EuroEval 15.4.2__tar.gz → 15.5.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of EuroEval might be problematic. Click here for more details.

Files changed (211) hide show
  1. {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/model_evaluation_request.yaml +6 -12
  2. {euroeval-15.4.2 → euroeval-15.5.0}/.github/workflows/ci.yaml +2 -0
  3. {euroeval-15.4.2 → euroeval-15.5.0}/.gitignore +4 -0
  4. {euroeval-15.4.2 → euroeval-15.5.0}/.pre-commit-config.yaml +1 -1
  5. {euroeval-15.4.2 → euroeval-15.5.0}/CHANGELOG.md +51 -12
  6. {euroeval-15.4.2 → euroeval-15.5.0}/PKG-INFO +5 -4
  7. {euroeval-15.4.2 → euroeval-15.5.0}/README.md +1 -0
  8. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/danish.md +4 -2
  9. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/dutch.md +1 -1
  10. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/english.md +1 -1
  11. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/faroese.md +4 -4
  12. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/icelandic.md +17 -13
  13. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/italian.md +5 -6
  14. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/norwegian.md +18 -9
  15. {euroeval-15.4.2 → euroeval-15.5.0}/makefile +1 -2
  16. {euroeval-15.4.2 → euroeval-15.5.0}/pyproject.toml +6 -5
  17. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/__init__.py +2 -2
  18. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/hf.py +11 -2
  19. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/litellm.py +204 -74
  20. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/vllm.py +59 -34
  21. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmarker.py +35 -6
  22. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/constants.py +8 -1
  23. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/data_models.py +1 -2
  24. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/dataset_configs.py +1 -1
  25. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/sequence_classification.py +44 -9
  26. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/utils.py +100 -4
  27. {euroeval-15.4.2 → euroeval-15.5.0}/tests/conftest.py +12 -0
  28. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmarker.py +29 -0
  29. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_data_models.py +4 -0
  30. {euroeval-15.4.2 → euroeval-15.5.0}/uv.lock +698 -642
  31. {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/benchmark_dataset_request.yaml +0 -0
  32. {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/bug.yaml +0 -0
  33. {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
  34. {euroeval-15.4.2 → euroeval-15.5.0}/CITATION.cff +0 -0
  35. {euroeval-15.4.2 → euroeval-15.5.0}/CODE_OF_CONDUCT.md +0 -0
  36. {euroeval-15.4.2 → euroeval-15.5.0}/CONTRIBUTING.md +0 -0
  37. {euroeval-15.4.2 → euroeval-15.5.0}/Dockerfile.cuda +0 -0
  38. {euroeval-15.4.2 → euroeval-15.5.0}/LICENSE +0 -0
  39. {euroeval-15.4.2 → euroeval-15.5.0}/docs/CNAME +0 -0
  40. {euroeval-15.4.2 → euroeval-15.5.0}/docs/README.md +0 -0
  41. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/README.md +0 -0
  42. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/french.md +0 -0
  43. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/german.md +0 -0
  44. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/spanish.md +0 -0
  45. {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/swedish.md +0 -0
  46. {euroeval-15.4.2 → euroeval-15.5.0}/docs/extras/radial_plotter.md +0 -0
  47. {euroeval-15.4.2 → euroeval-15.5.0}/docs/faq.md +0 -0
  48. {euroeval-15.4.2 → euroeval-15.5.0}/docs/gfx/favicon.png +0 -0
  49. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/danish.md +0 -0
  50. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/dutch.md +0 -0
  51. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/english.md +0 -0
  52. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/faroese.md +0 -0
  53. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/french.md +0 -0
  54. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/german.md +0 -0
  55. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/icelandic.md +0 -0
  56. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/italian.md +0 -0
  57. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/norwegian.md +0 -0
  58. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/swedish.md +0 -0
  59. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/european.md +0 -0
  60. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/germanic.md +0 -0
  61. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/mainland-scandinavian.md +0 -0
  62. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/romance.md +0 -0
  63. {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/README.md +0 -0
  64. {euroeval-15.4.2 → euroeval-15.5.0}/docs/methodology.md +0 -0
  65. {euroeval-15.4.2 → euroeval-15.5.0}/docs/python-package.md +0 -0
  66. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/README.md +0 -0
  67. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/common-sense-reasoning.md +0 -0
  68. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/knowledge.md +0 -0
  69. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/linguistic-acceptability.md +0 -0
  70. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/named-entity-recognition.md +0 -0
  71. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/reading-comprehension.md +0 -0
  72. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/sentiment-classification.md +0 -0
  73. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/speed.md +0 -0
  74. {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/summarization.md +0 -0
  75. {euroeval-15.4.2 → euroeval-15.5.0}/gfx/euroeval.png +0 -0
  76. {euroeval-15.4.2 → euroeval-15.5.0}/gfx/euroeval.xcf +0 -0
  77. {euroeval-15.4.2 → euroeval-15.5.0}/gfx/scandeval.png +0 -0
  78. {euroeval-15.4.2 → euroeval-15.5.0}/mkdocs.yaml +0 -0
  79. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_config_factory.py +0 -0
  80. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/__init__.py +0 -0
