DiadFit 0.0.88__tar.gz → 0.0.90__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. {DiadFit-0.0.88 → DiadFit-0.0.90}/PKG-INFO +1 -1
  2. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/_version.py +1 -1
  3. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/densimeters.py +2 -1
  4. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/diads.py +2 -0
  5. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/error_propagation.py +49 -9
  6. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/PKG-INFO +1 -1
  7. {DiadFit-0.0.88 → DiadFit-0.0.90}/README.md +0 -0
  8. {DiadFit-0.0.88 → DiadFit-0.0.90}/setup.cfg +0 -0
  9. {DiadFit-0.0.88 → DiadFit-0.0.90}/setup.py +0 -0
  10. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/CO2_EOS.py +0 -0
  11. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/CO2_H2O_EOS.py +0 -0
  12. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/CO2_in_bubble_error.py +0 -0
  13. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/H2O_fitting.py +0 -0
  14. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data.pkl +0 -0
  15. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  16. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  17. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  18. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  19. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  20. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data_CCMR.pkl +0 -0
  21. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data_CMASS.pkl +0 -0
  22. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data_CMASS_24C.pkl +0 -0
  23. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data.pkl +0 -0
  24. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  25. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  26. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  27. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  28. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  29. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data_CCMR.pkl +0 -0
  30. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data_CMASS.pkl +0 -0
  31. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl +0 -0
  32. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_data.pkl +0 -0
  33. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  34. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl +0 -0
  35. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  36. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  37. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl +0 -0
  38. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_data_CCMR.pkl +0 -0
  39. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_data_CMASS.pkl +0 -0
  40. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Psensor.py +0 -0
  41. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/__init__.py +0 -0
  42. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/argon_lines.py +0 -0
  43. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/cosmicray_filter.py +0 -0
  44. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/densimeter_fitting.py +0 -0
  45. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/density_depth_crustal_profiles.py +0 -0
  46. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/importing_data_files.py +0 -0
  47. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/lookup_table.csv +0 -0
  48. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/lookup_table_noneg.csv +0 -0
  49. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/molar_gas_proportions.py +0 -0
  50. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/ne_lines.py +0 -0
  51. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/relaxifi.py +0 -0
  52. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/SOURCES.txt +0 -0
  53. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/dependency_links.txt +0 -0
  54. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/requires.txt +0 -0
  55. {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.88
3
+ Version: 0.0.90
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -5,4 +5,4 @@
5
5
  # 1) we don't load dependencies by storing it in __init__.py
6
6
  # 2) we can import it in setup.py for the same reason
7
7
  # 3) we can import it into your module
8
- __version__ = '0.0.88'
8
+ __version__ = '0.0.90'
@@ -512,6 +512,7 @@ CI_split=0.67, CI_neon=0.67, Ne_pickle_str=None, pref_Ne=None, Ne_err=None, cor
512
512
 
513
513
  # IF temp is 37
514
514
  if lab=='CMASS' and temp=='SupCrit':
515
+ print('yes')
515
516
  # This gets the densimeter at low density
516
517
  pickle_str_lowr='Lowrho_polyfit_data_CMASS.pkl'
517
518
  with open(DiadFit_dir/pickle_str_lowr, 'rb') as f:
@@ -529,7 +530,7 @@ CI_split=0.67, CI_neon=0.67, Ne_pickle_str=None, pref_Ne=None, Ne_err=None, cor
529
530
 
530
531
 
531
532
 
532
- if lab=='CMASS' and temp=='RoomT':
533
+ elif lab=='CMASS' and temp=='RoomT':
533
534
  # This gets the densimeter at low density
534
535
  pickle_str_lowr='Lowrho_polyfit_data_CMASS_24C.pkl'
535
536
  with open(DiadFit_dir/pickle_str_lowr, 'rb') as f:
@@ -5,6 +5,8 @@ from matplotlib import patches
5
5
  import lmfit
6
6
  from lmfit.models import GaussianModel, VoigtModel, LinearModel, ConstantModel, PseudoVoigtModel, Pearson4Model
7
7
  from scipy.signal import find_peaks
8
+ from scipy.signal.windows import gaussian
9
+
8
10
  import os
9
11
  import re
10
12
  from os import listdir
@@ -275,7 +275,7 @@ error_XH2O=None, error_type_XH2O='Abs', error_dist_XH2O='normal',
275
275
  # First need to work out what crustal density is
276
276
 
277
277
  if type(crust_dens_kgm3) is float or type(crust_dens_kgm3) is int:
278
- crust_dens_with_noise=add_noise_to_variable(crust_dens_kgm3, error_crust_dens_kgm3,
278
+ crust_dens_with_noise=add_noise_to_variable(crust_dens_kgm3, error_crust_dens,
279
279
  error_type_crust_dens, error_dist_crust_dens, N_dup, neg_values, neg_threshold=0.0000000001)
280
280
 
