EuroEval 15.4.2__tar.gz → 15.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of EuroEval might be problematic. Click here for more details.
- {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/model_evaluation_request.yaml +6 -12
- {euroeval-15.4.2 → euroeval-15.5.0}/.github/workflows/ci.yaml +2 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/.gitignore +4 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/.pre-commit-config.yaml +1 -1
- {euroeval-15.4.2 → euroeval-15.5.0}/CHANGELOG.md +51 -12
- {euroeval-15.4.2 → euroeval-15.5.0}/PKG-INFO +5 -4
- {euroeval-15.4.2 → euroeval-15.5.0}/README.md +1 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/danish.md +4 -2
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/dutch.md +1 -1
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/english.md +1 -1
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/faroese.md +4 -4
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/icelandic.md +17 -13
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/italian.md +5 -6
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/norwegian.md +18 -9
- {euroeval-15.4.2 → euroeval-15.5.0}/makefile +1 -2
- {euroeval-15.4.2 → euroeval-15.5.0}/pyproject.toml +6 -5
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/__init__.py +2 -2
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/hf.py +11 -2
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/litellm.py +204 -74
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/vllm.py +59 -34
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmarker.py +35 -6
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/constants.py +8 -1
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/data_models.py +1 -2
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/dataset_configs.py +1 -1
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/sequence_classification.py +44 -9
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/utils.py +100 -4
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/conftest.py +12 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmarker.py +29 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_data_models.py +4 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/uv.lock +698 -642
- {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/benchmark_dataset_request.yaml +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/bug.yaml +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/.github/ISSUE_TEMPLATE/feature_request.yaml +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/CITATION.cff +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/CODE_OF_CONDUCT.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/CONTRIBUTING.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/Dockerfile.cuda +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/LICENSE +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/CNAME +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/README.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/README.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/french.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/german.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/spanish.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/datasets/swedish.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/extras/radial_plotter.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/faq.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/gfx/favicon.png +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/danish.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/dutch.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/english.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/faroese.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/french.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/german.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/icelandic.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/italian.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/norwegian.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Monolingual/swedish.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/european.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/germanic.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/mainland-scandinavian.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/Multilingual/romance.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/leaderboards/README.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/methodology.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/python-package.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/README.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/common-sense-reasoning.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/knowledge.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/linguistic-acceptability.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/named-entity-recognition.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/reading-comprehension.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/sentiment-classification.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/speed.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/docs/tasks/summarization.md +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/gfx/euroeval.png +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/gfx/euroeval.xcf +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/gfx/scandeval.png +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/mkdocs.yaml +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_config_factory.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/__init__.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/base.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/benchmark_modules/fresh.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/callbacks.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/cli.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/data_loading.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/enums.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/exceptions.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/finetuning.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/generation.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/human_evaluation.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/languages.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/model_cache.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/model_config.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/model_loading.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/scores.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/speed_benchmark.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/__init__.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/multiple_choice_classification.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/question_answering.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/text_to_text.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/task_utils/token_classification.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/tasks.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/euroeval/types.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/constants.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_allocine.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_angry_tweets.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_arc.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_arc_is.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_belebele.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_cnn_dailymail.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_conll_en.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_conll_es.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_conll_nl.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dane.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_danish_citizen_tests.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dansk.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_danske_talemaader.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_danske_talemaader_old.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dbrd.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dutch_cola.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_dutch_social.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_eltec.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_fone.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_foqa.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_fosent.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_fquad.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_germanquad.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_germeval.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_hellaswag.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_hotter_and_colder_sentiment.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_ice_linguistic.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icelandic_error_corpus.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icelandic_knowledge.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icelandic_qa.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_icesum.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_ilpost_sum.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_jentoft.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mim_gold_ner.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mlqa_es.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mlsum_de.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mlsum_es.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_mmlu.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_multinerd-it.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_no_cola.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_no_sammendrag.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nor_common_sense_qa.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nordjylland_news.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norec.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norglm_multiqa.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norglm_multisum.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norne.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_norquad.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nqii.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_nrk_quiz_qa.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_orange_sum.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_personal_sum.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_rrn.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sb10k.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_scala.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_scandiqa.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_schibsted.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sentiment_headlines_es.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sentipolc16.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad_it.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad_nl.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_squad_nl_old.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_sst5.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_suc3.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_swedn.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_swerec.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_wiki_lingua_nl.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_wikiann_fo.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_wikineural-it.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_winogrande_is.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/create_xquad_es.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/fix_dot_env_file.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/load_ud_pos.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/src/scripts/versioning.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/__init__.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_config_factory.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/__init__.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_base.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_fresh.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_hf.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_litellm.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_benchmark_modules/test_vllm.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_callbacks.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_cli.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_constants.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_data_loading.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_dataset_configs.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_enums.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_exceptions.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_finetuning.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_generation.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_human_evaluation.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_languages.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_model_cache.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_model_config.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_model_loading.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_scores.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_speed_benchmark.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/__init__.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_question_answering.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_sequence_classification.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_text_to_text.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_task_utils/test_token_classification.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_tasks.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_types.py +0 -0
- {euroeval-15.4.2 → euroeval-15.5.0}/tests/test_utils.py +0 -0
|
@@ -8,7 +8,7 @@ body:
|
|
|
8
8
|
- type: input
|
|
9
9
|
attributes:
|
|
10
10
|
label: Model ID
|
|
11
|
-
description: What is the Hugging Face
|
|
11
|
+
description: What is the model ID, either on the Hugging Face Hub or on LiteLLM?
