DiadFit 0.0.80__tar.gz → 0.0.81__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. {DiadFit-0.0.80 → DiadFit-0.0.81}/PKG-INFO +1 -1
  2. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/H2O_fitting.py +5 -5
  3. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/_version.py +1 -1
  4. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/diads.py +39 -30
  5. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit.egg-info/PKG-INFO +1 -1
  6. {DiadFit-0.0.80 → DiadFit-0.0.81}/README.md +0 -0
  7. {DiadFit-0.0.80 → DiadFit-0.0.81}/setup.cfg +0 -0
  8. {DiadFit-0.0.80 → DiadFit-0.0.81}/setup.py +0 -0
  9. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/CO2_EOS.py +0 -0
  10. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/CO2_H2O_EOS.py +0 -0
  11. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/CO2_in_bubble_error.py +0 -0
  12. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Highrho_polyfit_data.pkl +0 -0
  13. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Highrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  14. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  15. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Highrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  16. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Highrho_polyfit_data_CCMR.pkl +0 -0
  17. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Highrho_polyfit_data_CMASS.pkl +0 -0
  18. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Lowrho_polyfit_data.pkl +0 -0
  19. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Lowrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  20. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  21. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Lowrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  22. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Lowrho_polyfit_data_CCMR.pkl +0 -0
  23. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Lowrho_polyfit_data_CMASS.pkl +0 -0
  24. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Mediumrho_polyfit_data.pkl +0 -0
  25. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Mediumrho_polyfit_dataUCB_1117_1400.pkl +0 -0
  26. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1400.pkl +0 -0
  27. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Mediumrho_polyfit_dataUCB_1220_1447.pkl +0 -0
  28. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Mediumrho_polyfit_data_CCMR.pkl +0 -0
  29. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Mediumrho_polyfit_data_CMASS.pkl +0 -0
  30. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/Psensor.py +0 -0
  31. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/__init__.py +0 -0
  32. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/argon_lines.py +0 -0
  33. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/cosmicray_filter.py +0 -0
  34. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/densimeter_fitting.py +0 -0
  35. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/densimeters.py +0 -0
  36. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/density_depth_crustal_profiles.py +0 -0
  37. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/error_propagation.py +0 -0
  38. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/importing_data_files.py +0 -0
  39. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/molar_gas_proportions.py +0 -0
  40. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/ne_lines.py +0 -0
  41. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit/relaxifi.py +0 -0
  42. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit.egg-info/SOURCES.txt +0 -0
  43. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit.egg-info/dependency_links.txt +0 -0
  44. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit.egg-info/requires.txt +0 -0
  45. {DiadFit-0.0.80 → DiadFit-0.0.81}/src/DiadFit.egg-info/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.80
3
+ Version: 0.0.81
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
@@ -305,8 +305,8 @@ def make_evaluate_mixed_spectra(*, path, filename, smoothed_host_y, smoothed_MI_
305
305
  X_min=0, X_max=1, plot_figure=True, dpi=200):
306
306
 
307
307
  """
308
- This function unmixes glass and host spectra, and fits the best fit proportion
309
- where the host peak and trough disapears. Specifically, it calculates the mixed spectra by
308
+ This function unmixes glass and host spectra, and fits the best fit proportion
309
+ where the host peak and trough disapears. Specifically, it calculates the mixed spectra by
310
310
  taking the measured MI spectra and subtracting X*Ol spectra, where X is the mixing proportions
311
311
 
312
312
  Parameters
@@ -355,7 +355,7 @@ def make_evaluate_mixed_spectra(*, path, filename, smoothed_host_y, smoothed_MI_
355
355
  Dist: float
356
356
  Vertical distance between the host peak and trough (in intensity units)
357
357
  MI_Mix: np.array
358
- Umixed spectra for each of the N_steps
358
+ Ubmixed spectra for each of the N_steps
359
359
  X: np.array
360
360
  X coordinates of unmixed spectra (along with MI_Mix and X allows plots of unmixing)
361
361
 
