FindAFactor 3.8.2__tar.gz → 3.9.0__tar.gz
Sign up to get free protection for your applications and to get access to all the features.
- findafactor-3.9.0/FindAFactor/_find_a_factor.cpp +1309 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor.egg-info/PKG-INFO +1 -1
- {findafactor-3.8.2 → findafactor-3.9.0}/PKG-INFO +1 -1
- {findafactor-3.8.2 → findafactor-3.9.0}/README.md +2 -2
- {findafactor-3.8.2 → findafactor-3.9.0}/pyproject.toml +1 -1
- {findafactor-3.8.2 → findafactor-3.9.0}/setup.py +1 -1
- findafactor-3.8.2/FindAFactor/_find_a_factor.cpp +0 -1052
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor/__init__.py +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor/dispatchqueue.cpp +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor/find_a_factor.py +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor/oclengine.cpp +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor.egg-info/SOURCES.txt +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor.egg-info/dependency_links.txt +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor.egg-info/not-zip-safe +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/FindAFactor.egg-info/top_level.txt +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/LICENSE +0 -0
- {findafactor-3.8.2 → findafactor-3.9.0}/setup.cfg +0 -0
@@ -0,0 +1,1309 @@
|
|
1
|
+
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
2
|
+
//
|
3
|
+
// (C) Daniel Strano and the Qrack contributors 2017-2025. All rights reserved.
|
4
|
+
//
|
5
|
+
// "A quantum-inspired Monte Carlo integer factoring algorithm"
|
6
|
+
//
|
7
|
+
// This library was originally called ["Qimcifa"](https://github.com/vm6502q/qimcifa) and demonstrated a (Shor's-like) "quantum-inspired" algorithm for integer factoring. It has
|
8
|
+
// since been developed into a general factoring algorithm and tool.
|
9
|
+
//
|
10
|
+
// `FindAFactor` uses heavily wheel-factorized brute-force "exhaust" numbers as "smooth" inputs to Quadratic Sieve, widely regarded as the asymptotically second fastest algorithm
|
11
|
+
// class known for cryptographically relevant semiprime factoring. `FindAFactor` is C++ based, with `pybind11`, which tends to make it faster than pure Python approaches. For the
|
12
|
+
// quick-and-dirty application of finding _any single_ nontrivial factor, something like at least 80% of positive integers will factorize in a fraction of a second, but the most
|
13
|
+
// interesting cases to consider are semiprime numbers, for which `FindAFactor` should be about as asymptotically competitive as similar Quadratic Sieve implementations.
|
14
|
+
//
|
15
|
+
// Our original contribution to Quadratic Sieve seems to be wheel factorization to 13 or 17 and maybe the idea of using the "exhaust" of a brute-force search for smooth number
|
16
|
+
// inputs for Quadratic Sieve. For wheel factorization (or "gear factorization"), we collect a short list of the first primes and remove all of their multiples from a "brute-force"
|
17
|
+
// guessing range by mapping a dense contiguous integer set, to a set without these multiples, relying on both a traditional "wheel," up to a middle prime number (of `11`), and a
|
18
|
+
// "gear-box" that stores increment values per prime according to the principles of wheel factorization, but operating semi-independently, to reduce space of storing the full
|
19
|
+
// wheel.
|
20
|
+
//
|
21
|
+
// Beyond this, we gain a functional advantage of a square-root over a more naive approach, by setting the brute force guessing range only between the highest prime in wheel
|
22
|
+
// factorization and the (modular) square root of the number to factor: if the number is semiprime, there is exactly one correct answer in this range, but including both factors in
|
23
|
+
// the range to search would cost us the square root advantage.
|
24
|
+
//
|
25
|
+
// Factoring this way is surprisingly easy to distribute: basically 0 network communication is needed to coordinate an arbitrarily high amount of parallelism to factor a single
|
26
|
+
// number. Each brute-force trial division instance is effectively 100% independent of all others (i.e. entirely "embarrassingly parallel"), and these guesses can seed independent
|
27
|
+
// Gaussian elimination matrices, so `FindAFactor` offers an extremely simply interface that allows work to be split between an arbitrarily high number of nodes with absolutely no
|
28
|
+
// network communication at all. In terms of incentives of those running different, cooperating nodes in the context of this specific number of integer factoring, all one
|
29
|
+
// ultimately cares about is knowing the correct factorization answer _by any means._ For pratical applications, there is no point at all in factoring a number whose factors are
|
30
|
+
// already known. When a hypothetical answer is forwarded to the (0-communication) "network" of collaborating nodes, _it is trivial to check whether the answer is correct_ (such as
|
31
|
+
// by simply entering the multiplication and equality check with the original number into a Python shell console)! Hence, collaborating node operators only need to trust that all
|
32
|
+
// participants in the "network" are actually performing their alloted segment of guesses and would actually communicate the correct answer to the entire group of collaborating
|
33
|
+
// nodes if any specific invidual happened to find the answer, but any purported answer is still trivial to verify.
|
34
|
+
//
|
35
|
+
//**Special thanks to OpenAI GPT "Elara," for indicated region of contributed code!**
|
36
|
+
//
|
37
|
+
// Licensed under the GNU Lesser General Public License V3.
|
38
|
+
// See LICENSE.md in the project root or
|
39
|
+
// https://www.gnu.org/licenses/lgpl-3.0.en.html for details.
|
40
|
+
|
41
|
+
#include "dispatchqueue.hpp"
|
42
|
+
|
43
|
+
#include <algorithm>
|
44
|
+
#include <future>
|
45
|
+
#include <iostream>
|
46
|
+
#include <map>
|
47
|
+
#include <memory>
|
48
|
+
#include <mutex>
|
49
|
+
#include <random>
|
50
|
+
#include <stdlib.h>
|
51
|
+
#include <string>
|
52
|
+
|
53
|
+
#include <boost/dynamic_bitset.hpp>
|
54
|
+
#include <boost/multiprecision/cpp_int.hpp>
|
55
|
+
|
56
|
+
#include <pybind11/pybind11.h>
|
57
|
+
#include <pybind11/stl.h>
|
58
|
+
|
59
|
+
namespace Qimcifa {
|
60
|
+
|
61
|
+
typedef boost::multiprecision::cpp_int BigInteger;
|
62
|
+
|
63
|
+
const unsigned CpuCount = std::thread::hardware_concurrency();
|
64
|
+
DispatchQueue dispatch(CpuCount);
|
65
|
+
|
66
|
+
enum Wheel { ERROR = 0, WHEEL1 = 1, WHEEL2 = 2, WHEEL3 = 6, WHEEL5 = 30, WHEEL7 = 210, WHEEL11 = 2310, WHEEL13 = 30030 };
|
67
|
+
|
68
|
+
Wheel wheelByPrimeCardinal(int i) {
|
69
|
+
switch (i) {
|
70
|
+
case 0:
|
71
|
+
return WHEEL1;
|
72
|
+
case 1:
|
73
|
+
return WHEEL2;
|
74
|
+
case 2:
|
75
|
+
return WHEEL3;
|
76
|
+
case 3:
|
77
|
+
return WHEEL5;
|
78
|
+
case 4:
|
79
|
+
return WHEEL7;
|
80
|
+
case 5:
|
81
|
+
return WHEEL11;
|
82
|
+
default:
|
83
|
+
return ERROR;
|
84
|
+
}
|
85
|
+
}
|
86
|
+
|
87
|
+
// See https://stackoverflow.com/questions/101439/the-most-efficient-way-to-implement-an-integer-based-power-function-powint-int
|
88
|
+
BigInteger ipow(BigInteger base, unsigned exp) {
|
89
|
+
BigInteger result = 1U;
|
90
|
+
for (;;) {
|
91
|
+
if (exp & 1U) {
|
92
|
+
result *= base;
|
93
|
+
}
|
94
|
+
exp >>= 1U;
|
95
|
+
if (!exp) {
|
96
|
+
break;
|
97
|
+
}
|
98
|
+
base *= base;
|
99
|
+
}
|
100
|
+
|
101
|
+
return result;
|
102
|
+
}
|
103
|
+
|
104
|
+
inline size_t log2(BigInteger n) {
|
105
|
+
size_t pow = 0U;
|
106
|
+
while (n >>= 1U) {
|
107
|
+
++pow;
|
108
|
+
}
|
109
|
+
return pow;
|
110
|
+
}
|
111
|
+
|
112
|
+
inline BigInteger gcd(const BigInteger& n1, const BigInteger& n2) {
|
113
|
+
if (!n2) {
|
114
|
+
return n1;
|
115
|
+
}
|
116
|
+
return gcd(n2, n1 % n2);
|
117
|
+
}
|
118
|
+
|
119
|
+
BigInteger sqrt(const BigInteger &toTest) {
|
120
|
+
// Otherwise, find b = sqrt(b^2).
|
121
|
+
BigInteger start = 1U, end = toTest >> 1U, ans = 0U;
|
122
|
+
do {
|
123
|
+
const BigInteger mid = (start + end) >> 1U;
|
124
|
+
|
125
|
+
// If toTest is a perfect square
|
126
|
+
const BigInteger sqr = mid * mid;
|
127
|
+
if (sqr == toTest) {
|
128
|
+
return mid;
|
129
|
+
}
|
130
|
+
|
131
|
+
if (sqr < toTest) {
|
132
|
+
// Since we need floor, we update answer when mid*mid is smaller than p, and move closer to sqrt(p).
|
133
|
+
start = mid + 1U;
|
134
|
+
ans = mid;
|
135
|
+
} else {
|
136
|
+
// If mid*mid is greater than p
|
137
|
+
end = mid - 1U;
|
138
|
+
}
|
139
|
+
} while (start <= end);
|
140
|
+
|
141
|
+
return ans;
|
142
|
+
}
|
143
|
+
|
144
|
+
size_t _sqrt(const size_t &toTest) {
|
145
|
+
// Otherwise, find b = sqrt(b^2).
|
146
|
+
size_t start = 1U, end = toTest >> 1U, ans = 0U;
|
147
|
+
do {
|
148
|
+
const size_t mid = (start + end) >> 1U;
|
149
|
+
|
150
|
+
// If toTest is a perfect square
|
151
|
+
const size_t sqr = mid * mid;
|
152
|
+
if (sqr == toTest) {
|
153
|
+
return mid;
|
154
|
+
}
|
155
|
+
|
156
|
+
if (sqr < toTest) {
|
157
|
+
// Since we need floor, we update answer when mid*mid is smaller than p, and move closer to sqrt(p).
|
158
|
+
start = mid + 1U;
|
159
|
+
ans = mid;
|
160
|
+
} else {
|
161
|
+
// If mid*mid is greater than p
|
162
|
+
end = mid - 1U;
|
163
|
+
}
|
164
|
+
} while (start <= end);
|
165
|
+
|
166
|
+
return ans;
|
167
|
+
}
|
168
|
+
|
169
|
+
// We are multiplying out the first distinct primes, below.
|
170
|
+
|
171
|
+
// Make this NOT a multiple of 2.
|
172
|
+
inline size_t forward2(const size_t &p) { return (p << 1U) | 1U; }
|
173
|
+
|
174
|
+
inline size_t backward2(const size_t &p) { return (size_t)(p >> 1U); }
|
175
|
+
|
176
|
+
// Make this NOT a multiple of 2 or 3.
|
177
|
+
inline size_t forward3(const size_t &p) { return (p << 1U) + (~(~p | 1U)) - 1U; }
|
178
|
+
|
179
|
+
inline size_t backward3(const size_t &n) { return (size_t)((~(~n | 1U)) / 3U) + 1U; }
|
180
|
+
|
181
|
+
constexpr unsigned char wheel5[8U] = {1U, 7U, 11U, 13U, 17U, 19U, 23U, 29U};
|
182
|
+
|
183
|
+
// Make this NOT a multiple of 2, 3, or 5.
|
184
|
+
size_t forward5(const size_t &p) { return wheel5[p & 7U] + (p >> 3U) * 30U; }
|
185
|
+
|
186
|
+
size_t backward5(const size_t &n) { return std::distance(wheel5, std::lower_bound(wheel5, wheel5 + 8U, (size_t)(n % 30U))) + 8U * (size_t)(n / 30U) + 1U; }
|
187
|
+
|
188
|
+
constexpr unsigned char wheel7[48U] = {1U, 11U, 13U, 17U, 19U, 23U, 29U, 31U, 37U, 41U, 43U, 47U, 53U, 59U, 61U, 67U,
|
189
|
+
71U, 73U, 79U, 83U, 89U, 97U, 101U, 103U, 107U, 109U, 113U, 121U, 127U, 131U, 137U, 139U,
|
190
|
+
143U, 149U, 151U, 157U, 163U, 167U, 169U, 173U, 179U, 181U, 187U, 191U, 193U, 197U, 199U, 209U};
|
191
|
+
|
192
|
+
// Make this NOT a multiple of 2, 3, 5, or 7.