  81. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/base.py +0 -0
  82. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/fresh.py +0 -0
  83. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/callbacks.py +0 -0
  84. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/cli.py +0 -0
  85. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/data_loading.py +0 -0
  86. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/enums.py +0 -0
  87. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/exceptions.py +0 -0
  88. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/finetuning.py +0 -0
  89. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/generation.py +0 -0
  90. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/human_evaluation.py +0 -0
  91. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/languages.py +0 -0
  92. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/model_cache.py +0 -0
  93. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/model_config.py +0 -0
  94. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/model_loading.py +0 -0
  95. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/scores.py +0 -0
  96. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/speed_benchmark.py +0 -0
  97. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/__init__.py +0 -0
  98. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/multiple_choice_classification.py +0 -0
  99. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/question_answering.py +0 -0
  100. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/text_to_text.py +0 -0
  101. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/token_classification.py +0 -0
  102. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/tasks.py +0 -0
  103. {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/types.py +0 -0
  104. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/constants.py +0 -0
  105. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_allocine.py +0 -0
  106. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_angry_tweets.py +0 -0
  107. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_arc.py +0 -0
  108. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_arc_is.py +0 -0
  109. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_belebele.py +0 -0
  110. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_cnn_dailymail.py +0 -0
  111. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_conll_en.py +0 -0
  112. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_conll_es.py +0 -0
  113. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_conll_nl.py +0 -0
  114. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dane.py +0 -0
  115. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_danish_citizen_tests.py +0 -0
  116. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dansk.py +0 -0
  117. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_danske_talemaader.py +0 -0
  118. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_danske_talemaader_old.py +0 -0
  119. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dbrd.py +0 -0
  120. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dutch_cola.py +0 -0
  121. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dutch_social.py +0 -0
  122. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_eltec.py +0 -0
  123. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_fone.py +0 -0
  124. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_foqa.py +0 -0
  125. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_fosent.py +0 -0
  126. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_fquad.py +0 -0
  127. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_germanquad.py +0 -0
  128. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_germeval.py +0 -0
  129. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_hellaswag.py +0 -0
  130. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_hotter_and_colder_sentiment.py +0 -0
  131. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_ice_linguistic.py +0 -0
  132. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icelandic_error_corpus.py +0 -0
  133. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icelandic_knowledge.py +0 -0
  134. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icelandic_qa.py +0 -0
  135. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icesum.py +0 -0
  136. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_ilpost_sum.py +0 -0
  137. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_jentoft.py +0 -0
  138. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mim_gold_ner.py +0 -0
  139. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mlqa_es.py +0 -0
  140. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mlsum_de.py +0 -0
  141. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mlsum_es.py +0 -0
  142. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mmlu.py +0 -0
  143. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_multinerd-it.py +0 -0
  144. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_no_cola.py +0 -0
  145. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_no_sammendrag.py +0 -0
  146. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nor_common_sense_qa.py +0 -0
  147. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nordjylland_news.py +0 -0
  148. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norec.py +0 -0
  149. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norglm_multiqa.py +0 -0
  150. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norglm_multisum.py +0 -0
  151. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norne.py +0 -0
  152. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norquad.py +0 -0
  153. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nqii.py +0 -0
  154. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nrk_quiz_qa.py +0 -0
  155. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_orange_sum.py +0 -0
  156. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_personal_sum.py +0 -0
