DiadFit 0.0.88__tar.gz → 0.0.90__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {DiadFit-0.0.88 → DiadFit-0.0.90}/PKG-INFO +1 -1
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/_version.py +1 -1
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/densimeters.py +2 -1
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/diads.py +2 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/error_propagation.py +49 -9
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/PKG-INFO +1 -1
- {DiadFit-0.0.88 → DiadFit-0.0.90}/README.md +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/setup.cfg +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/setup.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/CO2_EOS.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/CO2_H2O_EOS.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/CO2_in_bubble_error.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/H2O_fitting.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1117_1447.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1567.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data_CCMR.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data_CMASS.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Highrho_polyfit_data_CMASS_24C.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1117_1447.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1567.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data_CCMR.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data_CMASS.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Lowrho_polyfit_data_CMASS_24C.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_data.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1117_1447.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1567.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_data_CCMR.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Mediumrho_polyfit_data_CMASS.pkl +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/Psensor.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/__init__.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/argon_lines.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/cosmicray_filter.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/densimeter_fitting.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/density_depth_crustal_profiles.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/importing_data_files.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/lookup_table.csv +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/lookup_table_noneg.csv +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/molar_gas_proportions.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/ne_lines.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit/relaxifi.py +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/SOURCES.txt +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/dependency_links.txt +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/requires.txt +0 -0
- {DiadFit-0.0.88 → DiadFit-0.0.90}/src/DiadFit.egg-info/top_level.txt +0 -0
@@ -512,6 +512,7 @@ CI_split=0.67, CI_neon=0.67, Ne_pickle_str=None, pref_Ne=None, Ne_err=None, cor
|
|
512
512
|
|
513
513
|
# IF temp is 37
|
514
514
|
if lab=='CMASS' and temp=='SupCrit':
|
515
|
+
print('yes')
|
515
516
|
# This gets the densimeter at low density
|
516
517
|
pickle_str_lowr='Lowrho_polyfit_data_CMASS.pkl'
|
517
518
|
with open(DiadFit_dir/pickle_str_lowr, 'rb') as f:
|
@@ -529,7 +530,7 @@ CI_split=0.67, CI_neon=0.67, Ne_pickle_str=None, pref_Ne=None, Ne_err=None, cor
|
|
529
530
|
|
530
531
|
|
531
532
|
|
532
|
-
|
533
|
+
elif lab=='CMASS' and temp=='RoomT':
|
533
534
|
# This gets the densimeter at low density
|
534
535
|
pickle_str_lowr='Lowrho_polyfit_data_CMASS_24C.pkl'
|
535
536
|
with open(DiadFit_dir/pickle_str_lowr, 'rb') as f:
|
@@ -5,6 +5,8 @@ from matplotlib import patches
|
|
5
5
|
import lmfit
|
6
6
|
from lmfit.models import GaussianModel, VoigtModel, LinearModel, ConstantModel, PseudoVoigtModel, Pearson4Model
|
7
7
|
from scipy.signal import find_peaks
|
8
|
+
from scipy.signal.windows import gaussian
|
9
|
+
|
8
10
|
import os
|
9
11
|
import re
|
10
12
|
from os import listdir
|
@@ -275,7 +275,7 @@ error_XH2O=None, error_type_XH2O='Abs', error_dist_XH2O='normal',
|
|
275
275
|
# First need to work out what crustal density is
|
276
276
|
|
277
277
|
if type(crust_dens_kgm3) is float or type(crust_dens_kgm3) is int:
|
278
|
-
crust_dens_with_noise=add_noise_to_variable(crust_dens_kgm3,
|
278
|
+
crust_dens_with_noise=add_noise_to_variable(crust_dens_kgm3, error_crust_dens,
|
279
279
|
error_type_crust_dens, error_dist_crust_dens, N_dup, neg_values, neg_threshold=0.0000000001)
|
280
280
|
|
281
281
|
|
@@ -694,13 +694,53 @@ neg_values=True