|
|
12
12
|
validations:
|
|
13
13
|
required: true
|
|
14
14
|
- type: checkboxes
|
|
@@ -18,17 +18,9 @@ body:
|
|
|
18
18
|
What languages should this model be evaluated on? Tick all that apply. If the
|
|
19
19
|
model is multilingual (e.g., Mistral, Llama), then tick all the languages.
|
|
20
20
|
options:
|
|
21
|
-
- label:
|
|
22
|
-
- label:
|
|
23
|
-
- label: English
|
|
24
|
-
- label: Faroese
|
|
25
|
-
- label: French
|
|
26
|
-
- label: German
|
|
27
|
-
- label: Icelandic
|
|
28
|
-
- label: Italian
|
|
29
|
-
- label: Norwegian (Bokmål or Nynorsk)
|
|
30
|
-
- label: Spanish
|
|
31
|
-
- label: Swedish
|
|
21
|
+
- label: Romance languages (French, Italian, Spanish)
|
|
22
|
+
- label: Scandinavian languages (Danish, Faroese, Icelandic, Norwegian, Swedish)
|
|
23
|
+
- label: West Germanic languages (Dutch, English, German)
|
|
32
24
|
validations:
|
|
33
25
|
required: true
|
|
34
26
|
- type: dropdown
|
|
@@ -48,6 +40,7 @@ body:
|
|
|
48
40
|
options:
|
|
49
41
|
- Small (<=8B parameters)
|
|
50
42
|
- Large (>8B parameters)
|
|
43
|
+
- N/A
|
|
51
44
|
validations:
|
|
52
45
|
required: true
|
|
53
46
|
- type: dropdown
|
|
@@ -57,6 +50,7 @@ body:
|
|
|
57
50
|
options:
|
|
58
51
|
- Not a merged model
|
|
59
52
|
- Merged model
|
|
53
|
+
- N/A
|
|
60
54
|
validations:
|
|
61
55
|
required: true
|
|
62
56
|
- type: markdown
|
|
@@ -89,6 +89,8 @@ jobs:
|
|
|
89
89
|
HF_TOKEN: ${{ secrets.HUGGINGFACE_API_KEY }}
|
|
90
90
|
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
|
91
91
|
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
|
|
92
|
+
GEMINI_API_KEY: ${{ secrets.GEMINI_API_KEY }}
|
|
93
|
+
XAI_API_KEY: ${{ secrets.XAI_API_KEY }}
|
|
92
94
|
|
|
93
95
|
- name: Delete EuroEval cache
|
|
94
96
|
run: rm -rf .euroeval_cache
|
|
@@ -10,6 +10,44 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
|
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
|
|
13
|
+
## [v15.5.0] - 2025-04-07
|
|
14
|
+
### Added
|
|
15
|
+
- Now allows supplying a parameter to API models, which is done by using
|
|
16
|
+
`<model-id>@<parameter>` as the model ID (only a single parameter is supported). The
|
|
17
|
+
parameters allowed are "low" and "high" for OpenAI models (which is the reasoning
|
|
18
|
+
effort of the model, supported by the o1- and o3-series, default is "medium"), and
|
|
19
|
+
"thinking" for Anthropic models, to enable thinking mode (supported for
|
|
20
|
+
Claude-Sonnet-3.7+). These will appear in the leaderboards as
|
|
21
|
+
`<model-id>@<parameter>`.
|
|
22
|
+
- Added metadata for Google Gemini and xAI Grok models.
|
|
23
|
+
- Allows all vLLM versions from v0.8.0 again, as the issue with the generation output
|
|
24
|
+
has been resolved.
|
|
25
|
+
- Added overall progress indicator during evaluation. This was contributed by
|
|
26
|
+
[@mathiasesn](https://github.com/mathiasesn) ✨
|
|
27
|
+
|
|
28
|
+
### Changed
|
|
29
|
+
- Now does not use logprobs in text classification tasks with Google VertexAI models, as
|
|
30
|
+
they heavily rate limit logprobs usage. This shouldn't affect the scores significantly
|
|
31
|
+
in any case, as the models are very confident in their predictions.
|
|
32
|
+
- Updated `litellm` to `>=1.63.0`, allowing better support for reasoning models.