@@ -428,7 +428,7 @@ def make_evaluate_mixed_spectra(*, path, filename, smoothed_host_y, smoothed_MI_
428
428
  ax3.set_xlim([775, 900])
429
429
 
430
430
 
431
- ax4.plot(MI_spectra[:, 0],MI_Mix_Best[:, 1], '-k', label='Umixed glass')
431
+ ax4.plot(MI_spectra[:, 0],MI_Mix_Best[:, 1], '-k', label='Unmixed glass')
432
432
  ax4.plot(MI_spectra[:, 0],MI_spectra[:, 1], '-', color='salmon',label='Measured MI')
433
433
  ax4.plot(Host_spectra[:, 0],Host_spectra[:, 1], '-', color='g', label='Measured Host')
434
434
  ax4.legend()
@@ -456,7 +456,7 @@ override=False, flip=False, plot_figure=True, dpi=200):
456
456
  """
457
457
  This function checks if the unmixed specta is negative, based on two tie points.
458
458
  The first tie point is the mean y coordinate of the peak position of host +5 wavenumbers,
459
- and the second tie point (tie_x_cord) is an optional input. If the specta is inverted,
459
+ and the second tie point (tie_x_cord) is an optional input. If the specta is inverted,
460
460
  this function inverts it.
461
461
 
462
462
 
@@ -5,4 +5,4 @@
5
5
  # 1) we don't load dependencies by storing it in __init__.py
6
6
  # 2) we can import it in setup.py for the same reason
7
7
  # 3) we can import it into your module
8
- __version__ = '0.0.80'
8
+ __version__ = '0.0.81'
@@ -154,7 +154,7 @@ class diad_id_config:
154
154
 
155
155
 
156
156
 
157
- def identify_diad_peaks(*, config: diad_id_config=diad_id_config(), path=None, filename,
157
+ def identify_diad_peaks(*, config: diad_id_config=diad_id_config(), path=None, filename=None, diad_array=None,
158
158
  filetype='Witec_ASCII', plot_figure=True):
159
159
 
160
160
  """ This function fits a spline to the spectral data. It then uses Scipy find peaks to identify the diad,
@@ -205,10 +205,11 @@ def identify_diad_peaks(*, config: diad_id_config=diad_id_config(), path=None, f
205
205
 
206
206
 
207
207
  """
208
- Diad_df=get_data(path=path, filename=filename, filetype=filetype)
209
-
210
-
211
- Diad=np.array(Diad_df)
208
+ if diad_array is None:
209
+ Diad_df=get_data(path=path, filename=filename, filetype=filetype)
210
+ Diad=np.array(Diad_df)
211
+ else:
212
+ Diad=diad_array
212
213
 
213
214
 
214
215
 
@@ -1037,7 +1038,7 @@ def plot_diad_groups(*, x_cord, Weak_np=None, Medium_np=None, Strong_np=None, y
1037
1038
  return fig
1038
1039
 
1039
1040
 
1040
- def remove_diad_baseline(*, path=None, filename=None, Diad_files=None, filetype='Witec_ASCII',
1041
+ def remove_diad_baseline(*, path=None, filename=None, Diad_files=None, filetype='Witec_ASCII', diad_array=None,
1041
1042
  exclude_range1=None, exclude_range2=None,N_poly=1, x_range_baseline=10,
1042
1043
  lower_bck=[1200, 1250], upper_bck=[1320, 1330], sigma=4,
1043
1044
  plot_figure=True):
@@ -1100,11 +1101,12 @@ def remove_diad_baseline(*, path=None, filename=None, Diad_files=None, filetype=
1100
1101
 
1101
1102
  """
1102
1103
 
1103
- Diad_df=get_data(path=path, filename=filename, filetype=filetype)
1104
-
1105
-
1104
+ if diad_array is None:
1105
+ Diad_df=get_data(path=path, filename=filename, filetype=filetype)
1106
+ Diad=np.array(Diad_df)
1107
+ else:
1108
+ Diad=diad_array
1106
1109
 