|
193
|
+
size_t forward7(const size_t &p) { return wheel7[p % 48U] + (p / 48U) * 210U; }
|
194
|
+
|
195
|
+
size_t backward7(const size_t &n) { return std::distance(wheel7, std::lower_bound(wheel7, wheel7 + 48U, (size_t)(n % 210U))) + 48U * (size_t)(n / 210U) + 1U; }
|
196
|
+
|
197
|
+
constexpr unsigned short wheel11[480U] = {
|
198
|
+
1U, 13U, 17U, 19U, 23U, 29U, 31U, 37U, 41U, 43U, 47U, 53U, 59U, 61U, 67U, 71U, 73U, 79U, 83U, 89U, 97U, 101U, 103U, 107U,
|
199
|
+
109U, 113U, 127U, 131U, 137U, 139U, 149U, 151U, 157U, 163U, 167U, 169U, 173U, 179U, 181U, 191U, 193U, 197U, 199U, 211U, 221U, 223U, 227U, 229U,
|
200
|
+
233U, 239U, 241U, 247U, 251U, 257U, 263U, 269U, 271U, 277U, 281U, 283U, 289U, 293U, 299U, 307U, 311U, 313U, 317U, 323U, 331U, 337U, 347U, 349U,
|
201
|
+
353U, 359U, 361U, 367U, 373U, 377U, 379U, 383U, 389U, 391U, 397U, 401U, 403U, 409U, 419U, 421U, 431U, 433U, 437U, 439U, 443U, 449U, 457U, 461U,
|
202
|
+
463U, 467U, 479U, 481U, 487U, 491U, 493U, 499U, 503U, 509U, 521U, 523U, 527U, 529U, 533U, 541U, 547U, 551U, 557U, 559U, 563U, 569U, 571U, 577U,
|
203
|
+
587U, 589U, 593U, 599U, 601U, 607U, 611U, 613U, 617U, 619U, 629U, 631U, 641U, 643U, 647U, 653U, 659U, 661U, 667U, 673U, 677U, 683U, 689U, 691U,
|
204
|
+
697U, 701U, 703U, 709U, 713U, 719U, 727U, 731U, 733U, 739U, 743U, 751U, 757U, 761U, 767U, 769U, 773U, 779U, 787U, 793U, 797U, 799U, 809U, 811U,
|
205
|
+
817U, 821U, 823U, 827U, 829U, 839U, 841U, 851U, 853U, 857U, 859U, 863U, 871U, 877U, 881U, 883U, 887U, 893U, 899U, 901U, 907U, 911U, 919U, 923U,
|
206
|
+
929U, 937U, 941U, 943U, 947U, 949U, 953U, 961U, 967U, 971U, 977U, 983U, 989U, 991U, 997U, 1003U, 1007U, 1009U, 1013U, 1019U, 1021U, 1027U, 1031U, 1033U,
|
207
|
+
1037U, 1039U, 1049U, 1051U, 1061U, 1063U, 1069U, 1073U, 1079U, 1081U, 1087U, 1091U, 1093U, 1097U, 1103U, 1109U, 1117U, 1121U, 1123U, 1129U, 1139U, 1147U, 1151U, 1153U,
|
208
|
+
1157U, 1159U, 1163U, 1171U, 1181U, 1187U, 1189U, 1193U, 1201U, 1207U, 1213U, 1217U, 1219U, 1223U, 1229U, 1231U, 1237U, 1241U, 1247U, 1249U, 1259U, 1261U, 1271U, 1273U,
|
209
|
+
1277U, 1279U, 1283U, 1289U, 1291U, 1297U, 1301U, 1303U, 1307U, 1313U, 1319U, 1321U, 1327U, 1333U, 1339U, 1343U, 1349U, 1357U, 1361U, 1363U, 1367U, 1369U, 1373U, 1381U,
|
210
|
+
1387U, 1391U, 1399U, 1403U, 1409U, 1411U, 1417U, 1423U, 1427U, 1429U, 1433U, 1439U, 1447U, 1451U, 1453U, 1457U, 1459U, 1469U, 1471U, 1481U, 1483U, 1487U, 1489U, 1493U,
|
211
|
+
1499U, 1501U, 1511U, 1513U, 1517U, 1523U, 1531U, 1537U, 1541U, 1543U, 1549U, 1553U, 1559U, 1567U, 1571U, 1577U, 1579U, 1583U, 1591U, 1597U, 1601U, 1607U, 1609U, 1613U,
|
212
|
+
1619U, 1621U, 1627U, 1633U, 1637U, 1643U, 1649U, 1651U, 1657U, 1663U, 1667U, 1669U, 1679U, 1681U, 1691U, 1693U, 1697U, 1699U, 1703U, 1709U, 1711U, 1717U, 1721U, 1723U,
|
213
|
+
1733U, 1739U, 1741U, 1747U, 1751U, 1753U, 1759U, 1763U, 1769U, 1777U, 1781U, 1783U, 1787U, 1789U, 1801U, 1807U, 1811U, 1817U, 1819U, 1823U, 1829U, 1831U, 1843U, 1847U,
|
214
|
+
1849U, 1853U, 1861U, 1867U, 1871U, 1873U, 1877U, 1879U, 1889U, 1891U, 1901U, 1907U, 1909U, 1913U, 1919U, 1921U, 1927U, 1931U, 1933U, 1937U, 1943U, 1949U, 1951U, 1957U,
|
215
|
+
1961U, 1963U, 1973U, 1979U, 1987U, 1993U, 1997U, 1999U, 2003U, 2011U, 2017U, 2021U, 2027U, 2029U, 2033U, 2039U, 2041U, 2047U, 2053U, 2059U, 2063U, 2069U, 2071U, 2077U,
|
216
|
+
2081U, 2083U, 2087U, 2089U, 2099U, 2111U, 2113U, 2117U, 2119U, 2129U, 2131U, 2137U, 2141U, 2143U, 2147U, 2153U, 2159U, 2161U, 2171U, 2173U, 2179U, 2183U, 2197U, 2201U,
|
217
|
+
2203U, 2207U, 2209U, 2213U, 2221U, 2227U, 2231U, 2237U, 2239U, 2243U, 2249U, 2251U, 2257U, 2263U, 2267U, 2269U, 2273U, 2279U, 2281U, 2287U, 2291U, 2293U, 2297U, 2309U};
|
218
|
+
|
219
|
+
// Make this NOT a multiple of 2, 3, 5, 7, or 11.
|
220
|
+
size_t forward11(const size_t &p) { return wheel11[p % 480U] + (p / 480U) * 2310U; }
|
221
|
+
|
222
|
+
size_t backward11(const size_t &n) { return std::distance(wheel11, std::lower_bound(wheel11, wheel11 + 480U, (size_t)(n % 2310U))) + 480U * (size_t)(n / 2310U) + 1U; }
|
223
|
+
|
224
|
+
constexpr unsigned short wheel13[5760U] =
|
225
|
+
{
|
226
|
+
1, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109,
|
227
|
+
113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241,
|
228
|
+
251, 257, 263, 269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367, 373,
|
229
|
+
379, 383, 389, 391, 397, 401, 409, 419, 421, 431, 433, 437, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 493, 499,
|
230
|
+
503, 509, 521, 523, 527, 529, 541, 547, 551, 557, 563, 569, 571, 577, 587, 589, 593, 599, 601, 607, 613, 617, 619, 629,
|
231
|
+
631, 641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 691, 697, 701, 703, 709, 713, 719, 727, 731, 733, 739, 743, 751,
|
232
|
+
757, 761, 769, 773, 779, 787, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839, 841, 851, 853, 857, 859, 863, 877, 881,
|
233
|
+
883, 887, 893, 899, 901, 907, 911, 919, 929, 937, 941, 943, 947, 953, 961, 967, 971, 977, 983, 989, 991, 997, 1003, 1007,
|
234
|
+
1009, 1013, 1019, 1021, 1031, 1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1081, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123,
|
235
|
+
1129, 1139, 1147, 1151, 1153, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213, 1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249,
|
236
|
+
1259, 1271, 1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1333, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
|
237
|
+
1381, 1387, 1399, 1403, 1409, 1411, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1457, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1501,
|
238
|
+
1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549, 1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609, 1613, 1619, 1621,
|
239
|
+
1627, 1633, 1637, 1643, 1649, 1657, 1663, 1667, 1669, 1679, 1681, 1691, 1693, 1697, 1699, 1709, 1711, 1717, 1721, 1723, 1733, 1739, 1741, 1747,
|
240
|
+
1751, 1753, 1759, 1763, 1769, 1777, 1783, 1787, 1789, 1801, 1811, 1817, 1819, 1823, 1829, 1831, 1843, 1847, 1849, 1853, 1861, 1867, 1871, 1873,
|
241
|
+
1877, 1879, 1889, 1891, 1901, 1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1943, 1949, 1951, 1957, 1961, 1973, 1979, 1987, 1993, 1997, 1999,
|
242
|
+
2003, 2011, 2017, 2021, 2027, 2029, 2033, 2039, 2047, 2053, 2059, 2063, 2069, 2071, 2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2129,
|
243
|
+
2131, 2137, 2141, 2143, 2147, 2153, 2159, 2161, 2173, 2179, 2183, 2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2251, 2257,
|
244
|
+
2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297, 2309, 2311, 2323, 2329, 2333, 2339, 2341, 2347, 2351, 2357, 2363, 2369, 2371, 2377,
|
245
|
+
2381, 2383, 2389, 2393, 2399, 2407, 2411, 2413, 2417, 2419, 2423, 2437, 2441, 2447, 2449, 2459, 2461, 2467, 2473, 2477, 2479, 2489, 2491, 2501,
|
246
|
+
2503, 2507, 2521, 2531, 2533, 2537, 2539, 2543, 2549, 2551, 2557, 2567, 2573, 2579, 2581, 2591, 2593, 2599, 2603, 2609, 2617, 2621, 2623, 2627,
|
247
|
+
2633, 2641, 2647, 2657, 2659, 2663, 2669, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2701, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2747, 2749,
|
248
|
+
2753, 2759, 2767, 2771, 2773, 2777, 2789, 2791, 2797, 2801, 2803, 2809, 2813, 2819, 2831, 2833, 2837, 2839, 2843, 2851, 2857, 2861, 2867, 2869,
|
249
|
+
2879, 2881, 2887, 2897, 2903, 2909, 2911, 2917, 2921, 2923, 2927, 2929, 2939, 2941, 2953, 2957, 2963, 2969, 2971, 2983, 2987, 2993, 2999, 3001,
|
250
|
+
3007, 3011, 3013, 3019, 3023, 3037, 3041, 3043, 3049, 3053, 3061, 3067, 3071, 3077, 3079, 3083, 3089, 3097, 3103, 3109, 3119, 3121, 3127, 3131,
|
251
|
+
3137, 3139, 3149, 3151, 3161, 3163, 3167, 3169, 3173, 3181, 3187, 3191, 3193, 3197, 3203, 3209, 3217, 3221, 3229, 3233, 3239, 3247, 3251, 3253,
|
252
|
+
3257, 3259, 3271, 3277, 3281, 3287, 3293, 3299, 3301, 3307, 3313, 3317, 3319, 3323, 3329, 3331, 3337, 3343, 3347, 3349, 3359, 3361, 3371, 3373,
|
253
|
+
3379, 3383, 3389, 3391, 3397, 3401, 3403, 3407, 3413, 3427, 3431, 3433, 3439, 3449, 3457, 3461, 3463, 3467, 3469, 3473, 3481, 3491, 3499, 3503,
|
254
|
+
3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3551, 3557, 3559, 3569, 3571, 3581, 3583, 3587, 3589, 3593, 3599, 3607, 3611, 3613, 3617, 3623,
|
255
|
+
3629, 3631, 3637, 3643, 3649, 3659, 3667, 3671, 3673, 3677, 3683, 3691, 3697, 3701, 3709, 3713, 3719, 3721, 3727, 3733, 3737, 3739, 3743, 3749,
|
256
|
+
3761, 3763, 3767, 3769, 3779, 3781, 3791, 3793, 3797, 3799, 3803, 3811, 3821, 3823, 3827, 3833, 3841, 3847, 3851, 3853, 3859, 3863, 3869, 3877,
|
257
|
+
3881, 3889, 3893, 3901, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3937, 3943, 3947, 3953, 3959, 3961, 3967, 3973, 3977, 3979, 3989, 4001, 4003,
|
258
|
+
4007, 4009, 4013, 4019, 4021, 4027, 4031, 4033, 4049, 4051, 4057, 4061, 4063, 4073, 4079, 4087, 4091, 4093, 4097, 4099, 4111, 4117, 4127, 4129,
|
259
|
+
4133, 4139, 4141, 4153, 4157, 4159, 4163, 4171, 4177, 4181, 4183, 4187, 4189, 4201, 4211, 4217, 4219, 4223, 4229, 4231, 4237, 4241, 4243, 4247,
|
260
|
+
4253, 4259, 4261, 4267, 4271, 4273, 4283, 4289, 4297, 4307, 4309, 4313, 4321, 4327, 4331, 4337, 4339, 4343, 4349, 4351, 4357, 4363, 4369, 4373,
|
261
|
+
4379, 4387, 4391, 4393, 4397, 4399, 4409, 4421, 4423, 4427, 4429, 4439, 4441, 4447, 4451, 4453, 4457, 4463, 4469, 4471, 4481, 4483, 4489, 4493,
|
262
|
+
4507, 4513, 4517, 4519, 4523, 4531, 4541, 4547, 4549, 4553, 4559, 4561, 4567, 4573, 4577, 4579, 4583, 4591, 4597, 4601, 4603, 4607, 4619, 4621,
|
263
|
+
4633, 4637, 4639, 4643, 4649, 4651, 4657, 4661, 4663, 4673, 4679, 4681, 4687, 4691, 4699, 4703, 4709, 4717, 4721, 4723, 4727, 4729, 4733, 4747,
|
264
|
+
4751, 4757, 4759, 4769, 4777, 4783, 4787, 4789, 4793, 4799, 4801, 4811, 4813, 4817, 4819, 4831, 4841, 4843, 4847, 4853, 4859, 4861, 4867, 4871,
|
265
|
+
4877, 4883, 4889, 4891, 4897, 4903, 4909, 4913, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4981, 4987, 4993, 4997, 4999, 5003,
|
266
|
+
5009, 5011, 5017, 5021, 5023, 5029, 5039, 5041, 5051, 5053, 5059, 5063, 5069, 5077, 5081, 5087, 5099, 5101, 5107, 5111, 5113, 5119, 5123, 5129,
|
267
|
+
5141, 5143, 5147, 5149, 5153, 5167, 5171, 5177, 5179, 5183, 5189, 5191, 5197, 5207, 5209, 5219, 5221, 5227, 5231, 5233, 5237, 5249, 5251, 5261,
|
268
|
+
5263, 5267, 5273, 5279, 5281, 5287, 5293, 5297, 5303, 5309, 5311, 5321, 5323, 5329, 5333, 5339, 5347, 5351, 5353, 5359, 5363, 5371, 5377, 5381,
|
269
|
+
5387, 5389, 5393, 5399, 5407, 5413, 5417, 5419, 5429, 5431, 5437, 5441, 5443, 5449, 5459, 5461, 5471, 5477, 5479, 5483, 5491, 5497, 5501, 5503,
|
270
|
+
5507, 5513, 5519, 5521, 5527, 5531, 5539, 5543, 5549, 5557, 5561, 5563, 5567, 5569, 5573, 5581, 5587, 5591, 5597, 5609, 5611, 5617, 5623, 5627,
|
271
|
+
5633, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5671, 5683, 5689, 5693, 5699, 5701, 5711, 5713, 5717, 5723, 5729, 5737, 5741, 5743, 5749,
|
272
|
+
5767, 5771, 5773, 5777, 5779, 5783, 5791, 5801, 5807, 5809, 5813, 5821, 5827, 5833, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881,
|
273
|
+
5891, 5893, 5897, 5899, 5903, 5909, 5911, 5917, 5921, 5923, 5927, 5933, 5939, 5947, 5953, 5959, 5963, 5969, 5977, 5981, 5983, 5987, 5989, 6001,
|
274