  157. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_rrn.py +0 -0
  158. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sb10k.py +0 -0
  159. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_scala.py +0 -0
  160. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_scandiqa.py +0 -0
  161. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_schibsted.py +0 -0
  162. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sentiment_headlines_es.py +0 -0
  163. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sentipolc16.py +0 -0
  164. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad.py +0 -0
  165. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad_it.py +0 -0
  166. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad_nl.py +0 -0
  167. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad_nl_old.py +0 -0
  168. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sst5.py +0 -0
  169. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_suc3.py +0 -0
  170. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_swedn.py +0 -0
  171. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_swerec.py +0 -0
  172. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_wiki_lingua_nl.py +0 -0
  173. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_wikiann_fo.py +0 -0
  174. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_wikineural-it.py +0 -0
  175. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_winogrande_is.py +0 -0
  176. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_xquad_es.py +0 -0
  177. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/fix_dot_env_file.py +0 -0
  178. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/load_ud_pos.py +0 -0
  179. {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/versioning.py +0 -0
  180. {euroeval-15.4.2 → euroeval-15.5.0}/tests/__init__.py +0 -0
  181. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_config_factory.py +0 -0
  182. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/__init__.py +0 -0
  183. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_base.py +0 -0
  184. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_fresh.py +0 -0
  185. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_hf.py +0 -0
  186. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_litellm.py +0 -0
  187. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_vllm.py +0 -0
  188. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_callbacks.py +0 -0
  189. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_cli.py +0 -0
  190. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_constants.py +0 -0
  191. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_data_loading.py +0 -0
  192. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_dataset_configs.py +0 -0
  193. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_enums.py +0 -0
  194. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_exceptions.py +0 -0
  195. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_finetuning.py +0 -0
  196. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_generation.py +0 -0
  197. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_human_evaluation.py +0 -0
  198. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_languages.py +0 -0
  199. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_model_cache.py +0 -0
  200. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_model_config.py +0 -0
  201. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_model_loading.py +0 -0
  202. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_scores.py +0 -0
  203. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_speed_benchmark.py +0 -0
  204. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/__init__.py +0 -0
  205. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_question_answering.py +0 -0
  206. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_sequence_classification.py +0 -0
  207. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_text_to_text.py +0 -0
  208. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_token_classification.py +0 -0
  209. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_tasks.py +0 -0
  210. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_types.py +0 -0
  211. {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_utils.py +0 -0
@@ -8,7 +8,7 @@ body:
8
8
  - type: input
9
9
  attributes:
10
10
  label: Model ID
11
- description: What is the Hugging Face model ID?
11
+ description: What is the model ID, either on the Hugging Face Hub or on LiteLLM?
12
12
  validations:
13
13
  required: true
14
14
  - type: checkboxes
@@ -18,17 +18,9 @@ body:
18
18
  What languages should this model be evaluated on? Tick all that apply. If the
19
19
  model is multilingual (e.g., Mistral, Llama), then tick all the languages.
20
20
  options:
21
- - label: Danish
22
- - label: Dutch
23
- - label: English
24
- - label: Faroese
25
- - label: French
26
- - label: German
27
- - label: Icelandic
28
- - label: Italian
29
- - label: Norwegian (Bokmål or Nynorsk)
30
- - label: Spanish
31
- - label: Swedish
21
+ - label: Romance languages (French, Italian, Spanish)
22
+ - label: Scandinavian languages (Danish, Faroese, Icelandic, Norwegian, Swedish)
23
+ - label: West Germanic languages (Dutch, English, German)
32
24
  validations:
33
25
  required: true
34
26
  - type: dropdown
@@ -48,6 +40,7 @@ body:
48
40
  options:
49
41
  - Small (<=8B parameters)
50
42
  - Large (>8B parameters)
43
+ - N/A
51
44
  validations:
52
45
  required: true
53
46
  - type: dropdown
@@ -57,6 +50,7 @@ body:
57
50
  options:
58
51
  - Not a merged model
59
52
  - Merged model
53
+ - N/A
60
54
  validations:
61
55
  required: true
62
56
  - type: markdown
@@ -89,6 +89,8 @@ jobs:
89
89
  HF_TOKEN: ${{ secrets.HUGGINGFACE_API_KEY }}
90
90
  OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
91
91
  ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
92
+ GEMINI_API_KEY: ${{ secrets.GEMINI_API_KEY }}
93
+ XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
92
94
 