1107
- Diad=np.array(Diad_df)
1108
1110
 
1109
1111
 
1110
1112
  if exclude_range1 is not None and exclude_range2 is None:
@@ -2280,7 +2282,7 @@ def fit_gaussian_voigt_generic_diad(config1, *, diad1=False, diad2=False, path=N
2280
2282
 
2281
2283
 
2282
2284
  def fit_diad_2_w_bck(*, config1: diad2_fit_config=diad2_fit_config(), config2: diad_id_config=diad_id_config(),
2283
- path=None, filename=None, peak_pos_voigt=None,filetype=None,
2285
+ path=None, filename=None, peak_pos_voigt=None,filetype=None, diad_array=None,
2284
2286
  plot_figure=True, close_figure=False, Diad_pos=None, HB_pos=None, C13_pos=None):
2285
2287
  """ This function fits the background (using the function remove_diad_baseline) and then
2286
2288
  fits the peaks using fit_gaussian_voigt_generic_diad()
@@ -2390,8 +2392,11 @@ def fit_diad_2_w_bck(*, config1: diad2_fit_config=diad2_fit_config(), config2: d
2390
2392
 
2391
2393
  # Check number of peaks makes sense
2392
2394
  fit_peaks=config1.fit_peaks
2393
- Diad_df=get_data(path=path, filename=filename, filetype=filetype)
2394
- Diad=np.array(Diad_df)
2395
+ if diad_array is None:
2396
+ Diad_df=get_data(path=path, filename=filename, filetype=filetype)
2397
+ Diad=np.array(Diad_df)
2398
+ else:
2399
+ Diad=diad_array
2395
2400
 
2396
2401
 
2397
2402
  if fit_peaks==2:
@@ -2433,7 +2438,7 @@ def fit_diad_2_w_bck(*, config1: diad2_fit_config=diad2_fit_config(), config2: d
2433
2438
 
2434
2439
  y_corr_diad2, Py_base_diad2, x_diad2, Diad_short_diad2, Py_base_diad2, Pf_baseline_diad2, Baseline_ysub_diad2, Baseline_x_diad2, Baseline_diad2, span_diad2=remove_diad_baseline(
2435
2440
  path=path, filename=filename, filetype=filetype, exclude_range1=config2.exclude_range1, exclude_range2=config2.exclude_range2, N_poly=config1.N_poly_bck_diad2,
2436
- lower_bck=config1.lower_bck_diad2, upper_bck=config1.upper_bck_diad2, plot_figure=False)
2441
+ lower_bck=config1.lower_bck_diad2, upper_bck=config1.upper_bck_diad2, plot_figure=False, diad_array=diad_array)
2437
2442
 
2438
2443
 
2439
2444
 
@@ -2544,8 +2549,8 @@ def fit_diad_2_w_bck(*, config1: diad2_fit_config=diad2_fit_config(), config2: d
2544
2549
  ybase_xlin=Pf_baseline_diad2(x_lin)
2545
2550
 
2546
2551
  # We extract the full spectra to plot at the end, and convert to a dataframe
2547
- Spectra_df=get_data(path=path, filename=filename, filetype=filetype)
2548
- Spectra=np.array(Spectra_df)
2552
+ #Spectra_df=get_data(path=path, filename=filename, filetype=filetype)
2553
+ Spectra=Diad
2549
2554
 
2550
2555
 
2551
2556
 
@@ -2749,9 +2754,9 @@ def fit_diad_2_w_bck(*, config1: diad2_fit_config=diad2_fit_config(), config2: d
2749
2754
 