|
+
6007, 6011, 6023, 6029, 6031, 6037, 6043, 6047, 6049, 6053, 6059, 6067, 6073, 6077, 6079, 6089, 6091, 6101, 6103, 6107, 6109, 6113, 6119, 6121,
|
275
|
+
6131, 6133, 6137, 6143, 6151, 6157, 6161, 6163, 6169, 6173, 6179, 6187, 6191, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6233, 6239, 6241, 6247,
|
276
|
+
6257, 6263, 6269, 6271, 6277, 6283, 6287, 6289, 6299, 6301, 6311, 6313, 6317, 6319, 6323, 6329, 6337, 6341, 6343, 6353, 6359, 6361, 6367, 6371,
|
277
|
+
6373, 6379, 6389, 6397, 6401, 6403, 6407, 6421, 6427, 6431, 6437, 6439, 6443, 6449, 6451, 6463, 6467, 6469, 6473, 6481, 6491, 6493, 6497, 6499,
|
278
|
+
6509, 6511, 6521, 6527, 6529, 6533, 6541, 6547, 6551, 6553, 6557, 6563, 6569, 6571, 6577, 6581, 6583, 6593, 6599, 6607, 6613, 6619, 6623, 6631,
|
279
|
+
6637, 6641, 6647, 6649, 6653, 6659, 6661, 6667, 6673, 6679, 6683, 6689, 6691, 6697, 6701, 6703, 6707, 6709, 6719, 6731, 6733, 6737, 6739, 6749,
|
280
|
+
6751, 6757, 6761, 6763, 6767, 6779, 6781, 6791, 6793, 6803, 6817, 6821, 6823, 6827, 6829, 6833, 6841, 6847, 6857, 6859, 6863, 6869, 6871, 6883,
|
281
|
+
6887, 6889, 6893, 6899, 6901, 6907, 6911, 6913, 6917, 6931, 6943, 6947, 6949, 6953, 6959, 6961, 6967, 6971, 6973, 6977, 6983, 6989, 6991, 6997,
|
282
|
+
7001, 7003, 7009, 7013, 7019, 7027, 7031, 7037, 7039, 7043, 7057, 7061, 7067, 7069, 7079, 7081, 7087, 7093, 7097, 7099, 7103, 7109, 7121, 7123,
|
283
|
+
7127, 7129, 7141, 7151, 7153, 7157, 7159, 7169, 7171, 7177, 7181, 7187, 7193, 7199, 7201, 7207, 7211, 7213, 7219, 7223, 7229, 7237, 7243, 7247,
|
284
|
+
7253, 7261, 7277, 7279, 7283, 7289, 7291, 7297, 7303, 7307, 7309, 7313, 7321, 7327, 7331, 7333, 7339, 7349, 7351, 7361, 7363, 7367, 7369, 7373,
|
285
|
+
7379, 7387, 7391, 7393, 7409, 7411, 7417, 7421, 7429, 7433, 7439, 7451, 7453, 7457, 7459, 7463, 7471, 7477, 7481, 7487, 7489, 7493, 7499, 7507,
|
286
|
+
7517, 7519, 7523, 7529, 7531, 7537, 7541, 7543, 7547, 7549, 7559, 7561, 7571, 7573, 7577, 7583, 7589, 7591, 7597, 7603, 7607, 7613, 7619, 7621,
|
287
|
+
7627, 7633, 7639, 7643, 7649, 7661, 7663, 7669, 7673, 7681, 7687, 7691, 7697, 7699, 7703, 7717, 7723, 7727, 7729, 7739, 7741, 7747, 7751, 7753,
|
288
|
+
7757, 7759, 7769, 7771, 7781, 7783, 7789, 7793, 7801, 7807, 7811, 7817, 7823, 7829, 7831, 7837, 7841, 7849, 7853, 7859, 7867, 7871, 7873, 7877,
|
289
|
+
7879, 7883, 7897, 7901, 7907, 7913, 7919, 7921, 7927, 7933, 7937, 7939, 7949, 7951, 7957, 7961, 7963, 7967, 7979, 7981, 7991, 7993, 7999, 8003,
|
290
|
+
8009, 8011, 8017, 8023, 8027, 8033, 8039, 8051, 8053, 8059, 8069, 8077, 8081, 8083, 8087, 8089, 8093, 8101, 8111, 8117, 8119, 8123, 8131, 8137,
|
291
|
+
8143, 8147, 8149, 8153, 8159, 8161, 8167, 8171, 8179, 8189, 8191, 8201, 8207, 8209, 8213, 8219, 8221, 8227, 8231, 8233, 8237, 8243, 8249, 8251,
|
292
|
+
8257, 8263, 8269, 8273, 8279, 8287, 8291, 8293, 8297, 8299, 8303, 8311, 8317, 8321, 8329, 8339, 8341, 8347, 8353, 8357, 8363, 8369, 8377, 8381,
|
293
|
+
8383, 8387, 8389, 8399, 8401, 8413, 8417, 8419, 8423, 8429, 8431, 8441, 8443, 8447, 8453, 8461, 8467, 8471, 8473, 8479, 8483, 8497, 8501, 8507,
|
294
|
+
8509, 8513, 8521, 8527, 8531, 8537, 8539, 8543, 8549, 8551, 8557, 8563, 8573, 8579, 8581, 8587, 8597, 8599, 8609, 8611, 8621, 8623, 8627, 8629,
|
295
|
+
8633, 8639, 8641, 8647, 8651, 8653, 8663, 8669, 8677, 8681, 8683, 8689, 8693, 8699, 8707, 8711, 8713, 8717, 8719, 8731, 8737, 8741, 8747, 8753,
|
296
|
+
8759, 8761, 8773, 8777, 8779, 8783, 8791, 8797, 8803, 8807, 8809, 8819, 8821, 8831, 8837, 8839, 8843, 8849, 8851, 8857, 8861, 8863, 8867, 8873,
|
297
|
+
8881, 8887, 8891, 8893, 8903, 8909, 8917, 8923, 8927, 8929, 8933, 8941, 8947, 8951, 8959, 8963, 8969, 8971, 8977, 8989, 8993, 8999, 9001, 9007,
|
298
|
+
9011, 9013, 9017, 9019, 9029, 9041, 9043, 9047, 9049, 9059, 9067, 9071, 9073, 9077, 9083, 9089, 9091, 9101, 9103, 9109, 9127, 9131, 9133, 9137,
|
299
|
+
9143, 9151, 9157, 9161, 9167, 9169, 9173, 9179, 9181, 9187, 9193, 9197, 9199, 9203, 9209, 9211, 9221, 9223, 9227, 9239, 9241, 9253, 9257, 9259,
|
300
|
+
9263, 9271, 9277, 9281, 9283, 9287, 9293, 9299, 9301, 9307, 9311, 9313, 9319, 9323, 9329, 9337, 9341, 9343, 9349, 9353, 9367, 9371, 9377, 9379,
|
301
|
+
9389, 9391, 9397, 9403, 9407, 9409, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9469, 9473, 9479, 9481, 9487, 9491, 9497, 9509,
|
302
|
+
9511, 9517, 9521, 9523, 9533, 9539, 9547, 9551, 9553, 9557, 9563, 9571, 9577, 9587, 9589, 9593, 9599, 9601, 9613, 9617, 9619, 9623, 9629, 9631,
|
303
|
+
9637, 9641, 9643, 9649, 9661, 9671, 9673, 9677, 9679, 9683, 9689, 9697, 9701, 9703, 9707, 9719, 9721, 9727, 9731, 9733, 9739, 9743, 9749, 9761,
|
304
|
+
9767, 9769, 9773, 9781, 9787, 9791, 9797, 9799, 9803, 9809, 9811, 9817, 9827, 9829, 9833, 9839, 9847, 9851, 9853, 9857, 9859, 9869, 9871, 9881,
|
305
|
+
9883, 9887, 9899, 9901, 9907, 9913, 9917, 9923, 9929, 9931, 9937, 9941, 9943, 9949, 9953, 9959, 9967, 9973, 9979, 9983, 9991, 10001, 10007, 10009,
|
306
|
+
10013, 10019, 10027, 10033, 10037, 10039, 10051, 10057, 10061, 10063, 10067, 10069, 10079, 10081, 10091, 10093, 10097, 10099, 10103, 10111, 10117, 10121, 10123, 10133,
|
307
|
+
10139, 10141, 10147, 10151, 10159, 10163, 10169, 10177, 10181, 10183, 10187, 10189, 10193, 10201, 10207, 10211, 10217, 10223, 10229, 10237, 10243, 10247, 10249, 10253,
|
308
|
+
10259, 10261, 10267, 10271, 10273, 10277, 10279, 10289, 10291, 10301, 10303, 10313, 10319, 10321, 10327, 10331, 10333, 10337, 10343, 10349, 10357, 10363, 10369, 10379,
|
309
|
+
10391, 10393, 10397, 10399, 10403, 10411, 10421, 10427, 10429, 10433, 10441, 10447, 10453, 10457, 10459, 10463, 10469, 10471, 10477, 10481, 10487, 10489, 10499, 10501,
|
310
|
+
10511, 10513, 10519, 10523, 10529, 10531, 10537, 10541, 10547, 10553, 10559, 10561, 10567, 10573, 10579, 10583, 10589, 10597, 10601, 10603, 10607, 10609, 10613, 10627,
|
311
|
+
10631, 10639, 10643, 10649, 10651, 10657, 10663, 10667, 10669, 10679, 10687, 10691, 10693, 10697, 10709, 10711, 10721, 10723, 10727, 10729, 10733, 10739, 10741, 10753,
|
312
|
+
10757, 10763, 10771, 10781, 10783, 10789, 10793, 10799, 10807, 10811, 10817, 10819, 10823, 10831, 10837, 10841, 10847, 10849, 10853, 10859, 10861, 10867, 10873, 10877,
|
313
|
+
10883, 10889, 10891, 10897, 10903, 10909, 10919, 10921, 10931, 10937, 10939, 10943, 10949, 10951, 10957, 10961, 10963, 10973, 10979, 10981, 10987, 10991, 10993, 10999,
|
314
|
+
11003, 11009, 11017, 11021, 11023, 11027, 11029, 11041, 11047, 11051, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11101, 11107, 11111, 11113, 11117, 11119, 11129,
|
315
|
+
11131, 11147, 11149, 11153, 11159, 11161, 11171, 11173, 11177, 11183, 11189, 11191, 11197, 11201, 11203, 11213, 11227, 11233, 11237, 11239, 11243, 11251, 11257, 11261,
|
316
|
+
11267, 11269, 11273, 11279, 11281, 11287, 11293, 11299, 11303, 11309, 11311, 11317, 11321, 11327, 11329, 11339, 11351, 11353, 11357, 11359, 11369, 11371, 11377, 11381,
|
317
|
+
11383, 11387, 11393, 11399, 11411, 11413, 11419, 11423, 11437, 11441, 11443, 11447, 11449, 11461, 11467, 11471, 11477, 11483, 11489, 11491, 11497, 11503, 11507, 11509,
|
318
|
+
11513, 11519, 11521, 11527, 11533, 11537, 11549, 11551, 11563, 11567, 11569, 11573, 11579, 11581, 11587, 11591, 11593, 11597, 11603, 11611, 11617, 11621, 11623, 11629,
|
319
|
+
11633, 11639, 11647, 11651, 11653, 11657, 11659, 11663, 11677, 11681, 11689, 11699, 11701, 11707, 11717, 11719, 11723, 11729, 11731, 11741, 11743, 11747, 11749, 11761,
|
320
|
+
11771, 11773, 11777, 11779, 11783, 11789, 11797, 11801, 11807, 11813, 11819, 11821, 11827, 11831, 11833, 11839, 11849, 11857, 11861, 11863, 11867, 11873, 11881, 11887,
|
321
|
+
11897, 11899, 11903, 11909, 11911, 11917, 11923, 11927, 11929, 11933, 11939, 11941, 11951, 11953, 11959, 11969, 11971, 11981, 11983, 11987, 11989, 11993, 12007, 12011,
|
322
|
+
12013, 12017, 12029, 12031, 12037, 12041, 12043, 12049, 12053, 12059, 12071, 12073, 12079, 12083, 12091, 12097, 12101, 12107, 12109, 12113, 12119, 12121, 12127, 12137,
|
323
|
+
12139, 12143, 12149, 12151, 12157, 12161, 12163, 12167, 12169, 12179, 12191, 12193, 12197, 12203, 12209, 12211, 12217, 12223, 12227, 12239, 12241, 12247, 12251, 12253,
|
324
|
+
12263, 12269, 12277, 12281, 12283, 12289, 12293, 12301, 12307, 12317, 12319, 12323, 12329, 12343, 12347, 12349, 12359, 12361, 12367, 12371, 12373, 12377, 12379, 12391,
|
325
|
+
12401, 12403, 12407, 12409, 12413, 12421, 12427, 12431, 12433, 12437, 12443, 12449, 12451, 12457, 12461, 12469, 12473, 12479, 12487, 12491, 12497, 12499, 12503, 12511,
|
326
|
+
12517, 12521, 12527, 12533, 12539, 12541, 12547, 12553, 12557, 12559, 12563, 12569, 12577, 12581, 12583, 12587, 12589, 12599, 12601, 12611, 12613, 12619, 12629, 12631,
|
327
|
+
12637, 12641, 12643, 12647, 12653, 12659, 12667, 12671, 12673, 12679, 12689, 12697, 12703, 12707, 12709, 12713, 12721, 12731, 12737, 12739, 12743, 12751, 12757, 12763,
|
328
|
+
12767, 12769, 12773, 12781, 12787, 12791, 12797, 12799, 12809, 12811, 12821, 12823, 12827, 12829, 12833, 12839, 12841, 12847, 12851, 12853, 12863, 12869, 12871, 12877,
|
329
|
+
12889, 12893, 12899, 12907, 12911, 12913, 12917, 12919, 12923, 12931, 12937, 12941, 12949, 12953, 12959, 12967, 12973, 12977, 12979, 12983, 12989, 12997, 13001, 13003,
|
330
|
+
13007, 13009, 13019, 13021, 13031, 13033, 13037, 13043, 13049, 13051, 13061, 13063, 13067, 13073, 13081, 13087, 13093, 13099, 13103, 13109, 13121, 13127, 13129, 13133,
|
331
|
+
13141, 13147, 13151, 13157, 13159, 13163, 13171, 13177, 13183, 13187, 13193, 13199, 13201, 13207, 13213, 13217, 13219, 13229, 13231, 13241, 13243, 13249, 13253, 13259,
|
332
|
+
13261, 13267, 13271, 13283, 13289, 13291, 13297, 13301, 13303, 13309, 13313, 13319, 13327, 13331, 13333, 13337, 13339, 13357, 13361, 13367, 13369, 13373, 13379, 13381,
|
333
|
+
13393, 13397, 13399, 13411, 13417, 13421, 13423, 13427, 13439, 13441, 13451, 13457, 13459, 13463, 13469, 13471, 13477, 13483, 13487, 13493, 13499, 13501, 13511, 13513,
|
334
|
+
13523, 13529, 13537, 13543, 13547, 13549, 13553, 13561, 13567, 13571, 13577, 13579, 13583, 13589, 13591, 13597, 13603, 13609, 13613, 13619, 13621, 13627, 13631, 13633,
|
335
|
+
13639, 13649, 13661, 13667, 13669, 13679, 13681, 13687, 13691, 13693, 13697, 13703, 13709, 13711, 13721, 13723, 13729, 13733, 13747, 13751, 13753, 13757, 13759, 13763,
|
336
|
+
13771, 13777, 13781, 13787, 13789, 13799, 13801, 13807, 13813, 13817, 13823, 13829, 13831, 13837, 13841, 13843, 13847, 13859, 13861, 13873, 13877, 13879, 13883, 13889,
|
337
|
+
13891, 13901, 13903, 13907, 13913, 13919, 13921, 13927, 13931, 13933, 13939, 13943, 13957, 13961, 13963, 13967, 13969, 13973, 13987, 13991, 13997, 13999, 14009, 14011,
|
338
|
+
14017, 14023, 14029, 14033, 14039, 14041, 14051, 14057, 14059, 14071, 14081, 14083, 14087, 14089, 14093, 14099, 14101, 14107, 14111, 14117, 14123, 14129, 14137, 14141,
|
339
|
+
14143, 14149, 14153, 14159, 14167, 14171, 14173, 14177, 14191, 14197, 14207, 14213, 14219, 14221, 14227, 14233, 14237, 14239, 14243, 14249, 14251, 14257, 14263, 14269,
|
340
|
+
14279, 14281, 14291, 14293, 14297, 14299, 14303, 14309, 14317, 14321, 14323, 14327, 14341, 14347, 14351, 14353, 14359, 14363, 14369, 14381, 14383, 14387, 14389, 14393,
|
341