93
95
  - name: Delete EuroEval cache
94
96
  run: rm -rf .euroeval_cache
@@ -115,3 +115,7 @@ site/
115
115
 
116
116
  # Helper files for docs
117
117
  docs/datasets/dataset_example_commands.txt
118
+
119
+ # Various graphics
120
+ gfx/euroeval-italian.png
121
+ gfx/euroeval-italian.xcf
@@ -10,7 +10,7 @@ repos:
10
10
  - id: trailing-whitespace
11
11
  - id: debug-statements
12
12
  - repo: https://github.com/astral-sh/ruff-pre-commit
13
- rev: v0.11.2
13
+ rev: v0.11.4
14
14
  hooks:
15
15
  - id: ruff
16
16
  args:
@@ -10,6 +10,44 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
10
10
 
11
11
 
12
12
 
13
+ ## [v15.5.0] - 2025-04-07
14
+ ### Added
15
+ - Now allows supplying a parameter to API models, which is done by using
16
+ `<model-id>@<parameter>` as the model ID (only a single parameter is supported). The
17
+ parameters allowed are "low" and "high" for OpenAI models (which is the reasoning
18
+ effort of the model, supported by the o1- and o3-series, default is "medium"), and
19
+ "thinking" for Anthropic models, to enable thinking mode (supported for
20
+ Claude-Sonnet-3.7+). These will appear in the leaderboards as
21
+ `<model-id>@<parameter>`.
22
+ - Added metadata for Google Gemini and xAI Grok models.
23
+ - Allows all vLLM versions from v0.8.0 again, as the issue with the generation output
24
+ has been resolved.
25
+ - Added overall progress indicator during evaluation. This was contributed by
26
+ [@mathiasesn](https://github.com/mathiasesn) ✨
27
+
28
+ ### Changed
29
+ - Now does not use logprobs in text classification tasks with Google VertexAI models, as
30
+ they heavily rate limit logprobs usage. This shouldn't affect the scores significantly
31
+ in any case, as the models are very confident in their predictions.
32
+ - Updated `litellm` to `>=1.63.0`, allowing better support for reasoning models.
33
+
34
+ ### Fixed
35
+ - The Gemini-2.5-pro model uses different error messages than the other Gemini models,
36
+ which caused an error when evaluating it. This has been fixed now.
37
+ - Now registers the Gemini-2.5-pro model series as reasoning models, as otherwise they
38
+ did not generate any text as they were just generating reasoning tokens.
39
+ - Previously, if there were multiple labels whose first tokens were identical and that
40
+ the (generative) model did not output the label as the first output token, we would
41
+ randomly choose one of the labels, resulting in an evaluation error. This is very
42
+ rare, but *does* happen for very particular (model, dataset) pairs. If we are in this
43
+ case, we now resort to choosing the label with closest word edit distance instead of
44
+ relying on logprobs of the first token.
45
+ - Now defaults to BF16 if the model is registered as using FP32, assuming that BF16 is
46
+ supported by the GPU.
47
+ - Improved model existence pipeline for Ollama model IDs with multiple forward slashes
48
+ in the name, which caused some models to not be detected as existing.
49
+
50
+
13
51
  ## [v15.4.2] - 2025-03-31
14
52
  ### Added
15
53
  - Now added version metadata to results, to easier track which versions of the various
@@ -23,7 +61,8 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
23
61
 