|
|
33
|
+
|
|
34
|
+
### Fixed
|
|
35
|
+
- The Gemini-2.5-pro model uses different error messages than the other Gemini models,
|
|
36
|
+
which caused an error when evaluating it. This has been fixed now.
|
|
37
|
+
- Now registers the Gemini-2.5-pro model series as reasoning models, as otherwise they
|
|
38
|
+
did not generate any text as they were just generating reasoning tokens.
|
|
39
|
+
- Previously, if there were multiple labels whose first tokens were identical and that
|
|
40
|
+
the (generative) model did not output the label as the first output token, we would
|
|
41
|
+
randomly choose one of the labels, resulting in an evaluation error. This is very
|
|
42
|
+
rare, but *does* happen for very particular (model, dataset) pairs. If we are in this
|
|
43
|
+
case, we now resort to choosing the label with closest word edit distance instead of
|
|
44
|
+
relying on logprobs of the first token.
|
|
45
|
+
- Now defaults to BF16 if the model is registered as using FP32, assuming that BF16 is
|
|
46
|
+
supported by the GPU.
|
|
47
|
+
- Improved model existence pipeline for Ollama model IDs with multiple forward slashes
|
|
48
|
+
in the name, which caused some models to not be detected as existing.
|
|
49
|
+
|
|
50
|
+
|
|
13
51
|
## [v15.4.2] - 2025-03-31
|
|
14
52
|
### Added
|
|
15
53
|
- Now added version metadata to results, to easier track which versions of the various
|
|
@@ -23,7 +61,8 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
|
|
|
23
61
|
|
|
24
62
|
### Fixed
|
|
25
63
|
- Now uses `fp16` instead of `bf16` when evaluating decoder models on GPUs with CUDA
|
|
26
|
-
compatibility < 8.0. This was contributed by
|
|
64
|
+
compatibility < 8.0. This was contributed by
|
|
65
|
+
[@marksverdhei](https://github.com/marksverdhei) ✨
|
|
27
66
|
- Corrected the name of the French sentiment dataset AlloCiné. This was contributed by
|
|
28
67
|
[@Alkarex](https://github.com/Alkarex) ✨
|
|
29
68
|
- Evaluating a specific model revision did not work for adapter models, as there was a
|
|
@@ -50,7 +89,8 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
|
|
|
50
89
|
as the API sometimes fails. If it still fails after 3 attempts, we raise the
|
|
51
90
|
`HuggingFaceHubDown` exception.
|
|
52
91
|
- Now uses `fp16` instead of `bf16` when evaluating decoder models on GPUs with CUDA
|
|
53
|
-
compatibility < 8.0. This was contributed by
|
|
92
|
+
compatibility < 8.0. This was contributed by
|
|
93
|
+
[@marksverdhei](https://github.com/marksverdhei) ✨
|
|
54
94
|
- Fixed docs for ScandiQA-da and ScandiQA-sv, where it was incorrectly stated that
|
|
55
95
|
the splits were made by considering the original train/validation/test splits.
|
|
56
96
|
|
|
@@ -118,18 +158,17 @@ and this project adheres to [Semantic Versioning](http://semver.org/spec/v2.0.0.
|
|
|
118
158
|
## [v15.3.0] - 2025-03-12
|
|
119
159
|
### Added
|
|
120
160
|
- Added support for evaluating Italian 🇮🇹! This includes the reading comprehension
|
|
121
|
-
dataset [SQuAD-it](https://hf.co/datasets/crux82/squad_it), the summarization
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
dataset ScaLA with the [Italian Universal Dependencies
|
|
161
|
+
dataset [SQuAD-it](https://hf.co/datasets/crux82/squad_it), the summarization dataset
|
|
162
|
+
[IlPost](https://hf.co/datasets/ARTeLab/ilpost), the sentiment classification
|
|
163
|
+
[Sentipolc-16](https://hf.co/datasets/cardiffnlp/tweet_sentiment_multilingual), the
|
|
164
|
+
common-sense reasoning dataset
|
|
165
|
+
[HellaSwag-it](https://hf.co/datasets/alexandrainst/m_hellaswag), the linguistic
|
|
166
|
+
acceptability dataset ScaLA with the [Italian Universal Dependencies
|
|
128
167
|
treebank](https://github.com/UniversalDependencies/UD_Italian-ISDT), the knowledge
|
|
129
168
|
dataset [MMLU-it](https://hf.co/datasets/alexandrainst/m_mmlu), and the named entity
|
|
130
|
-
recognition dataset [MultiNERD
|
|
131
|
-
IT](https://hf.co/datasets/Babelscape/
|
|
132
|
-
|
|
169
|
+
recognition dataset [MultiNERD IT](https://hf.co/datasets/Babelscape/multinerd) (and
|
|
170
|
+
unofficially [WikiNEuRal IT](https://hf.co/datasets/Babelscape/wikineural)). This was
|
|
171
|
+
contributed by [@viggo-gascou](https://github.com/viggo-gascou) ✨
|
|
133
172
|
- Added the new Norwegian knowledge dataset NRK-Quiz-QA, consisting of quizzes on the
|
|
134
173
|
Norwegian language and culture, in both Bokmål and Nynorsk. The dataset has been split
|
|
135
174
|
into 635 / 256 / 2,048 samples for train, val, and test, respectively. This replaces
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: EuroEval
|
|
3
|
-
Version: 15.
