeId * range), batchTotal(nodeCount * range),
771
+ wheelRadius(1U), wheelEntryCount(w), smoothPartsLimit(spl), rowOffset(p.size()), isIncomplete(true), primes(p), forwardFn(fn)
772
+ {
773
+ for (size_t i = 0U; i < primes.size(); ++i) {
774
+ const size_t& p = primes[i];
775
+ wheelRadius *= p;
776
+ bigPrimes.push_back(p);
777
+ sqrPrimes.push_back(p * p);
778
+ primeFactors.emplace_back(primes.size(), 0);
779
+ primeFactors.back()[i] = true;
780
+ }
781
+ }
782
+
783
+ BigInteger getNextAltBatch() {
784
+ std::lock_guard<std::mutex> lock(batchMutex);
785
+
786
+ if (batchNumber >= batchRange) {
787
+ isIncomplete = false;
788
+ }
789
+
790
+ const BigInteger halfIndex = batchOffset + (batchNumber++ >> 1U) + 1U;
791
+
792
+ return ((batchNumber & 1U) ? batchTotal - halfIndex : halfIndex);
793
+ }
794
+
795
+ BigInteger bruteForce(std::vector<boost::dynamic_bitset<size_t>> *inc_seqs) {
796
+ // Up to wheel factorization, try all batches up to the square root of toFactor.
797
+ for (BigInteger batchNum = getNextAltBatch(); isIncomplete; batchNum = getNextAltBatch()) {
798
+ const BigInteger batchStart = batchNum * wheelEntryCount;
799
+ const BigInteger batchEnd = batchStart + wheelEntryCount;
800
+ for (BigInteger p = batchStart; p < batchEnd;) {
801
+ const BigInteger n = forwardFn(p);
802
+ if (!(toFactor % n) && (n != 1U) && (n != toFactor)) {
803
+ isIncomplete = false;
804
+ return n;
805
+ }
806
+ p += GetWheelIncrement(inc_seqs);
807
+ }
808
+ }
809
+
810
+ return 1U;
811
+ }
812
+
813
+ BigInteger smoothCongruences(std::vector<boost::dynamic_bitset<size_t>> *inc_seqs) {
814
+ // Up to wheel factorization, try all batches up to the square root of toFactor.
815
+ // Since the largest prime factors of these numbers is relatively small,
816
+ // use the "exhaust" of brute force to produce smooth numbers for Quadratic Sieve.
817
+ // Different collections per thread;
818
+ std::map<BigInteger, boost::dynamic_bitset<size_t>> smoothPartsMap;
819
+ std::vector<BigInteger> smoothParts;
820
+ smoothParts.reserve(smoothPartsLimit);
821
+ BigInteger numberCount = 0;
822
+ for (BigInteger batchNum = getNextAltBatch(); isIncomplete; batchNum = getNextAltBatch()) {
823
+ const BigInteger batchStart = batchNum * wheelEntryCount;
824
+ const BigInteger batchEnd = batchStart + wheelEntryCount;
825
+ for (BigInteger p = batchStart; p < batchEnd;) {
826
+ // Brute-force check if the sequential number is a factor.
827
+ const BigInteger n = forwardFn(p);
828
+ // If so, terminate this node and return the answer.
829
+ if (!(toFactor % n) && (n != 1U) && (n != toFactor)) {
830
+ isIncomplete = false;
831
+ return n;
832
+ }
833
+ // Use the "exhaust" to produce smoother numbers.
834
+ const boost::dynamic_bitset<size_t> fv = factorizationVector(n);
835
+ if (fv.size()) {
836
+ smoothPartsMap[n] = fv;
837
+ smoothParts.push_back(n);
838
+ }
839
+ // Skip increments on the "wheels" (or "gears").
840
+ p += GetWheelIncrement(inc_seqs);
841
+ }
842
+
843
+ // Batch this work, to reduce contention.