24
62
  ### Fixed
25
63
  - Now uses `fp16` instead of `bf16` when evaluating decoder models on GPUs with CUDA
26
- compatibility < 8.0. This was contributed by [@marksverdhei](https://github.com/marksverdhei) ✨
64
+ compatibility < 8.0. This was contributed by
65
+ [@marksverdhei](https://github.com/marksverdhei) ✨
27
66
  - Corrected the name of the French sentiment dataset AlloCiné. This was contributed by
28
67
  [@Alkarex](https://github.com/Alkarex) ✨
29
68
  - Evaluating a specific model revision did not work for adapter models, as there was a
@@ -50,7 +89,8 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
50
89
  as the API sometimes fails. If it still fails after 3 attempts, we raise the
51
90
  `HuggingFaceHubDown` exception.
52
91
  - Now uses `fp16` instead of `bf16` when evaluating decoder models on GPUs with CUDA
53
- compatibility < 8.0. This was contributed by [@marksverdhei](https://github.com/marksverdhei) ✨
92
+ compatibility < 8.0. This was contributed by
93
+ [@marksverdhei](https://github.com/marksverdhei) ✨
54
94
  - Fixed docs for ScandiQA-da and ScandiQA-sv, where it was incorrectly stated that
55
95
  the splits were made by considering the original train/validation/test splits.
56
96
 
@@ -118,18 +158,17 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
118
158
  ## [v15.3.0] - 2025-03-12
119
159
  ### Added
120
160
  - Added support for evaluating Italian 🇮🇹! This includes the reading comprehension
121
- dataset [SQuAD-it](https://hf.co/datasets/crux82/squad_it), the summarization
122
- dataset [IlPost](https://hf.co/datasets/ARTeLab/ilpost), the sentiment
123
- classification
124
- [Sentipolc-16](https://hf.co/datasets/cardiffnlp/tweet_sentiment_multilingual),
125
- the common-sense reasoning dataset
126
- [HellaSwag-it](https://hf.co/datasets/alexandrainst/m_hellaswag), the linguistic acceptability
127
- dataset ScaLA with the [Italian Universal Dependencies
161
+ dataset [SQuAD-it](https://hf.co/datasets/crux82/squad_it), the summarization dataset
162
+ [IlPost](https://hf.co/datasets/ARTeLab/ilpost), the sentiment classification
163
+ [Sentipolc-16](https://hf.co/datasets/cardiffnlp/tweet_sentiment_multilingual), the
164
+ common-sense reasoning dataset
165
+ [HellaSwag-it](https://hf.co/datasets/alexandrainst/m_hellaswag), the linguistic
166
+ acceptability dataset ScaLA with the [Italian Universal Dependencies
128
167
  treebank](https://github.com/UniversalDependencies/UD_Italian-ISDT), the knowledge
129
168
  dataset [MMLU-it](https://hf.co/datasets/alexandrainst/m_mmlu), and the named entity
130
- recognition dataset [MultiNERD
131
- IT](https://hf.co/datasets/Babelscape/multinerd) (and unofficially
132
- [WikiNEuRal IT](https://hf.co/datasets/Babelscape/wikineural)). This was contributed by [@viggo-gascou](https://github.com/viggo-gascou) ✨
169
+ recognition dataset [MultiNERD IT](https://hf.co/datasets/Babelscape/multinerd) (and
170
+ unofficially [WikiNEuRal IT](https://hf.co/datasets/Babelscape/wikineural)). This was
171
+ contributed by [@viggo-gascou](https://github.com/viggo-gascou) ✨
133
172
  - Added the new Norwegian knowledge dataset NRK-Quiz-QA, consisting of quizzes on the
134
173
  Norwegian language and culture, in both Bokmål and Nynorsk. The dataset has been split
135
174
  into 635 / 256 / 2,048 samples for train, val, and test, respectively. This replaces
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: EuroEval
3
- Version: 15.4.2
3
+ Version: 15.5.0
4
4
  Summary: The robust European language model benchmark.
5
5
  Project-URL: Repository, https://github.com/EuroEval/EuroEval
6
6
  Project-URL: Issues, https://github.com/EuroEval/EuroEval/issues
@@ -37,7 +37,7 @@ Requires-Dist: demjson3>=3.0.6
37
37
  Requires-Dist: evaluate>=0.4.1
38
38
  Requires-Dist: huggingface-hub>=0.24.0
39
39
  Requires-Dist: levenshtein>=0.24.0
40
- Requires-Dist: litellm>=1.61.13
40
+ Requires-Dist: litellm>=1.63.0
41
41
  Requires-Dist: more-itertools>=10.5.0
42
42
  Requires-Dist: numpy<2.0.0,>=1.23.0
43
43
  Requires-Dist: ollama>=0.4.7
@@ -62,12 +62,12 @@ Requires-Dist: bitsandbytes>=0.43.1; (platform_system == 'Linux') and extra == '
62
62
  Requires-Dist: fbgemm-gpu>=1.0.0; (platform_system == 'Linux') and extra == 'all'
63
63
  Requires-Dist: gradio>=4.26.0; extra == 'all'
64
64
  Requires-Dist: outlines>=0.1.11; extra == 'all'
65
- Requires-Dist: vllm==0.8.0; (platform_system == 'Linux') and extra == 'all'
65
+ Requires-Dist: vllm>=0.8.0; (platform_system == 'Linux') and extra == 'all'
66
66
  Provides-Extra: generative
67
67
  Requires-Dist: bitsandbytes>=0.43.1; (platform_system == 'Linux') and extra == 'generative'
68
68
  Requires-Dist: fbgemm-gpu>=1.0.0; (platform_system == 'Linux') and extra == 'generative'
69
69
  Requires-Dist: outlines>=0.1.11; extra == 'generative'
70
- Requires-Dist: vllm==0.8.0; (platform_system == 'Linux') and extra == 'generative'
70
+ Requires-Dist: vllm>=0.8.0; (platform_system == 'Linux') and extra == 'generative'
71
71
  Provides-Extra: human-evaluation
72
72
  Requires-Dist: gradio>=4.26.0; extra == 'human-evaluation'
73
73
  Provides-Extra: test
@@ -218,6 +218,7 @@ Replace <name-of-script> with the specific script you wish to execute, e.g.,
218
218
  $ uv run src/scripts/create_allocine.py
219
219
  ```
220
220
 
221
+
221
222
  ## Special Thanks :pray:
222
223
  - Thanks [@Mikeriess](https://github.com/Mikeriess) for evaluating many of the larger
223
224
  models on the leaderboards.
@@ -142,6 +142,7 @@ Replace <name-of-script> with the specific script you wish to execute, e.g.,
142
142
  $ uv run src/scripts/create_allocine.py
143
143
  ```
144
144
 