2750
2755
  # Lets calculate peak skewness here.
2751
2756
  Skew50=assess_diad2_skewness(config1=diad2_fit_config(), int_cut_off=0.5, path=path, filename=filename, filetype=filetype,
2752
- skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False)
2757
+ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False, diad_array=diad_array)
2753
2758
  Skew80=assess_diad2_skewness(config1=diad2_fit_config(), int_cut_off=0.3, path=path, filename=filename, filetype=filetype,
2754
- skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False)
2759
+ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False, diad_array=diad_array)
2755
2760
  df_out['Diad2_Asym50']=Skew50['Skewness_diad2']
2756
2761
  df_out['Diad2_Asym70']=Skew80['Skewness_diad2']
2757
2762
  df_out['Diad2_Yuan2017_sym_factor']=(df_out['Diad2_fwhm'])*(df_out['Diad2_Asym50']-1)
@@ -2767,7 +2772,7 @@ def fit_diad_2_w_bck(*, config1: diad2_fit_config=diad2_fit_config(), config2: d
2767
2772
 
2768
2773
 
2769
2774
  def fit_diad_1_w_bck(*, config1: diad1_fit_config=diad1_fit_config(), config2: diad_id_config=diad_id_config(),
2770
- path=None, filename=None, filetype=None, plot_figure=True, close_figure=True, Diad_pos=None, HB_pos=None):
2775
+ path=None, filename=None, filetype=None, plot_figure=True, close_figure=True, Diad_pos=None, HB_pos=None, diad_array=None):
2771
2776
  """ This function fits the background (using the function remove_diad_baseline) and then fits the peaks
2772
2777
  using fit_gaussian_voigt_generic_diad()
2773
2778
  It then checks if any parameters are right at the permitted edge (meaning fitting didnt converge),
@@ -2876,13 +2881,16 @@ def fit_diad_1_w_bck(*, config1: diad1_fit_config=diad1_fit_config(), config2: d
2876
2881
  config1.fit_gauss=False
2877
2882
  #print('Either no hb position, or prominence<-50, using 1 fit')
2878
2883
 
2879
- Diad_df=get_data(path=path, filename=filename, filetype=filetype)
2880
- Diad=np.array(Diad_df)
2884
+ if diad_array is None:
2885
+ Diad_df=get_data(path=path, filename=filename, filetype=filetype)
2886
+ Diad=np.array(Diad_df)
2887
+ else:
2888
+ Diad=diad_array
2881
2889
  # First, we feed data into the remove baseline function, which returns corrected data
2882
2890
 
2883
2891
  y_corr_diad1, Py_base_diad1, x_diad1, Diad_short_diad1, Py_base_diad1, Pf_baseline_diad1, Baseline_ysub_diad1, Baseline_x_diad1, Baseline_diad1, span_diad1=remove_diad_baseline(
2884
2892
  path=path, filename=filename, filetype=filetype, exclude_range1=config2.exclude_range1, exclude_range2=config2.exclude_range2, N_poly=config1.N_poly_bck_diad1,
2885
- lower_bck=config1.lower_bck_diad1, upper_bck=config1.upper_bck_diad1, plot_figure=False)
2893
+ lower_bck=config1.lower_bck_diad1, upper_bck=config1.upper_bck_diad1, plot_figure=False, diad_array=diad_array)
2886
2894
 
2887
2895
 
2888
2896
 
@@ -2997,8 +3005,9 @@ def fit_diad_1_w_bck(*, config1: diad1_fit_config=diad1_fit_config(), config2: d
2997
3005
  ybase_xlin=Pf_baseline_diad1(x_lin)
2998
3006
 
2999
3007
  # We extract the full spectra to plot at the end, and convert to a dataframe
3000
- Spectra_df=get_data(path=path, filename=filename, filetype=filetype)
3001
- Spectra=np.array(Spectra_df)
3008
+
3009
+
3010
+ Spectra=Diad
3002
3011
 
3003
3012
 
3004
3013
 
@@ -3193,9 +3202,9 @@ def fit_diad_1_w_bck(*, config1: diad1_fit_config=diad1_fit_config(), config2: d
3193
3202
 