844
+ if (smoothParts.size() >= smoothPartsLimit) {
845
+ const BigInteger n = makeSmoothNumbers(smoothParts, smoothPartsMap);
846
+ if (!(toFactor % n) && (n != 1U) && (n != toFactor)) {
847
+ isIncomplete = false;
848
+ return n;
849
+ }
850
+ }
851
+ }
852
+
853
+ return 1U;
854
+ }
855
+
856
+ // Compute the prime factorization modulo 2
857
+ boost::dynamic_bitset<size_t> factorizationVector(BigInteger num) {
858
+ boost::dynamic_bitset<size_t> vec(primes.size(), 0);
859
+ while (true) {
860
+ BigInteger factor = gcd(num, wheelRadius);
861
+ if (factor == 1U) {
862
+ break;
863
+ }
864
+ num /= factor;
865
+ // Remove smooth primes from factor
866
+ for (size_t pi = 0U; pi < primes.size(); ++pi) {
867
+ const size_t& p = primes[pi];
868
+ if (factor % p) {
869
+ continue;
870
+ }
871
+ factor /= p;
872
+ vec.flip(pi);
873
+ if (factor == 1U) {
874
+ break;
875
+ }
876
+ }
877
+ if (num == 1U) {
878
+ return vec;
879
+ }
880
+ }
881
+ if (num != 1U) {
882
+ return boost::dynamic_bitset<size_t>();
883
+ }
884
+
885
+ return vec;
886
+ }
887
+
888
+ BigInteger makeSmoothNumbers(std::vector<BigInteger> &smoothParts, std::map<BigInteger, boost::dynamic_bitset<size_t>> &smoothPartsMap) {
889
+ // This is the only nondeterminism in the algorithm.
890
+ std::shuffle(smoothParts.begin(), smoothParts.end(), rng);
891
+ // Now that smooth parts have been shuffled, just multiply down the list until they are larger than square root of toFactor.
892
+ BigInteger smoothNumber = 1U;
893
+ boost::dynamic_bitset<size_t> fv(primes.size(), 0);
894
+ std::vector<BigInteger> smoothNumberKeys(bigPrimes);
895
+ std::vector<boost::dynamic_bitset<size_t>> smoothNumberValues;
896
+ smoothNumberValues.reserve(primeFactors.size());
897
+ for (const auto& f : primeFactors) {
898
+ smoothNumberValues.emplace_back(f);
899
+ }
900
+ smoothNumberKeys.reserve(smoothParts.size());
901
+ for (size_t spi = 0U; spi < smoothParts.size(); ++spi) {
902
+ const BigInteger &sp = smoothParts[spi];
903
+ // This multiplies together the factorizations of the smooth parts
904
+ // (producing the overall factorization of their multiplication)
905
+ fv ^= smoothPartsMap[sp];
906
+ smoothNumber *= sp;
907
+ // Check if the number is big enough
908
+ if (smoothNumber <= toFactor) {
909
+ continue;
910
+ }
911
+ smoothNumberValues.emplace_back(fv);
912
+ smoothNumberKeys.push_back(smoothNumber);
913
+ // Reset "smoothNumber" and its factorization vector.
914
+ smoothNumber = 1U;
915
+ fv = boost::dynamic_bitset<size_t>(primes.size(), 0);
916
+ }
917
+ smoothParts.clear();
918
+ smoothPartsMap.clear();
919
+
920
+ return findFactor(smoothNumberKeys, smoothNumberValues);
921
+ }
922
+
923
+ ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
924
+ // WRITTEN WITH ELARA (GPT) BELOW //
925
+ ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
926
+
927
+ // Perform Gaussian elimination on a binary matrix
928
+ void gaussianElimination(std::vector<BigInteger> &smoothNumberKeys, std::vector<boost::dynamic_bitset<size_t>> &smoothNumberValues) {
929
+ const unsigned cpuCount = CpuCount;
930
+ auto mColIt = smoothNumberValues.begin();
931
+ auto nColIt = smoothNumberKeys.begin();
932
+ const size_t rows = smoothNumberValues.size();
933
+ for (size_t col = 0U; col < primes.size(); ++col) {
934
+ auto mRowIt = mColIt;
935
+ auto nRowIt = nColIt;
936
+
937
+ int64_t pivot = -1;
938
+ for (size_t row = col; row < rows; ++row) {
939
+ if ((*mRowIt)[col]) {
940
+ // Swapping matrix rows corresponds
941
+ // with swapping factorized numbers.