145
+
145
146
  ## Special Thanks :pray:
146
147
  - Thanks [@Mikeriess](https://github.com/Mikeriess) for evaluating many of the larger
147
148
  models on the leaderboards.
@@ -450,12 +450,14 @@ Here are a few examples from the training split:
450
450
  {
451
451
  "text": "Hvilket af følgende områder har kommunerne ansvaret for driften af?\nSvarmuligheder:\na. Domstole\nb. Vuggestuer\nc. Sygehuse",
452
452
  "label": "b"
453
- }```
453
+ }
454
+ ```
454
455
  ```json
455
456
  {
456
457
  "text": "Hvilken organisation blev Danmark medlem af i 1945?\nSvarmuligheder:\na. Verdenshandelsorganisationen (WTO)\nb. Den Europæiske Union (EU)\nc. De Forenede Nationer (FN)",
457
458
  "label": "c"
458
- }```
459
+ }
460
+ ```
459
461
 
460
462
  When evaluating generative models, we use the following setup (see the
461
463
  [methodology](/methodology) for more information on how these are used):
@@ -133,7 +133,7 @@ $ euroeval --model <model-id> --dataset dbrd
133
133
 
134
134
  ## Named Entity Recognition
135
135
 
136
- ### CoNLL-2002-nl
136
+ ### CoNLL-nl
137
137
 
138
138
  This dataset was published in [this paper](https://aclanthology.org/W02-2024/) and
139
139
  consists of named entity recognition annotations of the Belgian newspaper "De Morgen" of
@@ -81,7 +81,7 @@ $ euroeval --model <model-id> --dataset sst5
81
81
 
82
82
  ## Named Entity Recognition
83
83
 
84
- ### CoNLL-2003-En
84
+ ### CoNLL-en
85
85
 
86
86
  This dataset was published in [this paper](https://aclanthology.org/W03-0419/) and was
87
87
  part of the CoNNL-2003 shared task. The data comes from the [Reuters
@@ -282,10 +282,10 @@ $ euroeval --model <model-id> --dataset scala-fo
282
282
 
283
283
  ### FoQA
284
284
 
285
- This dataset will be published in an upcoming paper and is based on the Faroese
286
- Wikipedia. The questions and answers were automatically generated using GPT-4-turbo,
287
- which were verified by a native speaker, and some of them were also corrected by the
288
- same native speaker.
285
+ This dataset was published in [this paper](https://doi.org/10.48550/arXiv.2502.07642)
286
+ and is based on the Faroese Wikipedia. The questions and answers were automatically
287
+ generated using GPT-4-turbo, which were verified by a native speaker, and some of them
288
+ were also corrected by the same native speaker.
289
289
 
290
290
  The original full dataset consists of 2,000 samples, and we split these into 848 / 128 /
291
291
  1,024 samples for training, validation and testing, respectively.
@@ -9,9 +9,9 @@ information about what these constitute.
9
9
 
10
10
  ### Hotter and Colder Sentiment
11
11
 
12
- This dataset is being published in an upcoming paper, and consists of texts from
13
- Icelandic blog post, annotated with sentiment labels (and many others) via a
14
- crowdsourcing platform.
12
+ This dataset was published in [this paper](https://doi.org/10.48550/arXiv.2502.16987),
13
+ and consists of texts from Icelandic blog post, annotated with sentiment labels (and
14
+ many others) via a crowdsourcing platform.
15
15
 
16
16
  The original full dataset consists of 2,901 samples, and we use a 1,021 / 255 / 1,607
17
17
  split for training, validation and testing, respectively (so all samples are used in
@@ -73,13 +73,14 @@ $ euroeval --model <model-id> --dataset hotter-and-colder-sentiment
73
73
 
74
74
  ### MIM-GOLD-NER
75
75
 
76
- This dataset was published in [this paper]() and is based on the [Tagged Icelandic
77
- Corpus (MIM)](https://clarin.is/en/resources/mim/), which consists of Icelandic books,
78
- news articles, periodicals, parliament speeches, legal texts, adjudications and
79
- government websites. It has been annotated with named entities in a semi-automated
80
- fashion, where each labels has been manually verified. The entity types in the dataset
81
- is a superset of the CoNLL-2003 tags, with the following additional labels: `DATE`,
82
- `TIME`, `MONEY`, `PERCENT`. These labels have been removed.
76
+ This dataset was published in [this
77
+ paper](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/230) and is
78
+ based on the [Tagged Icelandic Corpus (MIM)](https://clarin.is/en/resources/mim/), which
79
+ consists of Icelandic books, news articles, periodicals, parliament speeches, legal
80
+ texts, adjudications and government websites. It has been annotated with named entities
81
+ in a semi-automated fashion, where each labels has been manually verified. The entity
82
+ types in the dataset is a superset of the CoNLL-2003 tags, with the following additional
83
+ labels: `DATE`, `TIME`, `MONEY`, `PERCENT`. These labels have been removed.
83
84
 
84
85
  The original full dataset consists of 1,000,000 tokens. We use a 1,024 / 256 / 2,048
85
86
  split for training, validation and testing, respectively.
@@ -526,17 +527,20 @@ Here are a few examples from the training split:
526
527
  {
527
528
  "text": "Hver var talinn heilagur maður eftir dauða sinn, er tákngervingur alþýðuhreyfingar vestanlands og talinn góður til áheita?\nSvarmöguleikar:\na. Þórður Jónsson helgi\nb. Guðmundur Arason\nc. Snorri Þorgrímsson\nd. Jón Hreggviðsson",
528
529
  "label": "a"
529
- }```
530
+ }
531
+ ```
530
532
  ```json
531
533
  {
532
534
  "text": "Í kringum hvaða ár hófst verslun á Arngerðareyri?\nSvarmöguleikar:\na. 1895\nb. 1884\nc. 1870\nd. 1902",
533
535
  "label": "b"
534
- }```
536
+ }
537
+ ```
535
538
  ```json
536
539
  {
537
540
  "text": "Hvenær var ákveðið að uppstigningardagur skyldi vera kirkjudagur aldraðra á Íslandi?\nSvarmöguleikar:\na. Árið 1975\nb. Árið 1985\nc. Árið 1982\nd. Árið 1990",
538
541
  "label": "c"
539
- }```
542
+ }
543
+ ```
540
544
 