3194
3203
  # Lets calculate peak skewness here.
3195
3204
  Skew50=assess_diad1_skewness(config1=diad1_fit_config(), int_cut_off=0.5, path=path, filename=filename, filetype=filetype,
3196
- skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False)
3205
+ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False, diad_array=diad_array)
3197
3206
  Skew80=assess_diad1_skewness(config1=diad1_fit_config(), int_cut_off=0.3, path=path, filename=filename, filetype=filetype,
3198
- skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False)
3207
+ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=False, diad_array=diad_array)
3199
3208
 
3200
3209
  df_out['Diad1_Asym50']=Skew50['Skewness_diad1']
3201
3210
  df_out['Diad1_Asym70']=Skew80['Skewness_diad1']
@@ -4181,7 +4190,7 @@ encode="ISO-8859-1"
4181
4190
 
4182
4191
 
4183
4192
  def assess_diad1_skewness(*, config1: diad1_fit_config=diad1_fit_config(), int_cut_off=0.3, path=None, filename=None, filetype=None,
4184
- skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, peak_fit_routine=False, peak_pos=None, peak_height=None, dpi=200):
4193
+ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, peak_fit_routine=False, peak_pos=None, peak_height=None, dpi=200, diad_array=None):
4185
4194
  """ Assesses Skewness of Diad peaks. Useful for identifying mixed L + V phases
4186
4195
  (see DeVitre et al. in review)
4187
4196
 
@@ -4243,7 +4252,7 @@ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, peak_fit_ro
4243
4252
 
4244
4253
  y_corr_diad1, Py_base_diad1, x_diad1, Diad_short, Py_base_diad1, Pf_baseline, Baseline_ysub_diad1, Baseline_x_diad1, Baseline, span=remove_diad_baseline(
4245
4254
  path=path, filename=filename, filetype=filetype, N_poly=config1.N_poly_bck_diad1,
4246
- lower_bck=config1.lower_bck_diad1, upper_bck=config1.upper_bck_diad1, plot_figure=False)
4255
+ lower_bck=config1.lower_bck_diad1, upper_bck=config1.upper_bck_diad1, plot_figure=False, diad_array=diad_array)
4247
4256
 
4248
4257
 
4249
4258
 
@@ -4434,7 +4443,7 @@ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, peak_fit_ro
4434
4443
 
4435
4444
 
4436
4445
  def assess_diad2_skewness(*, config1: diad2_fit_config=diad1_fit_config(), int_cut_off=0.3, path=None, filename=None, filetype=None,
4437
- skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, dpi=200, peak_fit_routine=False, peak_pos=None, peak_height=None):
4446
+ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, dpi=200, peak_fit_routine=False, peak_pos=None, peak_height=None, diad_array=None):
4438
4447
 
4439
4448
  """ Assesses Skewness of Diad peaks. Useful for identifying mixed L + V phases
4440
4449
  (see DeVitre et al. in review)
@@ -4498,7 +4507,7 @@ skewness='abs', height=1, prominence=5, width=0.5, plot_figure=True, dpi=200, pe
4498
4507
  # First, do the background subtraction
4499
4508
  y_corr_diad2, Py_base_diad2, x_diad2, Diad_short, Py_base_diad2, Pf_baseline, Baseline_ysub_diad2, Baseline_x_diad2, Baseline, span=remove_diad_baseline(
4500
4509
  path=path, filename=filename, filetype=filetype, N_poly=config1.N_poly_bck_diad2,
4501
- lower_bck=config1.lower_bck_diad2, upper_bck=config1.upper_bck_diad2, plot_figure=False)
4510
+ lower_bck=config1.lower_bck_diad2, upper_bck=config1.upper_bck_diad2, plot_figure=False, diad_array=diad_array)
4502
4511
 
4503
4512
 
4504
4513
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DiadFit
3
- Version: 0.0.80
3
+ Version: 0.0.81
4
4
  Summary: DiadFit
5
5
  Home-page: https://github.com/PennyWieser/DiadFit
6
6
  Author: Penny Wieser
File without changes
File without changes
File without changes