942
+ if (row != col) {
943
+ std::swap(*mColIt, *mRowIt);
944
+ std::swap(*nColIt, *nRowIt);
945
+ }
946
+ pivot = row;
947
+ break;
948
+ }
949
+ ++nRowIt;
950
+ ++mRowIt;
951
+ }
952
+
953
+ if (pivot != -1) {
954
+ const boost::dynamic_bitset<size_t> &cm = *mColIt;
955
+ const BigInteger &cn = *nColIt;
956
+ mRowIt = smoothNumberValues.begin();
957
+ nRowIt = smoothNumberKeys.begin();
958
+ for (unsigned cpu = 0U; (cpu < CpuCount) && (cpu < rows); ++cpu) {
959
+ dispatch.dispatch([cpu, &cpuCount, &col, &rows, &cm, &cn, nRowIt, mRowIt]() -> bool {
960
+ auto mrIt = mRowIt;
961
+ auto nrIt = nRowIt;
962
+ for (size_t row = cpu; ; row += cpuCount) {
963
+ boost::dynamic_bitset<size_t> &rm = *mrIt;
964
+ BigInteger &rn = *nrIt;
965
+ if ((row != col) && rm[col]) {
966
+ // XOR-ing factorization rows
967
+ // is like multiplying the numbers.
968
+ rm ^= cm;
969
+ rn *= cn;
970
+ }
971
+ if ((row + cpuCount) >= rows) {
972
+ return false;
973
+ }
974
+ std::advance(nrIt, cpuCount);
975
+ std::advance(mrIt, cpuCount);
976
+ }
977
+
978
+ return false;
979
+ });
980
+ ++mRowIt;
981
+ ++nRowIt;
982
+ }
983
+ dispatch.finish();
984
+ }
985
+
986
+ ++mColIt;
987
+ ++nColIt;
988
+ }
989
+ }
990
+
991
+ BigInteger checkPerfectSquare(BigInteger perfectSquare) {
992
+ while (perfectSquare < toFactorSqr) {
993
+ // Compute x and y
994
+ const BigInteger x = perfectSquare % toFactor;
995
+ const BigInteger y = modExp(x, toFactor >> 1U, toFactor);
996
+
997
+ // Check congruence of squares
998
+ BigInteger factor = gcd(toFactor, x + y);
999
+ if ((factor != 1U) && (factor != toFactor)) {
1000
+ return factor;
1001
+ }
1002
+
1003
+ if (x == y) {
1004
+ continue;
1005
+ }
1006
+
1007
+ // Try x - y as well
1008
+ factor = gcd(toFactor, x - y);
1009
+ if ((factor != 1U) && (factor != toFactor)) {
1010
+ return factor;
1011
+ }
1012
+
1013
+ perfectSquare *= sqrPrimes[dis(gen)];
1014
+ }
1015
+
1016
+ return 1U;
1017
+ }
1018
+
1019
+ // Use Gaussian elimination
1020
+ BigInteger findFactor(std::vector<BigInteger> &smoothNumberKeys, std::vector<boost::dynamic_bitset<size_t>> &smoothNumberValues) {
1021
+ // Gaussian elimination multiplies these numbers
1022
+ // with small primes, to produce squares
1023
+ gaussianElimination(smoothNumberKeys, smoothNumberValues);
1024
+
1025
+ // Check for linear dependencies and find a congruence of squares
1026
+ std::mutex rowMutex;
1027
+ BigInteger result = 1U;
1028
+ const size_t rowCount = smoothNumberKeys.size();
1029
+ for (size_t i = primes.size(); (i < rowCount) && (result == 1U); ++i) {
1030
+ dispatch.dispatch([this, i, &result, &rowMutex, &smoothNumberKeys]() -> bool {
1031
+ const BigInteger factor = checkPerfectSquare(smoothNumberKeys[i]);
1032
+
1033
+ if ((factor != 1U) && (factor != this->toFactor)) {
1034
+ std::lock_guard<std::mutex> lock(rowMutex);
1035
+ result = factor;
1036
+
1037
+ return true;
1038
+ }
1039
+