541
545
  When evaluating generative models, we use the following setup (see the
542
546
  [methodology](/methodology) for more information on how these are used):
@@ -71,11 +71,10 @@ $ euroeval --model <model-id> --dataset sentipolc16
71
71
  ### MultiNERD IT
72
72
 
73
73
  This dataset was published in [this
74
- paper](https://aclanthology.org/2022.findings-naacl.60/) and
75
- consists of sentences from Wikipedia and Wikinews in 10 different languages. It is an
76
- extension of the combination of
77
- (WikiNEuRal)[https://www.github.com/Babelscape/wikineural] and
78
- (NER4EL)[https://www.github.com/Babelscape/ner4el]. The original test set was created
74
+ paper](https://aclanthology.org/2022.findings-naacl.60/) and consists of sentences from
75
+ Wikipedia and Wikinews in 10 different languages. It is an extension of the combination
76
+ of [WikiNEuRal](https://www.github.com/Babelscape/wikineural) and
77
+ [NER4EL](https://www.github.com/Babelscape/ner4el). The original test set was created
79
78
  from manual annotations, while the training set is based on an automatic annotation
80
79
  pipeline.
81
80
 
@@ -519,7 +518,7 @@ $ euroeval --model <model-id> --dataset hellaswag-it
519
518
 
520
519
  ## Summarization
521
520
 
522
- ### IlPost-sum
521
+ ### IlPost-Sum
523
522
 
524
523
  This dataset was published in [this paper](https://www.mdpi.com/2078-2489/13/5/228) and
525
524
  consists of news articles from [Il Post](https://www.ilpost.it/). The summaries were
@@ -388,17 +388,20 @@ Here are a few examples from the training split:
388
388
  {
389
389
  "text": "Vi har hatt krig i nesten ti år. Jeg føler meg noen ganger trist fordi jeg har mistet flere venner og min far på grunn av krigen.",
390
390
  "label": "correct"
391
- }```
391
+ }
392
+ ```
392
393
  ```json
393
394
  {
394
395
  "text": "Hvis jeg ikke sier in n genting, kan han spille hele dagen.",
395
396
  "label": "incorrect"
396
- }```
397
+ }
398
+ ```
397
399
  ```json
398
400
  {
399
401
  "text": "De føler at samfunnet trenger ikke dem.",
400
402
  "label": "incorrect"
401
- }```
403
+ }
404
+ ```
402
405
 
403
406
  When evaluating generative models, we use the following setup (see the
404
407
  [methodology](/methodology) for more information on how these are used):
@@ -660,17 +663,20 @@ Here are a few examples from the training split:
660
663
  {
661
664
  "text": "Gunnar har hatt plutselige og sterke smerteanfall siden han var liten gutt. Det var vondt å tisse og det gjorde vondt i ryggen og magen. Det hjalp litt å drikke vann. Reseptbelagte medisiner kan være nødvendig under anfall.\nSvaralternativer:\na. Nyrestein, kronisk\nb. Irritabel tarmsyndrom\nc. Angst\nd. Urinveisinfeksjon",
662
665
  "label": "a"
663
- }```
666
+ }
667
+ ```
664
668
  ```json
665
669
  {
666
670
  "text": "80 år gamle Harrison Ford er nok ein gong aktuell i rolla som Indiana Jones. Kva heiter filmen?\nSvaralternativer:\na. Indiana Jones and the Nasty Nazis\nb. Indiana Jones and the Dial of Destiny\nc. Indiana Jones and the Hunt for Power\nd. Indiana Jones Forever",
667
671
  "label": "b"
668
- }```
672
+ }
673
+ ```
669
674
  ```json
670
675
  {
671
676
  "text": "I 1980 måtte denne bassisten overnatte ni netter i fengsel i Japan fordi han prøvde å få med seg ca. 200 gram marihuana inn i landet. Hvem var det?\nSvaralternativer:\na. Sting\nb. Lemmy Kilmister\nc. Paul McCartney\nd. Bootsy Collins",
672
677
  "label": "c"
673
- }```
678
+ }
679
+ ```
674
680
 