|
|
3
|
+
Version: 15.5.0
|
|
4
4
|
Summary: The robust European language model benchmark.
|
|
5
5
|
Project-URL: Repository, https://github.com/EuroEval/EuroEval
|
|
6
6
|
Project-URL: Issues, https://github.com/EuroEval/EuroEval/issues
|
|
@@ -37,7 +37,7 @@ Requires-Dist: demjson3>=3.0.6
|
|
|
37
37
|
Requires-Dist: evaluate>=0.4.1
|
|
38
38
|
Requires-Dist: huggingface-hub>=0.24.0
|
|
39
39
|
Requires-Dist: levenshtein>=0.24.0
|
|
40
|
-
Requires-Dist: litellm>=1.
|
|
40
|
+
Requires-Dist: litellm>=1.63.0
|
|
41
41
|
Requires-Dist: more-itertools>=10.5.0
|
|
42
42
|
Requires-Dist: numpy<2.0.0,>=1.23.0
|
|
43
43
|
Requires-Dist: ollama>=0.4.7
|
|
@@ -62,12 +62,12 @@ Requires-Dist: bitsandbytes>=0.43.1; (platform_system == 'Linux') and extra == '
|
|
|
62
62
|
Requires-Dist: fbgemm-gpu>=1.0.0; (platform_system == 'Linux') and extra == 'all'
|
|
63
63
|
Requires-Dist: gradio>=4.26.0; extra == 'all'
|
|
64
64
|
Requires-Dist: outlines>=0.1.11; extra == 'all'
|
|
65
|
-
Requires-Dist: vllm
|
|
65
|
+
Requires-Dist: vllm>=0.8.0; (platform_system == 'Linux') and extra == 'all'
|
|
66
66
|
Provides-Extra: generative
|
|
67
67
|
Requires-Dist: bitsandbytes>=0.43.1; (platform_system == 'Linux') and extra == 'generative'
|
|
68
68
|
Requires-Dist: fbgemm-gpu>=1.0.0; (platform_system == 'Linux') and extra == 'generative'
|
|
69
69
|
Requires-Dist: outlines>=0.1.11; extra == 'generative'
|
|
70
|
-
Requires-Dist: vllm
|
|
70
|
+
Requires-Dist: vllm>=0.8.0; (platform_system == 'Linux') and extra == 'generative'
|
|
71
71
|
Provides-Extra: human-evaluation
|
|
72
72
|
Requires-Dist: gradio>=4.26.0; extra == 'human-evaluation'
|
|
73
73
|
Provides-Extra: test
|
|
@@ -218,6 +218,7 @@ Replace <name-of-script> with the specific script you wish to execute, e.g.,
|
|
|
218
218
|
$ uv run src/scripts/create_allocine.py
|
|
219
219
|
```
|
|
220
220
|
|
|
221
|
+
|
|
221
222
|
## Special Thanks :pray:
|
|
222
223
|
- Thanks [@Mikeriess](https://github.com/Mikeriess) for evaluating many of the larger
|
|
223
224
|
models on the leaderboards.
|
|
@@ -142,6 +142,7 @@ Replace <name-of-script> with the specific script you wish to execute, e.g.,
|
|
|
142
142
|
$ uv run src/scripts/create_allocine.py
|
|
143
143
|
```
|
|
144
144
|
|
|
145
|
+
|
|
145
146
|
## Special Thanks :pray:
|
|
146
147
|
- Thanks [@Mikeriess](https://github.com/Mikeriess) for evaluating many of the larger
|
|
147
148
|
models on the leaderboards.