1040
+ return false;
1041
+ });
1042
+ }
1043
+ dispatch.finish();
1044
+
1045
+ if (result != 1U) {
1046
+ return result;
1047
+ }
1048
+
1049
+ // These numbers have been tried already:
1050
+ smoothNumberKeys.resize(primes.size());
1051
+ smoothNumberValues.resize(primes.size());
1052
+
1053
+ return 1U; // No factor found
1054
+ }
1055
+
1056
+ ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1057
+ // WRITTEN WITH ELARA (GPT) ABOVE //
1058
+ ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
1059
+ };
1060
+
1061
+ std::string find_a_factor(std::string toFactorStr, size_t method, size_t nodeCount, size_t nodeId, size_t trialDivisionLevel, size_t gearFactorizationLevel,
1062
+ size_t wheelFactorizationLevel, double smoothnessBoundMultiplier, double batchSizeMultiplier) {
1063
+ // (At least) level 11 wheel factorization is baked into basic functions.
1064
+ if (method > 1U) {
1065
+ std::cout << "FACTOR_FINDER mode not yet implemented. Defaulting to MIXED." << std::endl;
1066
+ }
1067
+ const bool isConOfSqr = (method > 0);
1068
+ if (!wheelFactorizationLevel) {
1069
+ wheelFactorizationLevel = 1U;
1070
+ } else if (wheelFactorizationLevel > 13U) {
1071
+ wheelFactorizationLevel = 13U;
1072
+ std::cout << "Warning: Wheel factorization limit is 13. (Parameter will be ignored and default to 13.)" << std::endl;
1073
+ }
1074
+ if (!gearFactorizationLevel) {
1075
+ gearFactorizationLevel = 1U;
1076
+ } else if (gearFactorizationLevel < wheelFactorizationLevel) {
1077
+ gearFactorizationLevel = wheelFactorizationLevel;
1078
+ std::cout << "Warning: Gear factorization level must be at least as high as wheel level. (Parameter will be ignored and default to wheel level.)" << std::endl;
1079
+ }
1080
+
1081
+ // Convert from string.
1082
+ const BigInteger toFactor(toFactorStr);
1083
+
1084
+ // The largest possible discrete factor of "toFactor" is its square root (as with any integer).
1085
+ const BigInteger fullMaxBase = sqrt(toFactor);
1086
+ if (fullMaxBase * fullMaxBase == toFactor) {
1087
+ return boost::lexical_cast<std::string>(fullMaxBase);
1088
+ }
1089
+
1090
+ // We only need to try trial division about as high as would be necessary for 4096 bits of semiprime.
1091
+ const size_t primeCeiling = (trialDivisionLevel < fullMaxBase) ? trialDivisionLevel : (size_t)fullMaxBase;
1092
+ BigInteger result = 1U;
1093
+ // This uses very little memory and time, to find primes.
1094
+ std::vector<size_t> primes = SieveOfEratosthenes(primeCeiling);
1095
+ // "it" is the end-of-list iterator for a list up-to-and-including wheelFactorizationLevel.
1096
+ const auto itw = std::upper_bound(primes.begin(), primes.end(), wheelFactorizationLevel);
1097
+ const auto itg = std::upper_bound(primes.begin(), primes.end(), gearFactorizationLevel);
1098
+ const size_t wgDiff = std::distance(itw, itg);
1099
+
1100
+ // This is simply trial division up to the ceiling.