281
281
 
@@ -694,13 +694,53 @@ neg_values=True
694
694
 
695
695
 
696
696
  fig.suptitle('Simulations for sample = ' + str(All_outputs['Filename'].iloc[fig_i]), fontsize=20)
697
+
698
+ # Getting things to annotate
699
+ # Temperature
700
+ if isinstance(error_T_K, pd.Series):
701
+ error_T_K_plot = error_T_K.iloc[fig_i]
702
+ elif isinstance(error_T_K, np.ndarray):
703
+ error_T_K_plot = error_T_K[fig_i]
704
+ else:
705
+ error_T_K_plot = error_T_K
706
+ error_T_K_plot=np.round(error_T_K_plot, 1)
707
+
708
+
709
+ # Crustal density
710
+ if isinstance(error_crust_dens, pd.Series):
711
+ error_crust_dens_plot = error_crust_dens.iloc[fig_i]
712
+ elif isinstance(error_crust_dens, np.ndarray):
713
+ error_crust_dens_plot = error_crust_dens[fig_i]
714
+ else:
715
+ error_crust_dens_plot = error_crust_dens
716
+ error_crust_dens_plot=np.round(error_crust_dens_plot, 1)
717
+
718
+ # CO2 density
719
+ if isinstance(error_CO2_dens, pd.Series):
720
+ error_CO2_dens_plot = error_CO2_dens.iloc[fig_i]
721
+ elif isinstance(error_CO2_dens, np.ndarray):
722
+ error_CO2_dens_plot = error_CO2_dens[fig_i]
723
+ else:
724
+ error_CO2_dens_plot = error_CO2_dens
725
+ error_CO2_dens_plot=np.round(error_CO2_dens_plot, 3)
726
+
727
+
728
+ # XH2O
729
+ if isinstance(error_XH2O, pd.Series):
730
+ error_XH2O_plot = error_XH2O.iloc[fig_i]
731
+ elif isinstance(error_XH2O, np.ndarray):
732
+ error_XH2O_plot = error_XH2O[fig_i]
733
+ else:
734
+ error_XH2O_plot = error_XH2O
735
+ error_XH2O_plot=np.round(error_XH2O_plot, 3)
736
+
697
737
 
698
738
 
699
739
  # Ax1 is temperature
700
740
  if error_dist_T_K=='normal' and error_type_T_K == 'Abs':
701
- ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(error_T_K) + ' K')
741
+ ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(error_T_K_plot) + ' K')
702
742
  if error_dist_T_K=='normal' and error_type_T_K == 'Perc':
703
- ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(error_T_K) + '%')
743
+ ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(error_T_K_plot) + '%')
704
744
  if df_1_step['error_T_K'][0]!=0:
705
745
  ax1.hist(df_1_sample['MC_T_K'], color='red', ec='k')
706
746
  else:
@@ -708,9 +748,9 @@ neg_values=True
708
748
 
709
749
  # ax2 is CO2 density
710
750
  if error_dist_CO2_dens=='normal' and error_type_CO2_dens == 'Abs':
711
- ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(error_CO2_dens) + ' g/cm$^{3}$')
751
+ ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(error_CO2_dens_plot) + ' g/cm$^{3}$')
712
752
  if error_dist_CO2_dens=='normal' and error_type_CO2_dens == 'Perc':
713
- ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(error_CO2_dens) + '%')
753
+ ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(error_CO2_dens_plot) + '%')
714
754
  if df_1_step['error_CO2_dens_gcm3'][0]!=0:
715
755
  ax2.hist(df_1_sample['MC_CO2_dens_gcm3'], facecolor='white', ec='k')
716
756
  else:
@@ -719,9 +759,9 @@ neg_values=True
719
759
 
720
760
  # ax3 is the crustal density error
721
761
  if error_dist_crust_dens=='normal' and error_type_crust_dens == 'Abs':
722
- ax3.set_title('Input Distribution Crustal density: Normally-distributed, 1σ =' +str(error_crust_dens) + 'kg/m$^{3}$')
762
+ ax3.set_title('Input Distribution Crustal density: Normally-distributed, 1σ =' +str(error_crust_dens_plot) + 'kg/m$^{3}$')
723
763
  if error_dist_crust_dens=='normal' and error_type_crust_dens == 'Perc':
724
- ax3.set_title('Input distribution crustal density: Normally-distributed, 1σ =' +str(error_crust_dens) + '%')
764
+ ax3.set_title('Input distribution crustal density: Normally-distributed, 1σ =' +str(error_crust_dens_plot) + '%')
725
765
  if model is None and df_1_step['error_crust_dens_kgm3'][0]!=0:
726
766
  ax3.hist(df_1_sample['input_crust_dens_kgm3'], facecolor='white', ec='k')
727
767
  else:
@@ -730,9 +770,9 @@ neg_values=True
730
770
 
731
771
  # ax4 is XH2O
732
772
  if error_dist_XH2O=='normal' and error_type_XH2O == 'Abs':
733
- ax4.set_title('Input Distribution XH2O: Normally-distributed, 1σ =' +str(error_XH2O) + 'molar prop')
773
+ ax4.set_title('Input Distribution XH2O: Normally-distributed, 1σ =' +str(error_XH2O_plot) + 'molar prop')
734
774
  if error_dist_XH2O=='normal' and error_type_XH2O == 'Perc':
735
- ax4.set_title('Input distribution XH2O: Normally-distributed, 1σ =' +str(error_XH2O) + '%')
775
+ ax4.set_title('Input distribution XH2O: Normally-distributed, 1σ =' +str(error_XH2O_plot) + '%')
736
776
  if XH2O is not None and df_1_step['error_XH2O'][0]!=0:
737
777
  ax4.hist(df_1_sample['MC_XH2O'], facecolor='white', ec='k')
738
778
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.88
3
+ Version: 0.0.90
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
File without changes
File without changes
File without changes