|
|
@@ -450,12 +450,14 @@ Here are a few examples from the training split:
|
|
|
450
450
|
{
|
|
451
451
|
"text": "Hvilket af følgende områder har kommunerne ansvaret for driften af?\nSvarmuligheder:\na. Domstole\nb. Vuggestuer\nc. Sygehuse",
|
|
452
452
|
"label": "b"
|
|
453
|
-
}
|
|
453
|
+
}
|
|
454
|
+
```
|
|
454
455
|
```json
|
|
455
456
|
{
|
|
456
457
|
"text": "Hvilken organisation blev Danmark medlem af i 1945?\nSvarmuligheder:\na. Verdenshandelsorganisationen (WTO)\nb. Den Europæiske Union (EU)\nc. De Forenede Nationer (FN)",
|
|
457
458
|
"label": "c"
|
|
458
|
-
}
|
|
459
|
+
}
|
|
460
|
+
```
|
|
459
461
|
|
|
460
462
|
When evaluating generative models, we use the following setup (see the
|
|
461
463
|
[methodology](/methodology) for more information on how these are used):
|
|
@@ -133,7 +133,7 @@ $ euroeval --model <model-id> --dataset dbrd
|
|
|
133
133
|
|
|
134
134
|
## Named Entity Recognition
|
|
135
135
|
|
|
136
|
-
### CoNLL-
|
|
136
|
+
### CoNLL-nl
|
|
137
137
|
|
|
138
138
|
This dataset was published in [this paper](https://aclanthology.org/W02-2024/) and
|
|
139
139
|
consists of named entity recognition annotations of the Belgian newspaper "De Morgen" of
|
|
@@ -81,7 +81,7 @@ $ euroeval --model <model-id> --dataset sst5
|
|
|
81
81
|
|
|
82
82
|
## Named Entity Recognition
|
|
83
83
|
|
|
84
|
-
### CoNLL-
|
|
84
|
+
### CoNLL-en
|
|
85
85
|
|
|
86
86
|
This dataset was published in [this paper](https://aclanthology.org/W03-0419/) and was
|
|
87
87
|
part of the CoNNL-2003 shared task. The data comes from the [Reuters
|
|
@@ -282,10 +282,10 @@ $ euroeval --model <model-id> --dataset scala-fo
|
|
|
282
282
|
|
|
283
283
|
### FoQA
|
|
284
284
|
|
|
285
|
-
This dataset
|
|
286
|
-
Wikipedia. The questions and answers were automatically
|
|
287
|
-
which were verified by a native speaker, and some of them
|
|
288
|
-
same native speaker.
|
|
285
|
+
This dataset was published in [this paper](https://doi.org/10.48550/arXiv.2502.07642)
|
|
286
|
+
and is based on the Faroese Wikipedia. The questions and answers were automatically
|
|
287
|
+
generated using GPT-4-turbo, which were verified by a native speaker, and some of them
|
|
288
|
+
were also corrected by the same native speaker.
|
|
289
289
|
|
|
290
290
|
The original full dataset consists of 2,000 samples, and we split these into 848 / 128 /
|
|
291
291
|
1,024 samples for training, validation and testing, respectively.
|
|
@@ -9,9 +9,9 @@ information about what these constitute.
|
|
|
9
9
|
|
|
10
10
|
### Hotter and Colder Sentiment
|
|
11
11
|
|
|
12
|
-
This dataset
|
|
13
|
-
Icelandic blog post, annotated with sentiment labels (and
|
|
14
|
-
crowdsourcing platform.
|
|
12
|
+
This dataset was published in [this paper](https://doi.org/10.48550/arXiv.2502.16987),
|
|
13
|
+
and consists of texts from Icelandic blog post, annotated with sentiment labels (and
|
|
14
|
+
many others) via a crowdsourcing platform.
|
|
15
15
|
|
|
16
16
|
The original full dataset consists of 2,901 samples, and we use a 1,021 / 255 / 1,607
|
|
17
17
|
split for training, validation and testing, respectively (so all samples are used in
|
|
@@ -73,13 +73,14 @@ $ euroeval --model <model-id> --dataset hotter-and-colder-sentiment
|
|
|
73
73
|
|
|
74
74
|
### MIM-GOLD-NER
|
|
75
75
|
|
|
76
|
-
This dataset was published in [this
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
76
|
+
This dataset was published in [this
|
|
77
|
+
paper](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/230) and is
|
|
78
|
+
based on the [Tagged Icelandic Corpus (MIM)](https://clarin.is/en/resources/mim/), which
|
|
79
|
+
consists of Icelandic books, news articles, periodicals, parliament speeches, legal
|
|
80
|
+
texts, adjudications and government websites. It has been annotated with named entities
|
|
81
|
+
in a semi-automated fashion, where each labels has been manually verified. The entity
|
|
82
|
+
types in the dataset is a superset of the CoNLL-2003 tags, with the following additional
|
|
83
|
+
labels: `DATE`, `TIME`, `MONEY`, `PERCENT`. These labels have been removed.
|
|
83
84
|
|
|
84
85
|
The original full dataset consists of 1,000,000 tokens. We use a 1,024 / 256 / 2,048
|
|
85
86
|
split for training, validation and testing, respectively.