1101
+ std::mutex trialDivisionMutex;
1102
+ for (size_t primeIndex = 0U; (primeIndex < primes.size()) && (result == 1U); primeIndex += 64U) {
1103
+ dispatch.dispatch([&toFactor, &primes, &result, &trialDivisionMutex, primeIndex]() -> bool {
1104
+ const size_t maxLcv = std::min(primeIndex + 64U, primes.size());
1105
+ for (size_t pi = primeIndex; pi < maxLcv; ++pi) {
1106
+ const size_t& currentPrime = primes[pi];
1107
+ if (!(toFactor % currentPrime)) {
1108
+ std::lock_guard<std::mutex> lock(trialDivisionMutex);
1109
+ result = currentPrime;
1110
+ return true;
1111
+ }
1112
+ }
1113
+ return false;
1114
+ });
1115
+ }
1116
+ dispatch.finish();
1117
+ // If we've checked all primes below the square root of toFactor, then it's prime.
1118
+ if ((result != 1U) || (toFactor <= (primeCeiling * primeCeiling))) {
1119
+ return boost::lexical_cast<std::string>(result);
1120
+ }
1121
+
1122
+ // Set up wheel factorization (or "gear" factorization)
1123
+ std::vector<size_t> gearFactorizationPrimes(primes.begin(), itg);
1124
+ std::vector<size_t> wheelFactorizationPrimes(primes.begin(), itw);
1125
+ // Keep as many "smooth" primes as bits in number to factor.
1126
+ const size_t toFactorBits = (size_t)log2(toFactor);
1127
+ size_t smoothPrimeCount = (size_t)(smoothnessBoundMultiplier * toFactorBits);
1128
+ if (!smoothPrimeCount) {
1129
+ smoothPrimeCount = 1U;
1130
+ std::cout << "Warning: smoothness bound multiplier would retain no primes, but it must retain at least 1. (Defaulting to retaining 1 prime.)" << std::endl;
1131
+ }
1132
+ // Primes are only present in range above wheel factorization level
1133
+ primes.erase(primes.begin(), itg);
1134
+ const size_t maxPrimeCount = std::min(primes.size(), smoothPrimeCount);
1135
+ std::vector<size_t> smoothPrimes;
1136
+ for (size_t primeId = 0U; (primeId < primes.size()) && (smoothPrimes.size() < maxPrimeCount); ++primeId) {
1137
+ const size_t p = primes[primeId];
1138
+ const size_t residue = (size_t)(toFactor % p);
1139
+ const size_t sr = _sqrt(residue);
1140
+ if ((sr * sr) == residue) {
1141
+ smoothPrimes.push_back(p);
1142
+ }
1143
+ }
1144
+ if (isConOfSqr && (smoothPrimes.size() < maxPrimeCount)) {
1145
+ std::cout << "Warning: Factor base truncated to " << smoothPrimes.size() << " factors. If you don't want to truncate, set the trial division level option higher." << std::endl;
1146
+ }
1147
+ // From 1, this is a period for wheel factorization
1148
+ size_t biggestWheel = 1ULL;
1149
+ for (const size_t &wp : gearFactorizationPrimes) {
1150
+ biggestWheel *= (size_t)wp;
1151
+ }
1152
+ // Wheel entry count per largest "gear" scales our brute-force range.
1153
+ size_t wheelEntryCount = 0U;
1154
+ for (size_t i = 0U; i < biggestWheel; ++i) {
1155
+ if (!isMultiple(i, wheelFactorizationPrimes)) {
1156
+ ++wheelEntryCount;
1157
+ }
1158
+ }
1159
+ wheelFactorizationPrimes.clear();
1160
+ // These are "gears," for wheel factorization (with a "wheel" already in place up to 11).
1161
+ std::vector<boost::dynamic_bitset<size_t>> inc_seqs = wheel_gen(gearFactorizationPrimes);
1162
+ // We're done with the lowest primes.
1163
+ const size_t MIN_RTD_LEVEL = gearFactorizationPrimes.size() - wgDiff;
1164
+ const Wheel SMALLEST_WHEEL = wheelByPrimeCardinal(MIN_RTD_LEVEL);
1165
+ // Skip multiples removed by wheel factorization.