|
+
14401, 14407, 14411, 14419, 14423, 14429, 14431, 14437, 14447, 14449, 14453, 14459, 14461, 14467, 14471, 14473, 14477, 14479, 14489, 14491, 14501, 14503, 14507, 14513,
|
342
|
+
14519, 14527, 14533, 14537, 14543, 14549, 14551, 14557, 14561, 14563, 14569, 14579, 14587, 14591, 14593, 14603, 14611, 14617, 14621, 14627, 14629, 14633, 14639, 14647,
|
343
|
+
14653, 14657, 14659, 14669, 14671, 14681, 14683, 14687, 14689, 14699, 14701, 14711, 14713, 14717, 14719, 14723, 14731, 14737, 14741, 14743, 14747, 14753, 14759, 14761,
|
344
|
+
14767, 14771, 14779, 14783, 14789, 14797, 14801, 14803, 14809, 14813, 14821, 14827, 14831, 14837, 14843, 14849, 14851, 14857, 14863, 14867, 14869, 14873, 14879, 14881,
|
345
|
+
14887, 14891, 14893, 14897, 14899, 14909, 14921, 14923, 14929, 14933, 14939, 14941, 14947, 14951, 14953, 14957, 14969, 14977, 14981, 14983, 14999, 15007, 15011, 15013,
|
346
|
+
15017, 15019, 15023, 15031, 15047, 15049, 15053, 15061, 15073, 15077, 15079, 15083, 15089, 15091, 15097, 15101, 15107, 15109, 15121, 15131, 15133, 15137, 15139, 15143,
|
347
|
+
15149, 15151, 15157, 15161, 15163, 15167, 15173, 15179, 15181, 15187, 15193, 15199, 15203, 15209, 15217, 15221, 15227, 15229, 15233, 15241, 15247, 15251, 15259, 15263,
|
348
|
+
15269, 15271, 15277, 15283, 15287, 15289, 15293, 15299, 15307, 15311, 15313, 15317, 15319, 15329, 15331, 15341, 15343, 15347, 15349, 15359, 15361, 15371, 15373, 15377,
|
349
|
+
15383, 15391, 15397, 15401, 15403, 15409, 15413, 15419, 15427, 15437, 15439, 15443, 15451, 15461, 15467, 15469, 15473, 15479, 15481, 15487, 15493, 15497, 15503, 15511,
|
350
|
+
15517, 15523, 15527, 15529, 15539, 15541, 15551, 15553, 15557, 15559, 15563, 15569, 15571, 15577, 15581, 15583, 15593, 15599, 15601, 15607, 15611, 15619, 15623, 15629,
|
351
|
+
15637, 15641, 15643, 15647, 15649, 15661, 15667, 15671, 15677, 15679, 15683, 15689, 15703, 15707, 15709, 15713, 15721, 15727, 15731, 15733, 15737, 15739, 15749, 15751,
|
352
|
+
15761, 15767, 15773, 15779, 15781, 15787, 15791, 15793, 15797, 15803, 15809, 15811, 15817, 15823, 15833, 15839, 15853, 15857, 15859, 15863, 15871, 15877, 15881, 15887,
|
353
|
+
15889, 15893, 15901, 15907, 15913, 15919, 15923, 15929, 15931, 15937, 15941, 15943, 15947, 15949, 15959, 15971, 15973, 15979, 15989, 15991, 15997, 16001, 16007, 16013,
|
354
|
+
16019, 16021, 16031, 16033, 16039, 16043, 16057, 16061, 16063, 16067, 16069, 16073, 16087, 16091, 16097, 16099, 16103, 16109, 16111, 16117, 16123, 16127, 16129, 16139,
|
355
|
+
16141, 16147, 16151, 16153, 16157, 16169, 16171, 16183, 16187, 16189, 16193, 16199, 16201, 16207, 16213, 16217, 16223, 16229, 16231, 16241, 16243, 16249, 16253, 16259,
|
356
|
+
16267, 16271, 16273, 16277, 16279, 16283, 16297, 16301, 16307, 16309, 16319, 16321, 16327, 16333, 16337, 16339, 16343, 16349, 16351, 16361, 16363, 16369, 16381, 16391,
|
357
|
+
16397, 16399, 16403, 16409, 16411, 16417, 16421, 16427, 16433, 16439, 16441, 16447, 16451, 16453, 16459, 16463, 16469, 16477, 16481, 16483, 16487, 16493, 16501, 16507,
|
358
|
+
16517, 16519, 16529, 16531, 16537, 16543, 16547, 16553, 16559, 16561, 16567, 16571, 16573, 16579, 16589, 16591, 16603, 16607, 16609, 16613, 16619, 16631, 16633, 16637,
|
359
|
+
16649, 16651, 16657, 16661, 16663, 16669, 16673, 16691, 16693, 16697, 16699, 16703, 16711, 16717, 16721, 16727, 16729, 16733, 16739, 16741, 16747, 16759, 16763, 16769,
|
360
|
+
16771, 16777, 16781, 16787, 16789, 16799, 16801, 16811, 16813, 16817, 16823, 16829, 16831, 16837, 16843, 16847, 16853, 16859, 16867, 16871, 16873, 16879, 16883, 16889,
|
361
|
+
16897, 16901, 16903, 16909, 16921, 16927, 16931, 16937, 16943, 16949, 16957, 16963, 16967, 16969, 16979, 16981, 16987, 16993, 16997, 16999, 17009, 17011, 17021, 17023,
|
362
|
+
17027, 17029, 17033, 17041, 17047, 17051, 17053, 17057, 17063, 17071, 17077, 17081, 17089, 17093, 17099, 17107, 17111, 17113, 17117, 17119, 17123, 17131, 17137, 17141,
|
363
|
+
17153, 17159, 17161, 17167, 17177, 17179, 17183, 17189, 17191, 17197, 17201, 17203, 17207, 17209, 17219, 17221, 17231, 17233, 17239, 17243, 17249, 17257, 17261, 17263,
|
364
|
+
17267, 17273, 17279, 17287, 17291, 17293, 17299, 17309, 17317, 17321, 17323, 17327, 17333, 17341, 17351, 17357, 17359, 17363, 17371, 17377, 17383, 17387, 17389, 17393,
|
365
|
+
17399, 17401, 17411, 17417, 17419, 17429, 17431, 17441, 17443, 17447, 17449, 17453, 17461, 17467, 17471, 17473, 17477, 17483, 17489, 17491, 17497, 17503, 17509, 17513,
|
366
|
+
17519, 17527, 17531, 17533, 17539, 17543, 17551, 17557, 17561, 17569, 17573, 17579, 17581, 17587, 17593, 17597, 17599, 17603, 17609, 17617, 17621, 17623, 17627, 17629,
|
367
|
+
17639, 17651, 17653, 17657, 17659, 17663, 17669, 17671, 17681, 17683, 17687, 17701, 17707, 17711, 17713, 17723, 17729, 17737, 17741, 17747, 17749, 17753, 17761, 17767,
|
368
|
+
17777, 17779, 17783, 17789, 17791, 17803, 17807, 17813, 17819, 17821, 17827, 17833, 17837, 17839, 17851, 17861, 17863, 17867, 17869, 17873, 17879, 17881, 17887, 17891,
|
369
|
+
17893, 17903, 17909, 17911, 17917, 17921, 17923, 17929, 17933, 17939, 17947, 17951, 17957, 17959, 17971, 17977, 17981, 17987, 17989, 17993, 17999, 18001, 18013, 18017,
|
370
|
+
18019, 18023, 18037, 18041, 18043, 18047, 18049, 18059, 18061, 18071, 18077, 18079, 18089, 18091, 18097, 18101, 18103, 18107, 18113, 18119, 18121, 18127, 18131, 18133,
|
371
|
+
18143, 18149, 18157, 18163, 18167, 18169, 18173, 18181, 18191, 18197, 18199, 18203, 18209, 18211, 18217, 18223, 18229, 18233, 18241, 18247, 18251, 18253, 18257, 18259,
|
372
|
+
18269, 18281, 18283, 18287, 18289, 18299, 18301, 18307, 18311, 18313, 18323, 18329, 18331, 18341, 18349, 18353, 18367, 18371, 18373, 18377, 18379, 18383, 18391, 18397,
|
373
|
+
18401, 18407, 18409, 18413, 18419, 18427, 18433, 18437, 18439, 18443, 18449, 18451, 18457, 18461, 18463, 18467, 18479, 18481, 18493, 18497, 18503, 18509, 18511, 18517,
|
374
|
+
18521, 18523, 18527, 18533, 18539, 18541, 18547, 18553, 18559, 18563, 18569, 18581, 18583, 18587, 18589, 18593, 18607, 18611, 18617, 18619, 18631, 18637, 18643, 18647,
|
375
|
+
18649, 18653, 18659, 18661, 18671, 18673, 18677, 18679, 18691, 18701, 18703, 18709, 18713, 18719, 18721, 18727, 18731, 18737, 18743, 18749, 18751, 18757, 18761, 18763,
|
376
|
+
18769, 18773, 18779, 18787, 18791, 18793, 18797, 18803, 18817, 18827, 18829, 18833, 18839, 18841, 18847, 18853, 18857, 18859, 18869, 18871, 18877, 18881, 18883, 18899,
|
377
|
+
18901, 18911, 18913, 18917, 18919, 18923, 18929, 18937, 18943, 18947, 18959, 18961, 18971, 18973, 18979, 18983, 18989, 19001, 19003, 19007, 19009, 19013, 19021, 19027,
|
378
|
+
19031, 19037, 19039, 19043, 19049, 19051, 19057, 19067, 19069, 19073, 19079, 19081, 19087, 19091, 19093, 19099, 19109, 19111, 19121, 19127, 19133, 19139, 19141, 19147,
|
379
|
+
19153, 19157, 19163, 19169, 19171, 19177, 19181, 19183, 19189, 19193, 19199, 19207, 19211, 19213, 19219, 19223, 19231, 19237, 19241, 19247, 19249, 19259, 19267, 19273,
|
380
|
+
19277, 19289, 19291, 19297, 19301, 19303, 19307, 19309, 19319, 19321, 19333, 19337, 19339, 19343, 19351, 19361, 19363, 19367, 19373, 19379, 19381, 19387, 19391, 19399,
|
381
|
+
19403, 19417, 19421, 19423, 19427, 19429, 19433, 19441, 19447, 19451, 19457, 19463, 19469, 19471, 19477, 19483, 19489, 19493, 19499, 19501, 19507, 19511, 19517, 19519,
|
382
|
+
19529, 19531, 19541, 19543, 19549, 19553, 19559, 19561, 19567, 19571, 19573, 19577, 19583, 19589, 19597, 19601, 19603, 19609, 19619, 19627, 19631, 19633, 19637, 19639,
|
383
|
+
19651, 19661, 19667, 19673, 19681, 19687, 19693, 19697, 19699, 19703, 19709, 19711, 19717, 19727, 19729, 19739, 19741, 19751, 19753, 19757, 19759, 19763, 19769, 19771,
|
384
|
+
19777, 19781, 19783, 19787, 19793, 19801, 19807, 19813, 19819, 19823, 19829, 19837, 19841, 19843, 19847, 19849, 19853, 19861, 19867, 19871, 19879, 19883, 19889, 19891,
|
385
|
+
19897, 19907, 19909, 19913, 19919, 19927, 19931, 19933, 19937, 19939, 19949, 19951, 19961, 19963, 19967, 19969, 19973, 19979, 19991, 19993, 19997, 20003, 20011, 20017,
|
386
|
+
20021, 20023, 20029, 20039, 20047, 20051, 20057, 20063, 20071, 20077, 20081, 20087, 20089, 20093, 20099, 20101, 20107, 20113, 20117, 20123, 20129, 20131, 20143, 20147,
|
387
|
+
20149, 20159, 20161, 20171, 20173, 20177, 20179, 20183, 20191, 20197, 20201, 20203, 20213, 20219, 20221, 20227, 20231, 20233, 20239, 20243, 20249, 20257, 20261, 20263,
|
388
|
+
20269, 20281, 20287, 20291, 20297, 20299, 20303, 20309, 20311, 20323, 20327, 20329, 20333, 20341, 20347, 20351, 20353, 20357, 20359, 20369, 20381, 20387, 20389, 20393,
|
389
|
+
20399, 20401, 20407, 20411, 20413, 20417, 20429, 20431, 20437, 20441, 20443, 20453, 20459, 20467, 20473, 20477, 20479, 20483, 20491, 20497, 20507, 20509, 20513, 20519,
|
390
|
+
20521, 20533, 20539, 20543, 20549, 20551, 20557, 20561, 20563, 20567, 20569, 20591, 20593, 20597, 20599, 20609, 20611, 20617, 20621, 20623, 20627, 20633, 20639, 20641,
|
391
|
+
20651, 20653, 20659, 20663, 20677, 20681, 20687, 20689, 20693, 20701, 20707, 20711, 20717, 20719, 20723, 20729, 20731, 20737, 20743, 20747, 20749, 20753, 20759, 20767,
|
392
|
+
20771, 20773, 20777, 20789, 20791, 20803, 20807, 20809, 20819, 20821, 20827, 20831, 20833, 20837, 20843, 20849, 20851, 20857, 20861, 20863, 20869, 20873, 20879, 20887,
|
393
|
+
20893, 20897, 20899, 20903, 20921, 20927, 20929, 20939, 20941, 20947, 20953, 20957, 20959, 20963, 20971, 20981, 20983, 20987, 20989, 21001, 21011, 21013, 21017, 21019,
|
394
|
+
21023, 21029, 21031, 21037, 21041, 21053, 21059, 21061, 21067, 21071, 21079, 21083, 21089, 21097, 21101, 21103, 21107, 21113, 21121, 21127, 21137, 21139, 21143, 21149,
|
395
|
+
21157, 21163, 21167, 21169, 21173, 21179, 21181, 21187, 21191, 21193, 21199, 21209, 21211, 21221, 21223, 21227, 21233, 21239, 21247, 21251, 21253, 21257, 21269, 21271,
|
396
|
+
21277, 21283, 21289, 21293, 21299, 21311, 21313, 21317, 21319, 21323, 21331, 21337, 21341, 21347, 21349, 21353, 21361, 21367, 21377, 21379, 21383, 21389, 21391, 21397,
|
397
|
+
21401, 21403, 21407, 21409, 21419, 21421, 21431, 21433, 21443, 21449, 21451, 21457, 21467, 21473, 21479, 21481, 21487, 21491, 21493, 21499, 21503, 21509, 21517, 21521,
|
398
|
+
21523, 21529, 21533, 21547, 21551, 21557, 21559, 21563, 21569, 21577, 21583, 21587, 21589, 21599, 21601, 21607, 21611, 21613, 21617, 21629, 21631, 21641, 21643, 21647,
|
399
|
+
21649, 21653, 21661, 21667, 21673, 21677, 21683, 21689, 21691, 21701, 21709, 21713, 21719, 21727, 21731, 21733, 21737, 21739, 21743, 21751, 21757, 21761, 21767, 21773,
|
400
|
+
21779, 21781, 21787, 21793, 21797, 21799, 21803, 21809, 21811, 21817, 21821, 21823, 21829, 21839, 21841, 21851, 21859, 21863, 21869, 21871, 21877, 21881, 21883, 21887,
|
401
|
+
21893, 21899, 21907, 21911, 21913, 21919, 21929, 21937, 21941, 21943, 21947, 21949, 21953, 21961, 21971, 21977, 21979, 21991, 21997, 22003, 22007, 22013, 22019, 22021,
|
402
|
+
22027, 22031, 22037, 22039, 22049, 22051, 22063, 22067, 22069, 22073, 22079, 22081, 22091, 22093, 22097, 22103, 22109, 22111, 22117, 22123, 22129, 22133, 22147, 22151,
|
403
|
+
22153, 22157, 22159, 22163, 22171, 22177, 22181, 22189, 22193, 22199, 22201, 22207, 22213, 22219, 22223, 22229, 22237, 22241, 22247, 22249, 22259, 22261, 22271, 22273,