|
|
@@ -526,17 +527,20 @@ Here are a few examples from the training split:
|
|
|
526
527
|
{
|
|
527
528
|
"text": "Hver var talinn heilagur maður eftir dauða sinn, er tákngervingur alþýðuhreyfingar vestanlands og talinn góður til áheita?\nSvarmöguleikar:\na. Þórður Jónsson helgi\nb. Guðmundur Arason\nc. Snorri Þorgrímsson\nd. Jón Hreggviðsson",
|
|
528
529
|
"label": "a"
|
|
529
|
-
}
|
|
530
|
+
}
|
|
531
|
+
```
|
|
530
532
|
```json
|
|
531
533
|
{
|
|
532
534
|
"text": "Í kringum hvaða ár hófst verslun á Arngerðareyri?\nSvarmöguleikar:\na. 1895\nb. 1884\nc. 1870\nd. 1902",
|
|
533
535
|
"label": "b"
|
|
534
|
-
}
|
|
536
|
+
}
|
|
537
|
+
```
|
|
535
538
|
```json
|
|
536
539
|
{
|
|
537
540
|
"text": "Hvenær var ákveðið að uppstigningardagur skyldi vera kirkjudagur aldraðra á Íslandi?\nSvarmöguleikar:\na. Árið 1975\nb. Árið 1985\nc. Árið 1982\nd. Árið 1990",
|
|
538
541
|
"label": "c"
|
|
539
|
-
}
|
|
542
|
+
}
|
|
543
|
+
```
|
|
540
544
|
|
|
541
545
|
When evaluating generative models, we use the following setup (see the
|
|
542
546
|
[methodology](/methodology) for more information on how these are used):
|
|
@@ -71,11 +71,10 @@ $ euroeval --model <model-id> --dataset sentipolc16
|
|
|
71
71
|
### MultiNERD IT
|
|
72
72
|
|
|
73
73
|
This dataset was published in [this
|
|
74
|
-
paper](https://aclanthology.org/2022.findings-naacl.60/) and
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
(
|
|
78
|
-
(NER4EL)[https://www.github.com/Babelscape/ner4el]. The original test set was created
|
|
74
|
+
paper](https://aclanthology.org/2022.findings-naacl.60/) and consists of sentences from
|
|
75
|
+
Wikipedia and Wikinews in 10 different languages. It is an extension of the combination
|
|
76
|
+
of [WikiNEuRal](https://www.github.com/Babelscape/wikineural) and
|
|
77
|
+
[NER4EL](https://www.github.com/Babelscape/ner4el). The original test set was created
|
|
79
78
|
from manual annotations, while the training set is based on an automatic annotation
|
|
80
79
|
pipeline.
|
|
81
80
|
|
|
@@ -519,7 +518,7 @@ $ euroeval --model <model-id> --dataset hellaswag-it
|
|
|
519
518
|
|
|
520
519
|
## Summarization
|
|
521
520
|
|
|
522
|
-
### IlPost-
|
|
521
|
+
### IlPost-Sum
|
|
523
522
|
|
|
524
523
|
This dataset was published in [this paper](https://www.mdpi.com/2078-2489/13/5/228) and
|
|
525
524
|
consists of news articles from [Il Post](https://www.ilpost.it/). The summaries were
|
|
@@ -388,17 +388,20 @@ Here are a few examples from the training split:
|
|
|
388
388
|
{
|
|
389
389
|
"text": "Vi har hatt krig i nesten ti år. Jeg føler meg noen ganger trist fordi jeg har mistet flere venner og min far på grunn av krigen.",
|
|
390
390
|
"label": "correct"
|
|
391
|
-
}
|
|
391
|
+
}
|
|
392
|
+
```
|
|
392
393
|
```json
|
|
393
394
|
{
|
|
394
395
|
"text": "Hvis jeg ikke sier in n genting, kan han spille hele dagen.",
|
|
395
396
|
"label": "incorrect"
|
|
396
|
-
}
|
|
397
|
+
}
|
|
398
|
+
```
|
|
397
399
|
```json
|
|
398
400
|
{
|
|
399
401
|
"text": "De føler at samfunnet trenger ikke dem.",
|
|
400
402
|
"label": "incorrect"
|
|
401
|
-
}
|
|
403
|
+
}
|
|
404
|
+
```
|
|
402
405
|
|
|
403
406
|
When evaluating generative models, we use the following setup (see the
|
|
404
407
|
[methodology](/methodology) for more information on how these are used):
|
|
@@ -660,17 +663,20 @@ Here are a few examples from the training split:
|
|
|
660
663
|
{
|
|
661
664
|
"text": "Gunnar har hatt plutselige og sterke smerteanfall siden han var liten gutt. Det var vondt å tisse og det gjorde vondt i ryggen og magen. Det hjalp litt å drikke vann. Reseptbelagte medisiner kan være nødvendig under anfall.\nSvaralternativer:\na. Nyrestein, kronisk\nb. Irritabel tarmsyndrom\nc. Angst\nd. Urinveisinfeksjon",
|
|
662
665
|
"label": "a"
|
|
663
|
-
}
|
|
666
|
+
}
|
|
667
|
+
```
|
|
664
668
|
```json
|
|
665
669
|
{
|
|
666