1166
+ inc_seqs.erase(inc_seqs.begin(), inc_seqs.end() - wgDiff);
1167
+ gearFactorizationPrimes.clear();
1168
+
1169
+ // Range per parallel node
1170
+ const BigInteger nodeRange = (((backward(SMALLEST_WHEEL)(fullMaxBase) + nodeCount - 1U) / nodeCount) + wheelEntryCount - 1U) / wheelEntryCount;
1171
+ // This manages the work of all threads.
1172
+ Factorizer worker(toFactor * toFactor, toFactor, fullMaxBase,
1173
+ nodeRange, nodeCount, nodeId,
1174
+ wheelEntryCount, (size_t)((wheelEntryCount << 1U) * batchSizeMultiplier),
1175
+ smoothPrimes, forward(SMALLEST_WHEEL));
1176
+
1177
+ if (!isConOfSqr) {
1178
+ const auto workerFn = [&inc_seqs, &worker] {
1179
+ // inc_seq needs to be independent per thread.
1180
+ std::vector<boost::dynamic_bitset<size_t>> inc_seqs_clone;
1181
+ inc_seqs_clone.reserve(inc_seqs.size());
1182
+ for (const boost::dynamic_bitset<size_t> &b : inc_seqs) {
1183
+ inc_seqs_clone.emplace_back(b);
1184
+ }
1185
+
1186
+ // "Brute force" includes extensive wheel multiplication and can be faster.
1187
+ return worker.bruteForce(&inc_seqs_clone);
1188
+ };
1189
+
1190
+ std::vector<std::future<BigInteger>> futures;
1191
+ futures.reserve(CpuCount);
1192
+
1193
+ for (unsigned cpu = 0U; cpu < CpuCount; ++cpu) {
1194
+ futures.push_back(std::async(std::launch::async, workerFn));
1195
+ }
1196
+
1197
+ for (unsigned cpu = 0U; cpu < futures.size(); ++cpu) {
1198
+ const BigInteger r = futures[cpu].get();
1199
+ if ((r > result) && (r != toFactor)) {
1200
+ result = r;
1201
+ }
1202
+ }
1203
+
1204
+ return boost::lexical_cast<std::string>(result);
1205
+ }
1206
+
1207
+ const auto workerFn = [&inc_seqs, &wheelEntryCount, &batchSizeMultiplier, &worker] {
1208
+ // inc_seq needs to be independent per thread.
1209
+ std::vector<boost::dynamic_bitset<size_t>> inc_seqs_clone;
1210
+ inc_seqs_clone.reserve(inc_seqs.size());
1211
+ for (const boost::dynamic_bitset<size_t> &b : inc_seqs) {
1212
+ inc_seqs_clone.emplace_back(b);
1213
+ }
1214
+
1215
+ // While brute-forcing, use the "exhaust" to feed "smooth" number generation and check conguence of squares.
1216
+ return worker.smoothCongruences(&inc_seqs_clone);
1217
+ };
1218
+
1219
+ std::vector<std::future<BigInteger>> futures;
1220
+ futures.reserve(CpuCount);
1221
+
1222
+ for (unsigned cpu = 0U; cpu < CpuCount; ++cpu) {
1223
+ futures.push_back(std::async(std::launch::async, workerFn));
1224
+ }
1225
+
1226
+ for (unsigned cpu = 0U; cpu < futures.size(); ++cpu) {
1227
+ const BigInteger r = futures[cpu].get();
1228
+ if ((r > result) && (r != toFactor)) {
1229
+ result = r;
1230
+ }
1231
+ }
1232
+
1233
+ return boost::lexical_cast<std::string>(result);
1234
+ }
1235
+ } // namespace Qimcifa
1236
+
1237
+ using namespace Qimcifa;
1238
+
1239
+ PYBIND11_MODULE(_find_a_factor, m) {
1240
+ m.doc() = "pybind11 plugin to find any factor of input";
1241
+ m.def("_find_a_factor", &find_a_factor, "Finds any nontrivial factor of input (or returns 1 or the number to factor if prime)");
1242
+ }