|
404
|
+
22277, 22279, 22283, 22289, 22291, 22301, 22303, 22307, 22313, 22327, 22331, 22333, 22339, 22343, 22349, 22357, 22361, 22367, 22369, 22381, 22387, 22391, 22397, 22403,
|
405
|
+
22409, 22411, 22417, 22423, 22427, 22433, 22439, 22441, 22447, 22453, 22457, 22459, 22469, 22471, 22481, 22483, 22487, 22489, 22493, 22499, 22501, 22507, 22511, 22513,
|
406
|
+
22523, 22531, 22537, 22541, 22543, 22549, 22553, 22559, 22567, 22571, 22573, 22577, 22579, 22591, 22597, 22601, 22609, 22613, 22619, 22621, 22637, 22639, 22643, 22651,
|
407
|
+
22657, 22661, 22663, 22667, 22669, 22679, 22681, 22691, 22697, 22699, 22703, 22709, 22717, 22721, 22723, 22727, 22733, 22739, 22741, 22747, 22751, 22753, 22769, 22777,
|
408
|
+
22783, 22787, 22793, 22801, 22807, 22811, 22817, 22819, 22823, 22829, 22831, 22837, 22843, 22849, 22853, 22859, 22861, 22871, 22873, 22877, 22879, 22889, 22901, 22903,
|
409
|
+
22907, 22909, 22921, 22927, 22931, 22933, 22937, 22943, 22949, 22951, 22961, 22963, 22969, 22973, 22987, 22991, 22993, 22999, 23003, 23011, 23017, 23021, 23027, 23029,
|
410
|
+
23033, 23039, 23041, 23047, 23053, 23057, 23059, 23063, 23069, 23071, 23077, 23081, 23083, 23087, 23099, 23113, 23117, 23119, 23123, 23129, 23131, 23137, 23141, 23143,
|
411
|
+
23147, 23159, 23161, 23167, 23171, 23173, 23183, 23189, 23197, 23201, 23203, 23207, 23209, 23213, 23227, 23237, 23239, 23249, 23251, 23263, 23267, 23269, 23273, 23279,
|
412
|
+
23281, 23291, 23293, 23297, 23299, 23311, 23321, 23323, 23327, 23329, 23333, 23339, 23341, 23347, 23351, 23357, 23363, 23369, 23371, 23377, 23381, 23383, 23389, 23393,
|
413
|
+
23399, 23407, 23411, 23417, 23423, 23431, 23437, 23447, 23449, 23453, 23459, 23461, 23467, 23473, 23477, 23479, 23483, 23489, 23497, 23501, 23503, 23509, 23519, 23521,
|
414
|
+
23531, 23533, 23537, 23539, 23549, 23557, 23561, 23563, 23567, 23579, 23581, 23587, 23591, 23593, 23599, 23603, 23609, 23623, 23627, 23629, 23633, 23641, 23651, 23657,
|
415
|
+
23659, 23663, 23669, 23671, 23677, 23687, 23689, 23693, 23701, 23707, 23711, 23713, 23717, 23719, 23729, 23731, 23741, 23743, 23747, 23753, 23759, 23761, 23767, 23773,
|
416
|
+
23783, 23789, 23791, 23797, 23801, 23809, 23813, 23819, 23827, 23831, 23833, 23839, 23843, 23851, 23857, 23861, 23867, 23869, 23873, 23879, 23887, 23893, 23897, 23899,
|
417
|
+
23909, 23911, 23917, 23921, 23923, 23927, 23929, 23939, 23941, 23951, 23953, 23957, 23963, 23971, 23977, 23981, 23983, 23987, 23993, 23999, 24001, 24007, 24019, 24023,
|
418
|
+
24029, 24041, 24043, 24047, 24049, 24053, 24061, 24067, 24071, 24077, 24083, 24091, 24097, 24103, 24107, 24109, 24113, 24119, 24121, 24127, 24131, 24133, 24137, 24139,
|
419
|
+
24149, 24151, 24161, 24163, 24169, 24173, 24179, 24181, 24187, 24191, 24197, 24203, 24209, 24217, 24221, 24223, 24229, 24239, 24247, 24251, 24253, 24257, 24259, 24263,
|
420
|
+
24281, 24287, 24289, 24293, 24301, 24307, 24313, 24317, 24319, 24329, 24331, 24337, 24341, 24347, 24359, 24361, 24371, 24373, 24377, 24379, 24383, 24389, 24391, 24397,
|
421
|
+
24403, 24407, 24413, 24419, 24421, 24433, 24439, 24443, 24449, 24457, 24461, 24463, 24467, 24469, 24473, 24481, 24487, 24491, 24499, 24503, 24509, 24511, 24517, 24523,
|
422
|
+
24527, 24529, 24533, 24539, 24547, 24551, 24553, 24559, 24569, 24571, 24581, 24587, 24589, 24593, 24599, 24601, 24611, 24613, 24617, 24623, 24631, 24637, 24641, 24643,
|
423
|
+
24649, 24653, 24659, 24667, 24671, 24677, 24679, 24683, 24691, 24697, 24701, 24707, 24709, 24719, 24721, 24727, 24733, 24737, 24743, 24749, 24751, 24757, 24763, 24767,
|
424
|
+
24769, 24779, 24781, 24793, 24797, 24799, 24803, 24809, 24811, 24821, 24823, 24833, 24839, 24841, 24847, 24851, 24853, 24859, 24863, 24877, 24881, 24883, 24887, 24889,
|
425
|
+
24901, 24907, 24911, 24917, 24919, 24923, 24929, 24931, 24943, 24949, 24953, 24961, 24967, 24971, 24977, 24979, 24989, 24991, 25001, 25007, 25009, 25013, 25019, 25021,
|
426
|
+
25027, 25031, 25033, 25037, 25043, 25049, 25057, 25061, 25063, 25073, 25079, 25087, 25093, 25097, 25099, 25111, 25117, 25121, 25127, 25133, 25139, 25141, 25147, 25153,
|
427
|
+
25159, 25163, 25169, 25171, 25177, 25183, 25187, 25189, 25199, 25211, 25213, 25217, 25219, 25229, 25231, 25237, 25241, 25243, 25247, 25253, 25261, 25271, 25273, 25279,
|
428
|
+
25283, 25297, 25301, 25303, 25307, 25309, 25313, 25321, 25327, 25331, 25339, 25343, 25349, 25351, 25357, 25367, 25369, 25373, 25379, 25381, 25387, 25391, 25393, 25397,
|
429
|
+
25409, 25411, 25423, 25427, 25429, 25433, 25439, 25447, 25451, 25453, 25457, 25463, 25469, 25471, 25477, 25481, 25483, 25489, 25499, 25507, 25511, 25513, 25517, 25523,
|
430
|
+
25537, 25541, 25547, 25549, 25559, 25561, 25567, 25573, 25577, 25579, 25583, 25589, 25591, 25601, 25603, 25607, 25609, 25621, 25631, 25633, 25637, 25639, 25643, 25651,
|
431
|
+
25657, 25661, 25667, 25673, 25679, 25681, 25687, 25691, 25693, 25699, 25703, 25709, 25717, 25721, 25723, 25733, 25741, 25747, 25757, 25759, 25763, 25769, 25771, 25777,
|
432
|
+
25783, 25787, 25789, 25793, 25799, 25801, 25807, 25811, 25813, 25819, 25829, 25841, 25843, 25847, 25849, 25853, 25859, 25867, 25871, 25873, 25877, 25889, 25891, 25897,
|
433
|
+
25901, 25903, 25913, 25919, 25931, 25933, 25937, 25939, 25943, 25951, 25957, 25967, 25969, 25973, 25979, 25981, 25997, 25999, 26003, 26009, 26011, 26017, 26021, 26023,
|
434
|
+
26027, 26029, 26041, 26051, 26053, 26057, 26063, 26069, 26071, 26077, 26083, 26087, 26093, 26099, 26101, 26107, 26111, 26113, 26119, 26123, 26129, 26137, 26141, 26149,
|
435
|
+
26153, 26161, 26167, 26171, 26177, 26179, 26183, 26189, 26197, 26203, 26207, 26209, 26219, 26227, 26231, 26233, 26237, 26239, 26249, 26251, 26261, 26263, 26267, 26269,
|
436
|
+
26281, 26287, 26291, 26293, 26297, 26303, 26309, 26311, 26317, 26321, 26329, 26333, 26339, 26347, 26353, 26357, 26359, 26363, 26371, 26381, 26387, 26393, 26399, 26401,
|
437
|
+
26407, 26413, 26417, 26419, 26423, 26431, 26437, 26441, 26443, 26447, 26449, 26459, 26461, 26471, 26473, 26479, 26483, 26489, 26491, 26497, 26501, 26503, 26513, 26519,
|
438
|
+
26527, 26531, 26539, 26549, 26557, 26561, 26563, 26567, 26569, 26573, 26581, 26591, 26597, 26599, 26603, 26617, 26623, 26627, 26629, 26633, 26639, 26641, 26647, 26651,
|
439
|
+
26657, 26659, 26669, 26671, 26681, 26683, 26687, 26693, 26699, 26701, 26707, 26711, 26713, 26717, 26723, 26729, 26731, 26737, 26743, 26749, 26753, 26759, 26771, 26773,
|
440
|
+
26777, 26779, 26783, 26791, 26797, 26801, 26809, 26813, 26821, 26827, 26833, 26837, 26839, 26843, 26849, 26857, 26861, 26863, 26867, 26869, 26879, 26881, 26891, 26893,
|
441
|
+
26899, 26903, 26909, 26911, 26921, 26927, 26933, 26941, 26947, 26951, 26953, 26959, 26963, 26969, 26977, 26981, 26987, 26989, 26993, 27007, 27011, 27017, 27019, 27023,
|
442
|
+
27029, 27031, 27037, 27043, 27047, 27059, 27061, 27067, 27073, 27077, 27089, 27091, 27101, 27103, 27107, 27109, 27113, 27119, 27121, 27127, 27133, 27143, 27149, 27151,
|
443
|
+
27161, 27163, 27169, 27173, 27179, 27187, 27191, 27193, 27197, 27199, 27211, 27217, 27221, 27227, 27229, 27233, 27239, 27241, 27253, 27257, 27259, 27263, 27271, 27277,
|
444
|
+
27281, 27283, 27289, 27299, 27301, 27311, 27317, 27319, 27323, 27329, 27331, 27337, 27341, 27343, 27347, 27353, 27359, 27361, 27367, 27371, 27373, 27383, 27389, 27397,
|
445
|
+
27403, 27407, 27409, 27413, 27421, 27427, 27431, 27437, 27439, 27449, 27451, 27457, 27463, 27473, 27479, 27481, 27487, 27491, 27493, 27497, 27499, 27509, 27523, 27527,
|
446
|
+
27529, 27539, 27541, 27551, 27553, 27557, 27563, 27569, 27571, 27581, 27583, 27589, 27593, 27607, 27611, 27613, 27617, 27619, 27623, 27631, 27637, 27641, 27647, 27649,
|
447
|
+
27653, 27659, 27661, 27667, 27673, 27679, 27683, 27689, 27691, 27697, 27701, 27707, 27719, 27721, 27733, 27737, 27739, 27743, 27749, 27751, 27757, 27761, 27763, 27767,
|
448
|
+
27773, 27779, 27787, 27791, 27793, 27799, 27803, 27809, 27817, 27821, 27823, 27827, 27829, 27847, 27851, 27857, 27869, 27871, 27877, 27883, 27887, 27889, 27893, 27899,
|
449
|
+
27901, 27913, 27917, 27919, 27931, 27941, 27943, 27947, 27949, 27953, 27959, 27961, 27967, 27971, 27977, 27983, 27991, 27997, 28001, 28003, 28009, 28013, 28019, 28027,
|
450
|
+
28031, 28033, 28037, 28043, 28051, 28057, 28069, 28073, 28079, 28081, 28087, 28097, 28099, 28103, 28109, 28111, 28117, 28121, 28123, 28129, 28139, 28141, 28151, 28153,
|
451
|
+
28157, 28159, 28163, 28169, 28177, 28181, 28183, 28187, 28199, 28201, 28207, 28211, 28213, 28219, 28229, 28241, 28243, 28247, 28253, 28261, 28267, 28271, 28277, 28279,
|
452
|
+
28283, 28289, 28291, 28297, 28307, 28309, 28313, 28319, 28321, 28331, 28333, 28337, 28339, 28349, 28351, 28361, 28363, 28367, 28373, 28381, 28387, 28393, 28397, 28403,
|
453
|
+
28409, 28411, 28417, 28421, 28423, 28429, 28433, 28439, 28447, 28451, 28453, 28459, 28463, 28471, 28477, 28481, 28487, 28489, 28493, 28499, 28507, 28513, 28517, 28519,
|
454
|
+
28529, 28531, 28537, 28541, 28543, 28547, 28549, 28559, 28571, 28573, 28577, 28579, 28583, 28591, 28597, 28601, 28603, 28607, 28619, 28621, 28627, 28631, 28643, 28649,
|
455
|
+
28657, 28661, 28663, 28667, 28669, 28673, 28681, 28687, 28697, 28703, 28709, 28711, 28723, 28727, 28729, 28733, 28739, 28741, 28747, 28751, 28753, 28757, 28759, 28771,
|
456
|
+
28781, 28783, 28789, 28793, 28799, 28801, 28807, 28811, 28813, 28817, 28823, 28829, 28837, 28841, 28843, 28849, 28859, 28867, 28871, 28877, 28879, 28883, 28891, 28901,
|
457
|
+
28907, 28909, 28913, 28921, 28927, 28933, 28937, 28939, 28943, 28949, 28957, 28961, 28967, 28969, 28979, 28981, 28991, 28993, 28997, 28999, 29009, 29011, 29017, 29021,
|
458
|
+
29023, 29027, 29033, 29039, 29041, 29047, 29053, 29059, 29063, 29069, 29077, 29083, 29087, 29089, 29093, 29101, 29111, 29119, 29123, 29129, 29131, 29137, 29143, 29147,
|
459
|
+
29149, 29153, 29167, 29171, 29173, 29177, 29179, 29189, 29191, 29201, 29203, 29207, 29209, 29213, 29219, 29221, 29231, 29233, 29243, 29251, 29257, 29261, 29269, 29273,
|
460
|
+
29279, 29287, 29291, 29297, 29299, 29303, 29311, 29317, 29321, 29327, 29329, 29333, 29339, 29347, 29353, 29357, 29363, 29369, 29371, 29377, 29383, 29387, 29389, 29399,
|
461
|
+
29401, 29411, 29413, 29417, 29423, 29429, 29431, 29437, 29441, 29443, 29453, 29459, 29461, 29467, 29473, 29479, 29483, 29489, 29501, 29503, 29507, 29509, 29521, 29527,
|
462
|
+
29531, 29537, 29539, 29543, 29551, 29563, 29567, 29569, 29573, 29581, 29587, 29591, 29593, 29597, 29599, 29609, 29611, 29621, 29629, 29633, 29639, 29641, 29647, 29651,
|
463
|
+
29657, 29663, 29669, 29671, 29677, 29681, 29683, 29693, 29699, 29707, 29713, 29717, 29719, 29723, 29737, 29741, 29747, 29749, 29753, 29759, 29761, 29767, 29773, 29779,
|
464
|
+
29789, 29791, 29797, 29801, 29803, 29807, 29819, 29831, 29833, 29837, 29839, 29849, 29851, 29857, 29863, 29867, 29873, 29879, 29881, 29891, 29893, 29899, 29903, 29917,
|
465
|
+
29921, 29923, 29927, 29929, 29933, 29941, 29947, 29951, 29957, 29959, 29963, 29969, 29971, 29977, 29983, 29987, 29989, 29993, 29999, 30001, 30007, 30011, 30013, 30029
|
466
|
+
};
|
467
|
+
|
468
|
+
// Make this NOT a multiple of 2, 3, 5, 7, 11, or 13.