670
|
"text": "80 år gamle Harrison Ford er nok ein gong aktuell i rolla som Indiana Jones. Kva heiter filmen?\nSvaralternativer:\na. Indiana Jones and the Nasty Nazis\nb. Indiana Jones and the Dial of Destiny\nc. Indiana Jones and the Hunt for Power\nd. Indiana Jones Forever",
|
|
667
671
|
"label": "b"
|
|
668
|
-
}
|
|
672
|
+
}
|
|
673
|
+
```
|
|
669
674
|
```json
|
|
670
675
|
{
|
|
671
676
|
"text": "I 1980 måtte denne bassisten overnatte ni netter i fengsel i Japan fordi han prøvde å få med seg ca. 200 gram marihuana inn i landet. Hvem var det?\nSvaralternativer:\na. Sting\nb. Lemmy Kilmister\nc. Paul McCartney\nd. Bootsy Collins",
|
|
672
677
|
"label": "c"
|
|
673
|
-
}
|
|
678
|
+
}
|
|
679
|
+
```
|
|
674
680
|
|
|
675
681
|
When evaluating generative models, we use the following setup (see the
|
|
676
682
|
[methodology](/methodology) for more information on how these are used):
|
|
@@ -868,17 +874,20 @@ Here are a few examples from the training split:
|
|
|
868
874
|
{
|
|
869
875
|
"text": "Hvor er det sannsynlig at en fugl lager hjemmet sitt?\nSvaralternativer:\na. I skogen\nb. I et rede\nc. På taket\nd. På blader\ne. I himmelen",
|
|
870
876
|
"label": "a"
|
|
871
|
-
}
|
|
877
|
+
}
|
|
878
|
+
```
|
|
872
879
|
```json
|
|
873
880
|
{
|
|
874
881
|
"text": "Hvis et hjem har et abonnoment, hva får de sannsyneligvis hver dag i posten?\nSvaralternativer:\na. Delestykker\nb. En avis\nc. En gate\nd. En vaskemaskin\ne. Jordas overflate",
|
|
875
882
|
"label": "b"
|
|
876
|
-
}
|
|
883
|
+
}
|
|
884
|
+
```
|
|
877
885
|
```json
|
|
878
886
|
{
|
|
879
887
|
"text": "Når du ikke klarer å gjøre noe ferdig, hva feilet du i da?\nSvaralternativer:\na. Å vinne\nb. Å bestå\nc. Å fullfør\nd. Å gjøre det bra\ne. Å lykkes",
|
|
880
888
|
"label": "c"
|
|
881
|
-
}
|
|
889
|
+
}
|
|
890
|
+
```
|
|
882
891
|
|
|
883
892
|
When evaluating generative models, we use the following setup (see the
|
|
884
893
|
[methodology](/methodology) for more information on how these are used):
|
|
@@ -127,8 +127,7 @@ publish:
|
|
|
127
127
|
echo "No PyPI API token specified in the '.env' file, so cannot publish."; \
|
|
128
128
|
else \
|
|
129
129
|
echo "Publishing to PyPI..."; \
|
|
130
|
-
$(MAKE) --quiet
|
|
131
|
-
&& $(MAKE) --quiet publish-euroeval \
|
|
130
|
+
$(MAKE) --quiet publish-euroeval \
|
|
132
131
|
&& $(MAKE) --quiet publish-scandeval \
|
|
133
132
|
&& $(MAKE) --quiet publish-docs \
|
|
134
133
|
&& $(MAKE) --quiet add-dev-version \
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "EuroEval"
|
|
3
|
-
version = "15.
|
|
3
|
+
version = "15.5.0"
|
|
4
4
|
description = "The robust European language model benchmark."
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
authors = [
|
|
@@ -31,7 +31,7 @@ dependencies = [
|
|
|
31
31
|
"sacremoses>=0.1.1",
|
|
32
32
|
"more-itertools>=10.5.0",
|
|
33
33
|
"tenacity>=9.0.0",
|
|
34
|
-
"litellm>=1.
|
|
34
|
+
"litellm>=1.63.0",
|
|
35
35
|
"rouge-score>=0.1.2",
|
|
36
36
|
"bert-score>=0.3.13",
|
|
37
37
|
"levenshtein>=0.24.0",
|
|
@@ -46,7 +46,7 @@ dependencies = [
|
|
|
46
46
|
generative = [
|
|
47
47
|
"outlines>=0.1.11",
|
|
48
48
|
"bitsandbytes>=0.43.1; platform_system == 'Linux'",
|
|
49
|
-
"vllm
|
|
49
|
+
"vllm>=0.8.0; platform_system == 'Linux'",
|
|
50
50
|
"fbgemm-gpu>=1.0.0; platform_system == 'Linux'",
|
|
51
51
|
]
|
|
52
52
|
human_evaluation = [
|
|
@@ -55,7 +55,7 @@ human_evaluation = [
|
|
|
55
55
|
all = [
|
|
56
56
|
"outlines>=0.1.11",
|
|
57
57
|
"bitsandbytes>=0.43.1; platform_system == 'Linux'",
|
|
58
|
-
"vllm
|
|
58
|
+
"vllm>=0.8.0; platform_system == 'Linux'",
|
|
59
59
|
"fbgemm-gpu>=1.0.0; platform_system == 'Linux'",
|
|
60
60
|
"gradio>=4.26.0",
|
|
61
61
|
]
|
|
@@ -83,7 +83,7 @@ dev-dependencies = [
|
|
|
83
83
|
"readme-coverage-badger>=0.1.2",
|
|
84
84
|
"click>=8.1.7",
|
|
85
85
|
"ruff>=0.7.1",
|
|
86
|
-
"mypy>=1.