|
|
694
694
|
|
695
695
|
|
696
696
|
fig.suptitle('Simulations for sample = ' + str(All_outputs['Filename'].iloc[fig_i]), fontsize=20)
|
697
|
+
|
698
|
+
# Getting things to annotate
|
699
|
+
# Temperature
|
700
|
+
if isinstance(error_T_K, pd.Series):
|
701
|
+
error_T_K_plot = error_T_K.iloc[fig_i]
|
702
|
+
elif isinstance(error_T_K, np.ndarray):
|
703
|
+
error_T_K_plot = error_T_K[fig_i]
|
704
|
+
else:
|
705
|
+
error_T_K_plot = error_T_K
|
706
|
+
error_T_K_plot=np.round(error_T_K_plot, 1)
|
707
|
+
|
708
|
+
|
709
|
+
# Crustal density
|
710
|
+
if isinstance(error_crust_dens, pd.Series):
|
711
|
+
error_crust_dens_plot = error_crust_dens.iloc[fig_i]
|
712
|
+
elif isinstance(error_crust_dens, np.ndarray):
|
713
|
+
error_crust_dens_plot = error_crust_dens[fig_i]
|
714
|
+
else:
|
715
|
+
error_crust_dens_plot = error_crust_dens
|
716
|
+
error_crust_dens_plot=np.round(error_crust_dens_plot, 1)
|
717
|
+
|
718
|
+
# CO2 density
|
719
|
+
if isinstance(error_CO2_dens, pd.Series):
|
720
|
+
error_CO2_dens_plot = error_CO2_dens.iloc[fig_i]
|
721
|
+
elif isinstance(error_CO2_dens, np.ndarray):
|
722
|
+
error_CO2_dens_plot = error_CO2_dens[fig_i]
|
723
|
+
else:
|
724
|
+
error_CO2_dens_plot = error_CO2_dens
|
725
|
+
error_CO2_dens_plot=np.round(error_CO2_dens_plot, 3)
|
726
|
+
|
727
|
+
|
728
|
+
# XH2O
|
729
|
+
if isinstance(error_XH2O, pd.Series):
|
730
|
+
error_XH2O_plot = error_XH2O.iloc[fig_i]
|
731
|
+
elif isinstance(error_XH2O, np.ndarray):
|
732
|
+
error_XH2O_plot = error_XH2O[fig_i]
|
733
|
+
else:
|
734
|
+
error_XH2O_plot = error_XH2O
|
735
|
+
error_XH2O_plot=np.round(error_XH2O_plot, 3)
|
736
|
+
|
697
737
|
|
698
738
|
|
699
739
|
# Ax1 is temperature
|
700
740
|
if error_dist_T_K=='normal' and error_type_T_K == 'Abs':
|
701
|
-
ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(
|
741
|
+
ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(error_T_K_plot) + ' K')
|
702
742
|
if error_dist_T_K=='normal' and error_type_T_K == 'Perc':
|
703
|
-
ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(
|
743
|
+
ax1.set_title('Input distribution Temp: Normally-distributed, 1σ =' +str(error_T_K_plot) + '%')
|
704
744
|
if df_1_step['error_T_K'][0]!=0:
|
705
745
|
ax1.hist(df_1_sample['MC_T_K'], color='red', ec='k')
|
706
746
|
else:
|
@@ -708,9 +748,9 @@ neg_values=True
|
|
708
748
|
|
709
749
|
# ax2 is CO2 density
|
710
750
|
if error_dist_CO2_dens=='normal' and error_type_CO2_dens == 'Abs':
|
711
|
-
ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(
|
751
|
+
ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(error_CO2_dens_plot) + ' g/cm$^{3}$')
|
712
752
|
if error_dist_CO2_dens=='normal' and error_type_CO2_dens == 'Perc':
|
713
|
-
ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(
|
753
|
+
ax2.set_title('Input distribution CO$_2$ density: Normally-distributed, 1σ =' +str(error_CO2_dens_plot) + '%')
|
714
754
|
if df_1_step['error_CO2_dens_gcm3'][0]!=0:
|
715
755
|
ax2.hist(df_1_sample['MC_CO2_dens_gcm3'], facecolor='white', ec='k')
|
716
756
|
else:
|
@@ -719,9 +759,9 @@ neg_values=True
|
|
719
759
|
|
720
760
|
# ax3 is the crustal density error
|
721
761
|
if error_dist_crust_dens=='normal' and error_type_crust_dens == 'Abs':
|
722
|
-
ax3.set_title('Input Distribution Crustal density: Normally-distributed, 1σ =' +str(
|
762
|
+
ax3.set_title('Input Distribution Crustal density: Normally-distributed, 1σ =' +str(error_crust_dens_plot) + 'kg/m$^{3}$')
|
723
763
|
if error_dist_crust_dens=='normal' and error_type_crust_dens == 'Perc':
|
724
|
-
ax3.set_title('Input distribution crustal density: Normally-distributed, 1σ =' +str(
|
764
|
+
ax3.set_title('Input distribution crustal density: Normally-distributed, 1σ =' +str(error_crust_dens_plot) + '%')
|
725
765
|
if model is None and df_1_step['error_crust_dens_kgm3'][0]!=0:
|
726
766
|
ax3.hist(df_1_sample['input_crust_dens_kgm3'], facecolor='white', ec='k')
|
727
767
|
else:
|
@@ -730,9 +770,9 @@ neg_values=True
|
|
730
770
|
|
731
771
|
# ax4 is XH2O
|
732
772
|
if error_dist_XH2O=='normal' and error_type_XH2O == 'Abs':
|
733
|
-
ax4.set_title('Input Distribution XH2O: Normally-distributed, 1σ =' +str(
|
773
|
+
ax4.set_title('Input Distribution XH2O: Normally-distributed, 1σ =' +str(error_XH2O_plot) + 'molar prop')
|
734
774
|
if error_dist_XH2O=='normal' and error_type_XH2O == 'Perc':
|
735
|
-
ax4.set_title('Input distribution XH2O: Normally-distributed, 1σ =' +str(
|
775
|
+
ax4.set_title('Input distribution XH2O: Normally-distributed, 1σ =' +str(error_XH2O_plot) + '%')
|
736
776
|
if XH2O is not None and df_1_step['error_XH2O'][0]!=0:
|
737
777
|
ax4.hist(df_1_sample['MC_XH2O'], facecolor='white', ec='k')
|
738
778
|
else:
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|