|
469
|
+
size_t forward13(const size_t &p) { return wheel13[p % 5760U] + (p / 5760U) * 30030U; }
|
470
|
+
|
471
|
+
size_t backward13(const size_t &n) { return std::distance(wheel13, std::lower_bound(wheel13, wheel13 + 5760U, (size_t)(n % 30030U))) + 5760U * (size_t)(n / 30030U) + 1U; }
|
472
|
+
|
473
|
+
inline BigInteger _forward2(const BigInteger &p) { return (p << 1U) | 1U; }
|
474
|
+
|
475
|
+
inline BigInteger _backward2(const BigInteger &n) { return n >> 1U; }
|
476
|
+
|
477
|
+
inline BigInteger _forward3(const BigInteger &p) { return (p << 1U) + (~(~p | 1U)) - 1U; }
|
478
|
+
|
479
|
+
inline BigInteger _backward3(const BigInteger &n) { return ((~(~n | 1U)) / 3U) + 1U; }
|
480
|
+
|
481
|
+
BigInteger _forward5(const BigInteger &p) { return wheel5[(size_t)(p & 7U)] + (p >> 3U) * 30U; }
|
482
|
+
|
483
|
+
BigInteger _backward5(const BigInteger &n) { return std::distance(wheel5, std::lower_bound(wheel5, wheel5 + 8U, (size_t)(n % 30U))) + 8U * (n / 30U) + 1U; }
|
484
|
+
|
485
|
+
BigInteger _forward7(const BigInteger &p) { return wheel7[(size_t)(p % 48U)] + (p / 48U) * 210U; }
|
486
|
+
|
487
|
+
BigInteger _backward7(const BigInteger &n) { return std::distance(wheel7, std::lower_bound(wheel7, wheel7 + 48U, n % 210U)) + 48U * (n / 210U) + 1U; }
|
488
|
+
|
489
|
+
BigInteger _forward11(const BigInteger &p) { return wheel11[(size_t)(p % 480U)] + (p / 480U) * 2310U; }
|
490
|
+
|
491
|
+
BigInteger _backward11(const BigInteger &n) { return std::distance(wheel11, std::lower_bound(wheel11, wheel11 + 480U, (size_t)(n % 2310U))) + 480U * (n / 2310U) + 1U; }
|
492
|
+
|
493
|
+
BigInteger _forward13(const BigInteger &p) { return wheel13[(size_t)(p % 5760U)] + (p / 5760U) * 30030U; }
|
494
|
+
|
495
|
+
BigInteger _backward13(const BigInteger &n) { return std::distance(wheel13, std::lower_bound(wheel13, wheel13 + 5760U, (size_t)(n % 30030U))) + 5760U * (n / 30030U) + 1U; }
|
496
|
+
|
497
|
+
typedef BigInteger (*ForwardFn)(const BigInteger &);
|
498
|
+
inline ForwardFn forward(const Wheel &w) {
|
499
|
+
switch (w) {
|
500
|
+
case WHEEL2:
|
501
|
+
return _forward2;
|
502
|
+
case WHEEL3:
|
503
|
+
return _forward3;
|
504
|
+
case WHEEL5:
|
505
|
+
return _forward5;
|
506
|
+
case WHEEL7:
|
507
|
+
return _forward7;
|
508
|
+
case WHEEL11:
|
509
|
+
return _forward11;
|
510
|
+
case WHEEL13:
|
511
|
+
return _forward13;
|
512
|
+
case WHEEL1:
|
513
|
+
default:
|
514
|
+
return [](const BigInteger &n) -> BigInteger { return n; };
|
515
|
+
}
|
516
|
+
}
|
517
|
+
|
518
|
+
inline ForwardFn backward(const Wheel &w) {
|
519
|
+
switch (w) {
|
520
|
+
case WHEEL2:
|
521
|
+
return _backward2;
|
522
|
+
case WHEEL3:
|
523
|
+
return _backward3;
|
524
|
+
case WHEEL5:
|
525
|
+
return _backward5;
|
526
|
+
case WHEEL7:
|
527
|
+
return _backward7;
|
528
|
+
case WHEEL11:
|
529
|
+
return _backward11;
|
530
|
+
case WHEEL13:
|
531
|
+
return _backward13;
|
532
|
+
case WHEEL1:
|
533
|
+
default:
|
534
|
+
return [](const BigInteger &n) -> BigInteger { return n; };
|
535
|
+
}
|
536
|
+
}
|
537
|
+
|
538
|
+
inline size_t GetWheel5and7Increment(unsigned short &wheel5, unsigned long long &wheel7) {
|
539
|
+
constexpr unsigned short wheel5Back = 1U << 9U;
|
540
|
+
constexpr unsigned long long wheel7Back = 1ULL << 55U;
|
541
|
+
size_t wheelIncrement = 0U;
|
542
|
+
bool is_wheel_multiple = false;
|
543
|
+
do {
|
544
|
+
is_wheel_multiple = (bool)(wheel5 & 1U);
|
545
|
+
wheel5 >>= 1U;
|
546
|
+
if (is_wheel_multiple) {
|
547
|
+
wheel5 |= wheel5Back;
|
548
|
+
++wheelIncrement;
|
549
|
+
continue;
|
550
|
+
}
|
551
|
+
|
552
|
+
is_wheel_multiple = (bool)(wheel7 & 1U);
|
553
|
+
wheel7 >>= 1U;
|
554
|
+
if (is_wheel_multiple) {
|
555
|
+
wheel7 |= wheel7Back;
|
556
|
+
}
|
557
|
+
++wheelIncrement;
|
558
|
+
} while (is_wheel_multiple);
|
559
|
+
|
560
|
+
return wheelIncrement;
|
561
|
+
}
|
562
|
+
|
563
|
+
std::vector<size_t> SieveOfEratosthenes(const size_t &n) {
|
564
|
+
std::vector<size_t> knownPrimes = {2U, 3U, 5U, 7U};
|
565
|
+
if (n < 2U) {
|
566
|
+
return std::vector<size_t>();
|
567
|
+
}
|
568
|
+
|
569
|
+
if (n < (knownPrimes.back() + 2U)) {
|
570
|
+
const auto highestPrimeIt = std::upper_bound(knownPrimes.begin(), knownPrimes.end(), n);
|
571
|
+
return std::vector<size_t>(knownPrimes.begin(), highestPrimeIt);
|
572
|
+
}
|
573
|
+
|
574
|
+
knownPrimes.reserve((size_t)(((double)n) / log((double)n)));
|
575
|
+
|
576
|
+
// We are excluding multiples of the first few
|
577
|
+
// small primes from outset. For multiples of
|
578
|
+
// 2, 3, and 5 this reduces complexity to 4/15.
|
579
|
+
const size_t cardinality = backward5(n);
|
580
|
+
|
581
|
+
// Create a boolean array "prime[0..cardinality]"
|
582
|
+
// and initialize all entries it as true. Rather,
|
583
|
+
// reverse the true/false meaning, so we can use
|
584
|
+
// default initialization. A value in notPrime[i]
|
585
|
+
// will finally be false only if i is a prime.
|
586
|
+
std::unique_ptr<bool[]> uNotPrime(new bool[cardinality + 1U]());
|
587
|
+
bool *notPrime = uNotPrime.get();
|
588
|
+
|
589
|
+
// Get the remaining prime numbers.
|
590
|
+
unsigned short wheel5 = 129U;
|
591
|
+
unsigned long long wheel7 = 9009416540524545ULL;
|
592
|
+
size_t o = 1U;
|
593
|
+
for (;;) {
|
594
|
+
o += GetWheel5and7Increment(wheel5, wheel7);
|
595
|
+
|
596
|
+
const size_t p = forward3(o);
|
597
|
+
if ((p * p) > n) {
|
598
|
+
break;
|
599
|
+
}
|
600
|
+
|
601
|
+
if (notPrime[backward5(p)]) {
|
602
|
+
continue;
|
603
|
+
}
|
604
|
+
|
605
|
+
knownPrimes.push_back(p);
|
606
|
+
|
607
|
+
// We are skipping multiples of 2, 3, and 5
|
608
|
+
// for space complexity, for 4/15 the bits.
|
609
|
+
// More are skipped by the wheel for time.
|
610
|
+
const size_t p2 = p << 1U;
|
611
|
+
const size_t p4 = p << 2U;
|
612
|
+
size_t i = p * p;
|
613
|
+
|
614
|
+
// "p" already definitely not a multiple of 3.
|
615
|
+
// Its remainder when divided by 3 can be 1 or 2.
|
616
|
+
// If it is 2, we can do a "half iteration" of the
|
617
|
+
// loop that would handle remainder of 1, and then
|
618
|
+
// we can proceed with the 1 remainder loop.
|
619
|
+
// This saves 2/3 of updates (or modulo).
|
620
|
+
if ((p % 3U) == 2U) {
|
621
|
+
notPrime[backward5(i)] = true;
|
622
|
+
i += p2;
|
623
|
+
if (i > n) {
|
624
|
+
continue;
|
625
|
+
}
|
626
|
+
}
|
627
|
+
|
628
|
+
for (;;) {
|
629
|
+
if (i % 5U) {
|
630
|
+
notPrime[backward5(i)] = true;
|
631
|
+
}
|
632
|
+
i += p4;
|
633
|
+
if (i > n) {
|
634
|
+
break;
|
635
|
+
}
|
636
|
+
|
637
|
+
if (i % 5U) {
|
638
|
+
notPrime[backward5(i)] = true;
|
639
|
+
}
|
640
|
+
i += p2;
|
641
|
+
if (i > n) {
|
642
|
+
break;
|
643
|
+
}
|
644
|
+
}
|
645
|
+
}
|
646
|
+
|
647
|
+
for (;;) {
|
648
|
+
const size_t p = forward3(o);
|
649
|
+
if (p > n) {
|
650
|
+
break;
|
651
|
+
}
|
652
|
+
|
653
|
+
o += GetWheel5and7Increment(wheel5, wheel7);
|
654
|
+
|
655
|
+
if (notPrime[backward5(p)]) {
|
656
|
+
continue;
|
657
|
+
}
|
658
|
+
|
659
|
+
knownPrimes.push_back(p);
|
660
|
+
}
|
661
|
+
|
662
|
+
return knownPrimes;
|
663
|
+
}
|
664
|
+
|
665
|
+
bool isMultiple(const BigInteger &p, const std::vector<size_t> &knownPrimes) {
|
666
|
+
for (const size_t &prime : knownPrimes) {
|
667
|
+
if (!(p % prime)) {
|
668
|
+
return true;
|
669
|
+
}
|
670
|
+
}
|
671
|
+
|
672
|
+
return false;
|
673
|
+
}
|
674
|
+
|
675
|
+
boost::dynamic_bitset<size_t> wheel_inc(std::vector<size_t> primes) {
|
676
|
+
BigInteger radius = 1U;
|
677
|
+
for (const size_t &i : primes) {
|
678
|
+
radius *= i;
|
679
|
+
}
|
680
|
+
const size_t prime = primes.back();
|
681
|
+
primes.pop_back();
|
682
|
+
boost::dynamic_bitset<size_t> o;
|
683
|
+
for (BigInteger i = 1U; i <= radius; ++i) {
|
684
|
+
if (!isMultiple(i, primes)) {
|
685
|
+
o.push_back(!(i % prime));
|
686
|
+
}
|
687
|
+
}
|
688
|
+
o >>= 1U;
|
689
|
+
|
690
|
+
return o;
|
691
|
+
}
|
692
|
+
|
693
|
+
std::vector<boost::dynamic_bitset<size_t>> wheel_gen(const std::vector<size_t> &primes) {
|
694
|
+
std::vector<boost::dynamic_bitset<size_t>> output;
|
695
|
+
std::vector<size_t> wheelPrimes;
|
696
|
+
for (const size_t &p : primes) {
|
697
|
+
wheelPrimes.push_back(p);
|
698
|
+
output.push_back(wheel_inc(wheelPrimes));
|
699
|
+
}
|
700
|
+
|
701
|
+
return output;
|
702
|
+
}
|
703
|
+
|
704
|
+
size_t GetWheelIncrement(std::vector<boost::dynamic_bitset<size_t>> *inc_seqs) {
|
705
|
+
size_t wheelIncrement = 0U;
|
706
|
+
bool is_wheel_multiple = false;
|
707
|
+
do {
|
708
|
+
for (size_t i = 0U; i < inc_seqs->size(); ++i) {
|
709
|
+
boost::dynamic_bitset<size_t> &wheel = (*inc_seqs)[i];
|
710
|
+
is_wheel_multiple = wheel.test(0U);
|
711
|
+
wheel >>= 1U;
|
712
|
+
if (is_wheel_multiple) {
|
713
|
+
wheel[wheel.size() - 1U] = true;
|
714
|
+
break;
|
715
|
+
}
|
716
|
+
}
|
717
|
+
++wheelIncrement;
|
718
|
+
} while (is_wheel_multiple);
|
719
|
+
|
720
|
+
return wheelIncrement;
|
721
|
+
}
|
722
|
+
|
723
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
724
|
+
// WRITTEN WITH ELARA (GPT) BELOW //
|
725
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
726
|
+
|
727
|
+
// Utility to perform modular exponentiation
|
728
|
+
inline BigInteger modExp(BigInteger base, BigInteger exp, const BigInteger &mod) {
|
729
|
+
BigInteger result = 1U;
|
730
|
+
while (exp) {
|
731
|
+
if (exp & 1U) {
|
732
|
+
result = (result * base) % mod;
|
733
|
+
}
|
734
|
+
base = (base * base) % mod;
|
735
|
+
exp >>= 1U;
|
736
|
+
}
|
737
|
+
|
738
|
+
return result;
|
739
|
+
}
|
740
|
+
|
741
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
742
|
+
// WRITTEN WITH ELARA (GPT) ABOVE //
|
743
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
744
|
+
|
745
|
+
struct Factorizer {
|
746
|
+
std::mutex batchMutex;
|
747
|
+
std::mutex smoothNumberMapMutex;
|
748
|
+
std::default_random_engine rng;
|
749
|
+
std::mt19937_64 gen;
|
750
|
+
std::uniform_int_distribution<size_t> dis;
|
751
|
+
BigInteger toFactorSqr;
|
752
|
+
BigInteger toFactor;
|
753
|
+
BigInteger toFactorSqrt;
|
754
|
+
BigInteger batchRange;
|
755
|
+
BigInteger batchNumber;
|
756
|
+
BigInteger batchOffset;
|
757
|
+
BigInteger batchTotal;
|
758
|
+
BigInteger wheelRadius;
|
759
|
+
size_t wheelEntryCount;
|
760
|
+
size_t smoothPartsLimit;
|
761
|
+
size_t rowOffset;
|
762
|
+
bool isIncomplete;
|
763
|
+
std::vector<size_t> primes;
|
764
|
+
ForwardFn forwardFn;
|
765
|
+
std::vector<BigInteger> smoothNumberKeys;
|
766
|
+
std::vector<boost::dynamic_bitset<size_t>> smoothNumberValues;
|
767
|
+
|
768
|
+
Factorizer(const BigInteger &tfsqr, const BigInteger &tf, const BigInteger &tfsqrt, const BigInteger &range, size_t nodeCount, size_t nodeId, size_t w, size_t spl,
|
769
|
+
const std::vector<size_t> &p, ForwardFn fn)
|
770
|
+
: rng({}), gen(rng()), dis(0U, p.size() - 1U), toFactorSqr(tfsqr), toFactor(tf), toFactorSqrt(tfsqrt), batchRange(range), batchNumber(0U), batchOffset(nodeId * range), batchTotal(nodeCount * range),
|
771
|
+
wheelRadius(1U), wheelEntryCount(w), smoothPartsLimit(spl), rowOffset(p.size()), isIncomplete(true), primes(p), forwardFn(fn)
|
772
|
+
{
|
773
|
+
for (size_t i = 0U; i < primes.size(); ++i) {
|
774
|
+
const size_t& p = primes[i];
|
775
|
+
wheelRadius *= p;
|
776
|
+
smoothNumberKeys.push_back(p);
|
777
|
+
smoothNumberValues.emplace_back(primes.size(), 0);
|
778
|
+
smoothNumberValues.back()[i] = true;
|
779
|
+
}
|
780
|
+
}
|
781
|
+
|
782
|
+
BigInteger getNextAltBatch() {
|
783
|
+
std::lock_guard<std::mutex> lock(batchMutex);
|
784
|
+
|
785
|
+
if (batchNumber >= batchRange) {
|
786
|
+
isIncomplete = false;
|
787
|
+
}
|
788
|
+
|
789
|
+
const BigInteger halfIndex = batchOffset + (batchNumber++ >> 1U) + 1U;
|
790
|
+
|
791
|
+
return ((batchNumber & 1U) ? batchTotal - halfIndex : halfIndex);
|
792
|
+
}
|
793
|
+
|
794
|
+
BigInteger bruteForce(std::vector<boost::dynamic_bitset<size_t>> *inc_seqs) {
|
795
|
+
// Up to wheel factorization, try all batches up to the square root of toFactor.