675
681
  When evaluating generative models, we use the following setup (see the
676
682
  [methodology](/methodology) for more information on how these are used):
@@ -868,17 +874,20 @@ Here are a few examples from the training split:
868
874
  {
869
875
  "text": "Hvor er det sannsynlig at en fugl lager hjemmet sitt?\nSvaralternativer:\na. I skogen\nb. I et rede\nc. På taket\nd. På blader\ne. I himmelen",
870
876
  "label": "a"
871
- }```
877
+ }
878
+ ```
872
879
  ```json
873
880
  {
874
881
  "text": "Hvis et hjem har et abonnoment, hva får de sannsyneligvis hver dag i posten?\nSvaralternativer:\na. Delestykker\nb. En avis\nc. En gate\nd. En vaskemaskin\ne. Jordas overflate",
875
882
  "label": "b"
876
- }```
883
+ }
884
+ ```
877
885
  ```json
878
886
  {
879
887
  "text": "Når du ikke klarer å gjøre noe ferdig, hva feilet du i da?\nSvaralternativer:\na. Å vinne\nb. Å bestå\nc. Å fullfør\nd. Å gjøre det bra\ne. Å lykkes",
880
888
  "label": "c"
881
- }```
889
+ }
890
+ ```
882
891
 
883
892
  When evaluating generative models, we use the following setup (see the
884
893
  [methodology](/methodology) for more information on how these are used):
@@ -127,8 +127,7 @@ publish:
127
127
  echo "No PyPI API token specified in the '.env' file, so cannot publish."; \
128
128
  else \
129
129
  echo "Publishing to PyPI..."; \
130
- $(MAKE) --quiet check \
131
- && $(MAKE) --quiet publish-euroeval \
130
+ $(MAKE) --quiet publish-euroeval \
132
131
  && $(MAKE) --quiet publish-scandeval \
133
132
  && $(MAKE) --quiet publish-docs \
134
133
  && $(MAKE) --quiet add-dev-version \
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "EuroEval"
3
- version = "15.4.2"
3
+ version = "15.5.0"
4
4
  description = "The robust European language model benchmark."
5
5
  readme = "README.md"
6
6
  authors = [
@@ -31,7 +31,7 @@ dependencies = [
31
31
  "sacremoses>=0.1.1",
32
32
  "more-itertools>=10.5.0",
33
33
  "tenacity>=9.0.0",
34
- "litellm>=1.61.13",
34
+ "litellm>=1.63.0",
35
35
  "rouge-score>=0.1.2",
36
36
  "bert-score>=0.3.13",
37
37
  "levenshtein>=0.24.0",
@@ -46,7 +46,7 @@ dependencies = [
46
46
  generative = [
47
47
  "outlines>=0.1.11",
48
48
  "bitsandbytes>=0.43.1; platform_system == 'Linux'",
49
- "vllm==0.8.0; platform_system == 'Linux'",
49
+ "vllm>=0.8.0; platform_system == 'Linux'",
50
50
  "fbgemm-gpu>=1.0.0; platform_system == 'Linux'",
51
51
  ]
52
52
  human_evaluation = [
@@ -55,7 +55,7 @@ human_evaluation = [
55
55
  all = [
56
56
  "outlines>=0.1.11",
57
57
  "bitsandbytes>=0.43.1; platform_system == 'Linux'",
58
- "vllm==0.8.0; platform_system == 'Linux'",
58
+ "vllm>=0.8.0; platform_system == 'Linux'",
59
59
  "fbgemm-gpu>=1.0.0; platform_system == 'Linux'",
60
60
  "gradio>=4.26.0",
61
61
  ]
@@ -83,7 +83,7 @@ dev-dependencies = [
83
83
  "readme-coverage-badger>=0.1.2",
84
84
  "click>=8.1.7",
85
85
  "ruff>=0.7.1",
86
- "mypy>=1.13.0",
86
+ "mypy>=1.15.0",
87
87
  "nbstripout>=0.7.1",
88
88
  "coverage>=5.5",
89
89
  "lxml>=5.1.0",
@@ -106,6 +106,7 @@ dev-dependencies = [
106
106
  "types-tabulate>=0.9.0.20241207",
107
107
  "types-setuptools>=75.8.0.20250110",
108
108
  "types-ujson>=5.10.0.20240515",
109
+ "types-simplejson>=3.2.0.2025032",
109
110
  ]
110
111
 
111
112
  [tool.ruff]
@@ -4,6 +4,7 @@
4
4
  ### Block unwanted terminal output that happens on importing external modules ###
5
5
 
6
6
  import logging
7
+ import os
7
8
  import sys
8
9
  import warnings
9
10
 
@@ -14,7 +15,7 @@ warnings.filterwarnings("ignore", category=UserWarning)
14
15
  logging.getLogger("httpx").setLevel(logging.CRITICAL)
15
16
  logging.getLogger("datasets").setLevel(logging.CRITICAL)
16
17
  logging.getLogger("vllm").setLevel(logging.CRITICAL)
17
- logging.getLogger("vllm.platforms").setLevel(logging.CRITICAL)
18
+ os.environ["VLLM_CONFIGURE_LOGGING"] = "0"
18
19
 
19
20
  # Set up logging
20
21
  fmt = colored("%(asctime)s", "light_blue") + " ⋅ " + colored("%(message)s", "green")
@@ -29,7 +30,6 @@ logging.basicConfig(
29
30
  ### Set the rest up ###
30
31
 
31
32
  import importlib.metadata # noqa: E402
32
- import os # noqa: E402
33
33
 
34
34
  from dotenv import load_dotenv # noqa: E402
35
35
 
@@ -44,6 +44,7 @@ from ..constants import (
44
44
  DUMMY_FILL_VALUE,
45
45
  GENERATIVE_PIPELINE_TAGS,
46
46
  LOCAL_MODELS_REQUIRED_FILES,
47
+ MAX_CONTEXT_LENGTH,
47
48
  MERGE_TAGS,
48
49
  )
49
50
  from ..data_models import BenchmarkConfig, DatasetConfig, HFModelInfo, ModelConfig, Task
@@ -245,6 +246,15 @@ class HuggingFaceEncoderModel(BenchmarkModule):
245
246
  max_length for max_length in all_max_lengths if max_length >= 128
246
247
  ]
247
248
 
249
+ # We remove the upper cap of maximum context length for the model, as it is
250
+ # highly unlikely that this is the model's actual maximum context length - we
251
+ # would rather not report a value than report an incorrect one.
252
+ all_max_lengths = [
253
+ max_length
254
+ for max_length in all_max_lengths
255
+ if max_length != MAX_CONTEXT_LENGTH
256
+ ]
257
+
248
258
  if len(list(all_max_lengths)) > 0:
249
259
  model_max_length = min(list(all_max_lengths))
250
260
  else:
@@ -1140,8 +1150,7 @@ def align_model_and_tokenizer(
1140
1150
  Returns:
1141
1151
  The fixed model and tokenizer.
1142
1152
  """
1143
- # Ensure that the model max length is at most 5,000, to avoid OOM errors
1144
- model_max_length = min(model_max_length, 5_000)
1153
+ model_max_length = min(model_max_length, MAX_CONTEXT_LENGTH)
1145
1154
 
1146
1155
  if model_max_length > 0:
1147
1156
  tokenizer.model_max_length = model_max_length