|
|
86
|
+
"mypy>=1.15.0",
|
|
87
87
|
"nbstripout>=0.7.1",
|
|
88
88
|
"coverage>=5.5",
|
|
89
89
|
"lxml>=5.1.0",
|
|
@@ -106,6 +106,7 @@ dev-dependencies = [
|
|
|
106
106
|
"types-tabulate>=0.9.0.20241207",
|
|
107
107
|
"types-setuptools>=75.8.0.20250110",
|
|
108
108
|
"types-ujson>=5.10.0.20240515",
|
|
109
|
+
"types-simplejson>=3.2.0.2025032",
|
|
109
110
|
]
|
|
110
111
|
|
|
111
112
|
[tool.ruff]
|
|
@@ -4,6 +4,7 @@
|
|
|
4
4
|
### Block unwanted terminal output that happens on importing external modules ###
|
|
5
5
|
|
|
6
6
|
import logging
|
|
7
|
+
import os
|
|
7
8
|
import sys
|
|
8
9
|
import warnings
|
|
9
10
|
|
|
@@ -14,7 +15,7 @@ warnings.filterwarnings("ignore", category=UserWarning)
|
|
|
14
15
|
logging.getLogger("httpx").setLevel(logging.CRITICAL)
|
|
15
16
|
logging.getLogger("datasets").setLevel(logging.CRITICAL)
|
|
16
17
|
logging.getLogger("vllm").setLevel(logging.CRITICAL)
|
|
17
|
-
|
|
18
|
+
os.environ["VLLM_CONFIGURE_LOGGING"] = "0"
|
|
18
19
|
|
|
19
20
|
# Set up logging
|
|
20
21
|
fmt = colored("%(asctime)s", "light_blue") + " ⋅ " + colored("%(message)s", "green")
|
|
@@ -29,7 +30,6 @@ logging.basicConfig(
|
|
|
29
30
|
### Set the rest up ###
|
|
30
31
|
|
|
31
32
|
import importlib.metadata # noqa: E402
|
|
32
|
-
import os # noqa: E402
|
|
33
33
|
|
|
34
34
|
from dotenv import load_dotenv # noqa: E402
|
|
35
35
|
|
|
@@ -44,6 +44,7 @@ from ..constants import (
|
|
|
44
44
|
DUMMY_FILL_VALUE,
|
|
45
45
|
GENERATIVE_PIPELINE_TAGS,
|
|
46
46
|
LOCAL_MODELS_REQUIRED_FILES,
|
|
47
|
+
MAX_CONTEXT_LENGTH,
|
|
47
48
|
MERGE_TAGS,
|
|
48
49
|
)
|
|
49
50
|
from ..data_models import BenchmarkConfig, DatasetConfig, HFModelInfo, ModelConfig, Task
|
|
@@ -245,6 +246,15 @@ class HuggingFaceEncoderModel(BenchmarkModule):
|
|
|
245
246
|
max_length for max_length in all_max_lengths if max_length >= 128
|
|
246
247
|
]
|
|
247
248
|
|
|
249
|
+
# We remove the upper cap of maximum context length for the model, as it is
|
|
250
|
+
# highly unlikely that this is the model's actual maximum context length - we
|
|
251
|
+
# would rather not report a value than report an incorrect one.
|
|
252
|
+
all_max_lengths = [
|
|
253
|
+
max_length
|
|
254
|
+
for max_length in all_max_lengths
|
|
255
|
+
if max_length != MAX_CONTEXT_LENGTH
|
|
256
|
+
]
|
|
257
|
+
|
|
248
258
|
if len(list(all_max_lengths)) > 0:
|
|
249
259
|
model_max_length = min(list(all_max_lengths))
|
|
250
260
|
else:
|
|
@@ -1140,8 +1150,7 @@ def align_model_and_tokenizer(
|
|
|
1140
1150
|
Returns:
|
|
1141
1151
|
The fixed model and tokenizer.
|
|
1142
1152
|
"""
|
|
1143
|
-
|
|
1144
|
-
model_max_length = min(model_max_length, 5_000)
|
|
1153
|
+
model_max_length = min(model_max_length, MAX_CONTEXT_LENGTH)
|
|
1145
1154
|
|
|
1146
1155
|
if model_max_length > 0:
|
|
1147
1156
|
tokenizer.model_max_length = model_max_length
|