|
796
|
+
for (BigInteger batchNum = getNextAltBatch(); isIncomplete; batchNum = getNextAltBatch()) {
|
797
|
+
const BigInteger batchStart = batchNum * wheelEntryCount;
|
798
|
+
const BigInteger batchEnd = batchStart + wheelEntryCount;
|
799
|
+
for (BigInteger p = batchStart; p < batchEnd;) {
|
800
|
+
const BigInteger n = forwardFn(p);
|
801
|
+
if (!(toFactor % n) && (n != 1U) && (n != toFactor)) {
|
802
|
+
isIncomplete = false;
|
803
|
+
return n;
|
804
|
+
}
|
805
|
+
p += GetWheelIncrement(inc_seqs);
|
806
|
+
}
|
807
|
+
}
|
808
|
+
|
809
|
+
return 1U;
|
810
|
+
}
|
811
|
+
|
812
|
+
BigInteger smoothCongruences(std::vector<boost::dynamic_bitset<size_t>> *inc_seqs, std::vector<BigInteger> *semiSmoothParts, bool isGaussElim) {
|
813
|
+
// Up to wheel factorization, try all batches up to the square root of toFactor.
|
814
|
+
// Since the largest prime factors of these numbers is relatively small,
|
815
|
+
// use the "exhaust" of brute force to produce smooth numbers for Quadratic Sieve.
|
816
|
+
for (BigInteger batchNum = getNextAltBatch(); isIncomplete; batchNum = getNextAltBatch()) {
|
817
|
+
const BigInteger batchStart = batchNum * wheelEntryCount;
|
818
|
+
const BigInteger batchEnd = batchStart + wheelEntryCount;
|
819
|
+
for (BigInteger p = batchStart; p < batchEnd;) {
|
820
|
+
// Brute-force check if the sequential number is a factor.
|
821
|
+
const BigInteger n = forwardFn(p);
|
822
|
+
// If so, terminate this node and return the answer.
|
823
|
+
if (!(toFactor % n) && (n != 1U) && (n != toFactor)) {
|
824
|
+
isIncomplete = false;
|
825
|
+
return n;
|
826
|
+
}
|
827
|
+
// Use the "exhaust" to produce smoother numbers.
|
828
|
+
semiSmoothParts->push_back(n);
|
829
|
+
// Skip increments on the "wheels" (or "gears").
|
830
|
+
p += GetWheelIncrement(inc_seqs);
|
831
|
+
}
|
832
|
+
|
833
|
+
// Batch this work, to reduce contention.
|
834
|
+
if (semiSmoothParts->size() >= smoothPartsLimit) {
|
835
|
+
makeSmoothNumbers(semiSmoothParts, isGaussElim);
|
836
|
+
|
837
|
+
return 1U;
|
838
|
+
}
|
839
|
+
}
|
840
|
+
|
841
|
+
return 1U;
|
842
|
+
}
|
843
|
+
|
844
|
+
// Compute the prime factorization modulo 2
|
845
|
+
boost::dynamic_bitset<size_t> factorizationVector(BigInteger num) {
|
846
|
+
boost::dynamic_bitset<size_t> vec(primes.size(), 0);
|
847
|
+
while (true) {
|
848
|
+
BigInteger factor = gcd(num, wheelRadius);
|
849
|
+
if (factor == 1U) {
|
850
|
+
break;
|
851
|
+
}
|
852
|
+
num /= factor;
|
853
|
+
// Remove smooth primes from factor
|
854
|
+
for (size_t pi = 0U; pi < primes.size(); ++pi) {
|
855
|
+
const size_t& p = primes[pi];
|
856
|
+
if (factor % p) {
|
857
|
+
continue;
|
858
|
+
}
|
859
|
+
factor /= p;
|
860
|
+
vec.flip(pi);
|
861
|
+
if (factor == 1U) {
|
862
|
+
break;
|
863
|
+
}
|
864
|
+
}
|
865
|
+
if (num == 1U) {
|
866
|
+
return vec;
|
867
|
+
}
|
868
|
+
}
|
869
|
+
if (num != 1U) {
|
870
|
+
return boost::dynamic_bitset<size_t>();
|
871
|
+
}
|
872
|
+
|
873
|
+
return vec;
|
874
|
+
}
|
875
|
+
|
876
|
+
void makeSmoothNumbers(std::vector<BigInteger> *semiSmoothParts, bool isGaussElim) {
|
877
|
+
// Factorize all "smooth parts."
|
878
|
+
std::vector<BigInteger> smoothParts;
|
879
|
+
std::map<BigInteger, boost::dynamic_bitset<size_t>> smoothPartsMap;
|
880
|
+
for (const BigInteger &n : (*semiSmoothParts)) {
|
881
|
+
const boost::dynamic_bitset<size_t> fv = factorizationVector(n);
|
882
|
+
if (fv.size()) {
|
883
|
+
smoothPartsMap[n] = fv;
|
884
|
+
smoothParts.push_back(n);
|
885
|
+
}
|
886
|
+
}
|
887
|
+
// We can clear the thread's buffer vector.
|
888
|
+
semiSmoothParts->clear();
|
889
|
+
|
890
|
+
// This is the only nondeterminism in the algorithm.
|
891
|
+
std::shuffle(smoothParts.begin(), smoothParts.end(), rng);
|
892
|
+
|
893
|
+
const BigInteger limit = isGaussElim ? toFactor : toFactorSqrt;
|
894
|
+
|
895
|
+
// Now that smooth parts have been shuffled, just multiply down the list until they are larger than square root of toFactor.
|
896
|
+
BigInteger smoothNumber = 1U;
|
897
|
+
boost::dynamic_bitset<size_t> fv(primes.size(), 0);
|
898
|
+
for (size_t spi = 0U; spi < smoothParts.size(); ++spi) {
|
899
|
+
const BigInteger &sp = smoothParts[spi];
|
900
|
+
// This multiplies together the factorizations of the smooth parts
|
901
|
+
// (producing the overall factorization of their multiplication)
|
902
|
+
fv ^= smoothPartsMap[sp];
|
903
|
+
smoothNumber *= sp;
|
904
|
+
// Check if the number is big enough
|
905
|
+
if (smoothNumber <= limit) {
|
906
|
+
continue;
|
907
|
+
}
|
908
|
+
if (true) {
|
909
|
+
std::lock_guard<std::mutex> lock(smoothNumberMapMutex);
|
910
|
+
smoothNumberValues.emplace_back(fv);
|
911
|
+
smoothNumberKeys.push_back(smoothNumber);
|
912
|
+
}
|
913
|
+
// Reset "smoothNumber" and its factorization vector.
|
914
|
+
smoothNumber = 1U;
|
915
|
+
fv = boost::dynamic_bitset<size_t>(primes.size(), 0);
|
916
|
+
}
|
917
|
+
}
|
918
|
+
|
919
|
+
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
920
|
+
// WRITTEN WITH ELARA (GPT) BELOW //
|
921
|
+
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
922
|
+
|
923
|
+
// Perform Gaussian elimination on a binary matrix
|
924
|
+
void gaussianElimination() {
|
925
|
+
const unsigned cpuCount = CpuCount;
|
926
|
+
auto mColIt = smoothNumberValues.begin();
|
927
|
+
auto nColIt = smoothNumberKeys.begin();
|
928
|
+
const size_t rows = smoothNumberValues.size();
|
929
|
+
for (size_t col = 0U; col < primes.size(); ++col) {
|
930
|
+
auto mRowIt = mColIt;
|
931
|
+
auto nRowIt = nColIt;
|
932
|
+
|
933
|
+
int64_t pivot = -1;
|
934
|
+
for (size_t row = col; row < rows; ++row) {
|
935
|
+
if ((*mRowIt)[col]) {
|
936
|
+
// Swapping matrix rows corresponds
|
937
|
+
// with swapping factorized numbers.
|
938
|
+
if (row != col) {
|
939
|
+
std::swap(*mColIt, *mRowIt);
|
940
|
+
std::swap(*nColIt, *nRowIt);
|
941
|
+
}
|
942
|
+
pivot = row;
|
943
|
+
break;
|
944
|
+
}
|
945
|
+
++nRowIt;
|
946
|
+
++mRowIt;
|
947
|
+
}
|
948
|
+
|
949
|
+
if (pivot != -1) {
|
950
|
+
const boost::dynamic_bitset<size_t> &cm = *mColIt;
|
951
|
+
const BigInteger &cn = *nColIt;
|
952
|
+
mRowIt = smoothNumberValues.begin();
|
953
|
+
nRowIt = smoothNumberKeys.begin();
|
954
|
+
for (unsigned cpu = 0U; (cpu < CpuCount) && (cpu < rows); ++cpu) {
|
955
|
+
dispatch.dispatch([cpu, &cpuCount, &col, &rows, &cm, &cn, nRowIt, mRowIt]() -> bool {
|
956
|
+
auto mrIt = mRowIt;
|
957
|
+
auto nrIt = nRowIt;
|
958
|
+
for (size_t row = cpu; ; row += cpuCount) {
|
959
|
+
boost::dynamic_bitset<size_t> &rm = *mrIt;
|
960
|
+
BigInteger &rn = *nrIt;
|
961
|
+
if ((row != col) && rm[col]) {
|
962
|
+
// XOR-ing factorization rows
|
963
|
+
// is like multiplying the numbers.
|
964
|
+
rm ^= cm;
|
965
|
+
rn *= cn;
|
966
|
+
}
|
967
|
+
if ((row + cpuCount) >= rows) {
|
968
|
+
return false;
|
969
|
+
}
|
970
|
+
std::advance(nrIt, cpuCount);
|
971
|
+
std::advance(mrIt, cpuCount);
|
972
|
+
}
|
973
|
+
|
974
|
+
return false;
|
975
|
+
});
|
976
|
+
++mRowIt;
|
977
|
+
++nRowIt;
|
978
|
+
}
|
979
|
+
dispatch.finish();
|
980
|
+
}
|
981
|
+
|
982
|
+
++mColIt;
|
983
|
+
++nColIt;
|
984
|
+
}
|
985
|
+
}
|
986
|
+
|
987
|
+
BigInteger checkPerfectSquare(BigInteger perfectSquare) {
|
988
|
+
// Compute x and y
|
989
|
+
const BigInteger x = perfectSquare % toFactor;
|
990
|
+
const BigInteger y = modExp(x, toFactor >> 1U, toFactor);
|
991
|
+
|
992
|
+
// Check congruence of squares
|
993
|
+
BigInteger factor = gcd(toFactor, x + y);
|
994
|
+
if ((factor != 1U) && (factor != toFactor)) {
|
995
|
+
return factor;
|
996
|
+
}
|
997
|
+
|
998
|
+
if (x == y) {
|
999
|
+
return 1U;
|
1000
|
+
}
|
1001
|
+
|
1002
|
+
// Try x - y as well
|
1003
|
+
factor = gcd(toFactor, x - y);
|
1004
|
+
if ((factor != 1U) && (factor != toFactor)) {
|
1005
|
+
return factor;
|
1006
|
+
}
|
1007
|
+
|
1008
|
+
return 1U;
|
1009
|
+
}
|
1010
|
+
|
1011
|
+
// Find duplicate rows
|
1012
|
+
BigInteger findDuplicateRows(const BigInteger &target) {
|
1013
|
+
// Check for linear dependencies and find a congruence of squares
|
1014
|
+
std::mutex rowMutex;
|
1015
|
+
BigInteger result = 1U;
|
1016
|
+
std::set<size_t> toStrike;
|
1017
|
+
auto iIt = smoothNumberValues.begin();
|
1018
|
+
const size_t rowCount = smoothNumberValues.size();
|
1019
|
+
const size_t rowCountMin1 = rowCount - 1U;
|
1020
|
+
for (size_t i = primes.size(); (i < rowCountMin1) && (result == 1U); ++i) {
|
1021
|
+
dispatch.dispatch([this, &target, i, iIt, &rowCount, &result, &rowMutex, &toStrike]() -> bool {
|
1022
|
+
boost::dynamic_bitset<size_t> &iRow = *iIt;
|
1023
|
+
const BigInteger& iInt = this->smoothNumberKeys[i];
|
1024
|
+
|
1025
|
+
const size_t startJ = std::max(this->rowOffset, i + 1U);
|
1026
|
+
auto jIt = this->smoothNumberValues.begin();
|
1027
|
+
std::advance(jIt, (startJ - 1U));
|
1028
|
+
for (size_t j = startJ; j < rowCount; ++j) {
|
1029
|
+
++jIt;
|
1030
|
+
|
1031
|
+
boost::dynamic_bitset<size_t> &jRow = *jIt;
|
1032
|
+
if (iRow != jRow) {
|
1033
|
+
continue;
|
1034
|
+
}
|
1035
|
+
|
1036
|
+
const BigInteger& jInt = this->smoothNumberKeys[j];
|
1037
|
+
if (iInt < jInt) {
|
1038
|
+
std::lock_guard<std::mutex> lock(rowMutex);
|
1039
|
+
toStrike.insert(j);
|
1040
|
+
} else {
|
1041
|
+
std::lock_guard<std::mutex> lock(rowMutex);
|
1042
|
+
toStrike.insert(i);
|
1043
|
+
}
|
1044
|
+
|
1045
|
+
const BigInteger factor = checkPerfectSquare(this->smoothNumberKeys[i]);
|
1046
|
+
if ((factor != 1U) && (factor != target)) {
|
1047
|
+
std::lock_guard<std::mutex> lock(rowMutex);
|
1048
|
+
result = factor;
|
1049
|
+
|
1050
|
+
return true;
|
1051
|
+
}
|
1052
|
+
}
|
1053
|
+
|
1054
|
+
return false;
|
1055
|
+
});
|
1056
|
+
++iIt;
|
1057
|
+
}
|
1058
|
+
dispatch.finish();
|
1059
|
+
|
1060
|
+
if (result != 1U) {
|
1061
|
+
return result;
|
1062
|
+
}
|
1063
|
+
|
1064
|
+
// These numbers have been tried already:
|
1065
|
+
for (const size_t& i : toStrike) {
|
1066
|
+
smoothNumberKeys.erase(smoothNumberKeys.begin() + i);
|
1067
|
+
smoothNumberValues.erase(smoothNumberValues.begin() + i);
|
1068
|
+
}
|
1069
|
+
|
1070
|
+
rowOffset = smoothNumberKeys.size();
|
1071
|
+
|
1072
|
+
return 1U; // No factor found
|
1073
|
+
}
|
1074
|
+
|
1075
|
+
// Use Gaussian elimination
|
1076
|
+
BigInteger findFactor(const BigInteger &target) {
|
1077
|
+
// Gaussian elimination multiplies these numbers
|
1078
|
+
// with small primes, to produce squares
|
1079
|
+
gaussianElimination();
|
1080
|
+
|
1081
|
+
// Check for linear dependencies and find a congruence of squares
|
1082
|
+
std::mutex rowMutex;
|
1083
|
+
BigInteger result = 1U;
|
1084
|
+
const size_t rowCount = smoothNumberKeys.size();
|
1085
|
+
for (size_t i = primes.size(); (i < rowCount) && (result == 1U); ++i) {
|
1086
|
+
dispatch.dispatch([this, &target, i, &result, &rowMutex]() -> bool {
|
1087
|
+
const BigInteger factor = checkPerfectSquare(this->smoothNumberKeys[i]);
|
1088
|
+
|
1089
|
+
if ((factor != 1U) && (factor != target)) {
|
1090
|
+
std::lock_guard<std::mutex> lock(rowMutex);
|
1091
|
+
result = factor;
|
1092
|
+
|
1093
|
+
return true;
|
1094
|
+
}
|
1095
|
+
|
1096
|
+
return false;
|
1097
|
+
});
|
1098
|
+
}
|
1099
|
+
dispatch.finish();
|
1100
|
+
|
1101
|
+
if (result != 1U) {
|
1102
|
+
return result;
|
1103
|
+
}
|
1104
|
+
|
1105
|
+
// These numbers have been tried already:
|
1106
|
+
smoothNumberKeys.resize(primes.size());
|
1107
|
+
smoothNumberValues.resize(primes.size());
|
1108
|
+
|
1109
|
+
return 1U; // No factor found
|
1110
|
+
}
|
1111
|
+
|
1112
|
+
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
1113
|
+
// WRITTEN WITH ELARA (GPT) ABOVE //
|
1114
|
+
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
1115
|
+
};
|
1116
|
+
|
1117
|
+
std::string find_a_factor(const std::string &toFactorStr, const bool &isConOfSqr, const bool &isGaussElim, const size_t &nodeCount, const size_t &nodeId,
|
1118
|
+
size_t trialDivisionLevel, size_t gearFactorizationLevel, size_t wheelFactorizationLevel, double smoothnessBoundMultiplier, double batchSizeMultiplier) {
|
1119
|
+
// (At least) level 11 wheel factorization is baked into basic functions.
|
1120
|
+
if (!wheelFactorizationLevel) {
|
1121
|
+
wheelFactorizationLevel = 1U;
|
1122
|
+
} else if (wheelFactorizationLevel > 13U) {
|
1123
|
+
wheelFactorizationLevel = 13U;
|
1124
|
+
std::cout << "Warning: Wheel factorization limit is 13. (Parameter will be ignored and default to 13.)" << std::endl;
|
1125
|
+
}
|
1126
|
+
if (!gearFactorizationLevel) {
|
1127
|
+
gearFactorizationLevel = 1U;
|
1128
|
+
} else if (gearFactorizationLevel < wheelFactorizationLevel) {
|
1129
|
+
gearFactorizationLevel = wheelFactorizationLevel;
|
1130
|
+
std::cout << "Warning: Gear factorization level must be at least as high as wheel level. (Parameter will be ignored and default to wheel level.)" << std::endl;
|
1131
|
+
}
|
1132
|
+
|
1133
|
+
// Convert from string.
|
1134
|
+
const BigInteger toFactor(toFactorStr);
|
1135
|
+
|
1136
|
+
// The largest possible discrete factor of "toFactor" is its square root (as with any integer).
|
1137
|
+
const BigInteger fullMaxBase = sqrt(toFactor);
|
1138
|
+
if (fullMaxBase * fullMaxBase == toFactor) {
|
1139
|
+
return boost::lexical_cast<std::string>(fullMaxBase);
|
1140
|
+
}
|
1141
|
+
|
1142
|
+
// We only need to try trial division about as high as would be necessary for 4096 bits of semiprime.
|
1143
|
+
const size_t primeCeiling = (trialDivisionLevel < fullMaxBase) ? trialDivisionLevel : (size_t)fullMaxBase;
|
1144
|
+
BigInteger result = 1U;
|
1145
|
+
// This uses very little memory and time, to find primes.
|
1146
|
+
std::vector<size_t> primes = SieveOfEratosthenes(primeCeiling);
|
1147
|
+
// "it" is the end-of-list iterator for a list up-to-and-including wheelFactorizationLevel.
|
1148
|
+
const auto itw = std::upper_bound(primes.begin(), primes.end(), wheelFactorizationLevel);
|
1149
|
+
const auto itg = std::upper_bound(primes.begin(), primes.end(), gearFactorizationLevel);
|
1150
|
+
const size_t wgDiff = std::distance(itw, itg);
|
1151
|
+
|
1152
|
+
// This is simply trial division up to the ceiling.
|
1153
|
+
std::mutex trialDivisionMutex;
|
1154
|
+
for (size_t primeIndex = 0U; (primeIndex < primes.size()) && (result == 1U); primeIndex += 64U) {
|
1155
|
+
dispatch.dispatch([&toFactor, &primes, &result, &trialDivisionMutex, primeIndex]() -> bool {
|
1156
|
+
const size_t maxLcv = std::min(primeIndex + 64U, primes.size());
|
1157
|
+
for (size_t pi = primeIndex; pi < maxLcv; ++pi) {
|
1158
|
+
const size_t& currentPrime = primes[pi];
|
1159
|
+
if (!(toFactor % currentPrime)) {
|
1160
|
+
std::lock_guard<std::mutex> lock(trialDivisionMutex);
|
1161
|
+
result = currentPrime;
|
1162
|
+
return true;
|
1163
|
+
}
|
1164
|
+
}
|
1165
|
+
return false;
|
1166
|
+
});
|
1167
|
+
}
|
1168
|
+
dispatch.finish();
|
1169
|
+
// If we've checked all primes below the square root of toFactor, then it's prime.
|
1170
|
+
if ((result != 1U) || (toFactor <= (primeCeiling * primeCeiling))) {
|
1171
|
+
return boost::lexical_cast<std::string>(result);
|
1172
|
+
}
|
1173
|
+
|
1174
|
+
// Set up wheel factorization (or "gear" factorization)
|
1175
|
+
std::vector<size_t> gearFactorizationPrimes(primes.begin(), itg);
|
1176
|
+
std::vector<size_t> wheelFactorizationPrimes(primes.begin(), itw);
|
1177
|
+
// Keep as many "smooth" primes as bits in number to factor.
|
1178
|
+
const size_t toFactorBits = (size_t)log2(toFactor);
|
1179
|
+
size_t smoothPrimeCount = (size_t)(smoothnessBoundMultiplier * toFactorBits);
|
1180
|
+
if (!smoothPrimeCount) {
|
1181
|
+
smoothPrimeCount = 1U;
|
1182
|
+
std::cout << "Warning: smoothness bound multiplier would retain no primes, but it must retain at least 1. (Defaulting to retaining 1 prime.)" << std::endl;
|
1183
|
+
}
|
1184
|
+
// Primes are only present in range above wheel factorization level
|
1185
|
+
primes.erase(primes.begin(), itg);
|
1186
|
+
const size_t maxPrimeCount = std::min(primes.size(), smoothPrimeCount);
|
1187
|
+
std::vector<size_t> smoothPrimes;
|
1188
|
+
for (size_t primeId = 0U; (primeId < primes.size()) && (smoothPrimes.size() < maxPrimeCount); ++primeId) {
|
1189
|
+
const size_t p = primes[primeId];
|
1190
|
+
const size_t residue = (size_t)(toFactor % p);
|
1191
|
+
const size_t sr = _sqrt(residue);
|
1192
|
+
if ((sr * sr) == residue) {
|
1193
|
+
smoothPrimes.push_back(p);
|
1194
|
+
}
|
1195
|
+
}
|
1196
|
+
if (isConOfSqr && (smoothPrimes.size() < maxPrimeCount)) {
|
1197
|
+
std::cout << "Warning: Factor base truncated to " << smoothPrimes.size() << " factors. If you don't want to truncate, set the trial division level option higher." << std::endl;
|
1198
|
+
}
|
1199
|
+
// From 1, this is a period for wheel factorization
|
1200
|
+
size_t biggestWheel = 1ULL;
|
1201
|
+
for (const size_t &wp : gearFactorizationPrimes) {
|
1202
|
+
biggestWheel *= (size_t)wp;
|
1203
|
+
}
|
1204
|
+
// Wheel entry count per largest "gear" scales our brute-force range.
|
1205
|
+
size_t wheelEntryCount = 0U;
|
1206
|
+
for (size_t i = 0U; i < biggestWheel; ++i) {
|
1207
|
+
if (!isMultiple(i, wheelFactorizationPrimes)) {
|
1208
|
+
++wheelEntryCount;
|
1209
|
+
}
|
1210
|
+
}
|
1211
|
+
wheelFactorizationPrimes.clear();
|
1212
|
+
// These are "gears," for wheel factorization (with a "wheel" already in place up to 11).
|
1213
|
+
std::vector<boost::dynamic_bitset<size_t>> inc_seqs = wheel_gen(gearFactorizationPrimes);
|
1214
|
+
// We're done with the lowest primes.
|
1215
|
+
const size_t MIN_RTD_LEVEL = gearFactorizationPrimes.size() - wgDiff;
|
1216
|
+
const Wheel SMALLEST_WHEEL = wheelByPrimeCardinal(MIN_RTD_LEVEL);
|
1217
|
+
// Skip multiples removed by wheel factorization.
|
1218
|
+
inc_seqs.erase(inc_seqs.begin(), inc_seqs.end() - wgDiff);
|
1219
|
+
gearFactorizationPrimes.clear();
|
1220
|
+
|
1221
|
+
// Range per parallel node
|
1222
|
+
const BigInteger nodeRange = (((backward(SMALLEST_WHEEL)(fullMaxBase) + nodeCount - 1U) / nodeCount) + wheelEntryCount - 1U) / wheelEntryCount;
|
1223
|
+
// This manages the work of all threads.
|
1224
|
+
Factorizer worker(toFactor * toFactor, toFactor, fullMaxBase,
|
1225
|
+
nodeRange, nodeCount, nodeId,
|
1226
|
+
wheelEntryCount, (size_t)((wheelEntryCount << 1U) * batchSizeMultiplier),
|
1227
|
+
smoothPrimes, forward(SMALLEST_WHEEL));
|
1228
|
+
|
1229
|
+
if (!isConOfSqr) {
|
1230
|
+
const auto workerFn = [&inc_seqs, &worker] {
|
1231
|
+
// inc_seq needs to be independent per thread.
|
1232
|
+
std::vector<boost::dynamic_bitset<size_t>> inc_seqs_clone;
|
1233
|
+
inc_seqs_clone.reserve(inc_seqs.size());
|
1234
|
+
for (const boost::dynamic_bitset<size_t> &b : inc_seqs) {
|
1235
|
+
inc_seqs_clone.emplace_back(b);
|
1236
|
+
}
|
1237
|
+
|
1238
|
+
// "Brute force" includes extensive wheel multiplication and can be faster.
|
1239
|
+
return worker.bruteForce(&inc_seqs_clone);
|
1240
|
+
};
|
1241
|
+
|
1242
|
+
std::vector<std::future<BigInteger>> futures;
|
1243
|
+
futures.reserve(CpuCount);
|
1244
|
+
|
1245
|
+
for (unsigned cpu = 0U; cpu < CpuCount; ++cpu) {
|
1246
|
+
futures.push_back(std::async(std::launch::async, workerFn));
|
1247
|
+
}
|
1248
|
+
|
1249
|
+
for (unsigned cpu = 0U; cpu < futures.size(); ++cpu) {
|
1250
|
+
const BigInteger r = futures[cpu].get();
|
1251
|
+
if ((r > result) && (r != toFactor)) {
|
1252
|
+
result = r;
|
1253
|
+
}
|
1254
|
+
}
|
1255
|
+
|
1256
|
+
return boost::lexical_cast<std::string>(result);
|
1257
|
+
}
|
1258
|
+
|
1259
|
+
const auto smoothNumberFn = [&inc_seqs, &wheelEntryCount, &batchSizeMultiplier, &worker, &isGaussElim] {
|
1260
|
+
// inc_seq needs to be independent per thread.
|
1261
|
+
std::vector<boost::dynamic_bitset<size_t>> inc_seqs_clone;
|
1262
|
+
inc_seqs_clone.reserve(inc_seqs.size());
|
1263
|
+
for (const boost::dynamic_bitset<size_t> &b : inc_seqs) {
|
1264
|
+
inc_seqs_clone.emplace_back(b);
|
1265
|
+
}
|
1266
|
+
|
1267
|
+
// Different collections per thread;
|
1268
|
+
std::vector<BigInteger> semiSmoothParts;
|
1269
|
+
semiSmoothParts.reserve((size_t)((wheelEntryCount << 1U) * batchSizeMultiplier));
|
1270
|
+
|
1271
|
+
// While brute-forcing, use the "exhaust" to feed "smooth" number generation and check conguence of squares.
|
1272
|
+
return worker.smoothCongruences(&inc_seqs_clone, &semiSmoothParts, isGaussElim);
|
1273
|
+
};
|
1274
|
+
|
1275
|
+
std::vector<std::future<BigInteger>> futures;
|
1276
|
+
futures.reserve(CpuCount);
|
1277
|
+
|
1278
|
+
do {
|
1279
|
+
for (unsigned cpu = 0U; cpu < CpuCount; ++cpu) {
|
1280
|
+
futures.push_back(std::async(std::launch::async, smoothNumberFn));
|
1281
|
+
}
|
1282
|
+
|
1283
|
+
for (unsigned cpu = 0U; cpu < futures.size(); ++cpu) {
|
1284
|
+
const BigInteger r = futures[cpu].get();
|
1285
|
+
if ((r > result) && (r != toFactor)) {
|
1286
|
+
result = r;
|
1287
|
+
}
|
1288
|
+
}
|
1289
|
+
|
1290
|
+
if ((result != 1U) && (result != toFactor)) {
|
1291
|
+
return boost::lexical_cast<std::string>(result);
|
1292
|
+
}
|
1293
|
+
|
1294
|
+
futures.clear();
|
1295
|
+
|
1296
|
+
// This next section is for (Quadratic Sieve) Gaussian elimination.
|
1297
|
+
result = isGaussElim ? worker.findFactor(toFactor) : worker.findDuplicateRows(toFactor);
|
1298
|
+
} while ((result == 1U) || (result == toFactor));
|
1299
|
+
|
1300
|
+
return boost::lexical_cast<std::string>(result);
|
1301
|
+
}
|
1302
|
+
} // namespace Qimcifa
|
1303
|
+
|
1304
|
+
using namespace Qimcifa;
|
1305
|
+
|
1306
|
+
PYBIND11_MODULE(_find_a_factor, m) {
|
1307
|
+
m.doc() = "pybind11 plugin to find any factor of input";
|
1308
|
+
m.def("_find_a_factor", &find_a_factor, "Finds any nontrivial factor of input (or returns 1 if prime)");
|
1309
|
+
}
|