DFO-LS 1.4.1__tar.gz → 1.5.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of DFO-LS might be problematic. Click here for more details.
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/DFO_LS.egg-info/PKG-INFO +14 -34
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/PKG-INFO +14 -34
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/README.rst +13 -33
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/__init__.py +1 -1
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/controller.py +136 -45
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/model.py +46 -29
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/params.py +18 -2
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/solver.py +86 -58
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/trust_region.py +86 -7
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/util.py +20 -9
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/DFO_LS.egg-info/SOURCES.txt +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/DFO_LS.egg-info/dependency_links.txt +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/DFO_LS.egg-info/requires.txt +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/DFO_LS.egg-info/top_level.txt +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/LICENSE.txt +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/MANIFEST.in +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/diagnostic_info.py +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/dfols/hessian.py +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/pyproject.toml +0 -0
- {DFO-LS-1.4.1 → dfo_ls-1.5.0}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: DFO-LS
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.0
|
|
4
4
|
Summary: A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
|
|
5
5
|
Author-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
|
|
6
6
|
Maintainer-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
|
|
@@ -68,7 +68,7 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
|
|
|
68
68
|
|
|
69
69
|
DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
|
|
70
70
|
|
|
71
|
-
|
|
71
|
+
The main algorithm is described in our paper [1] below.
|
|
72
72
|
|
|
73
73
|
If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
|
|
74
74
|
|
|
@@ -78,13 +78,15 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
|
|
|
78
78
|
|
|
79
79
|
Citation
|
|
80
80
|
--------
|
|
81
|
-
|
|
81
|
+
The development of DFO-LS is outlined over several publications:
|
|
82
82
|
|
|
83
|
-
|
|
83
|
+
1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
|
|
84
|
+
2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
|
|
85
|
+
3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
|
|
84
86
|
|
|
85
|
-
If you use DFO-LS
|
|
86
|
-
|
|
87
|
-
|
|
87
|
+
If you use DFO-LS in a paper, please cite [1].
|
|
88
|
+
If your problem has constraints, including bound constraints, please cite [1,2].
|
|
89
|
+
If your problem includes a regularizer, please cite [1,3].
|
|
88
90
|
|
|
89
91
|
Requirements
|
|
90
92
|
------------
|
|
@@ -114,27 +116,13 @@ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
|
|
|
114
116
|
|
|
115
117
|
.. code-block:: bash
|
|
116
118
|
|
|
117
|
-
$
|
|
118
|
-
|
|
119
|
-
or alternatively *easy_install*:
|
|
120
|
-
|
|
121
|
-
.. code-block:: bash
|
|
122
|
-
|
|
123
|
-
$ [sudo] easy_install DFO-LS
|
|
124
|
-
|
|
125
|
-
If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
|
|
126
|
-
|
|
127
|
-
.. code-block:: bash
|
|
128
|
-
|
|
129
|
-
$ pip install --user DFO-LS
|
|
130
|
-
|
|
131
|
-
which will install DFO-LS in your home directory.
|
|
119
|
+
$ pip install DFO-LS
|
|
132
120
|
|
|
133
121
|
Note that if an older install of DFO-LS is present on your system you can use:
|
|
134
122
|
|
|
135
123
|
.. code-block:: bash
|
|
136
124
|
|
|
137
|
-
$
|
|
125
|
+
$ pip install --upgrade DFO-LS
|
|
138
126
|
|
|
139
127
|
to upgrade DFO-LS to the latest version.
|
|
140
128
|
|
|
@@ -151,22 +139,14 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
|
|
|
151
139
|
|
|
152
140
|
.. code-block:: bash
|
|
153
141
|
|
|
154
|
-
$
|
|
155
|
-
|
|
156
|
-
If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
|
|
157
|
-
|
|
158
|
-
.. code-block:: bash
|
|
159
|
-
|
|
160
|
-
$ pip install --user .
|
|
161
|
-
|
|
162
|
-
instead.
|
|
142
|
+
$ pip install .
|
|
163
143
|
|
|
164
144
|
To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
|
|
165
145
|
|
|
166
146
|
.. code-block:: bash
|
|
167
147
|
|
|
168
148
|
$ git pull
|
|
169
|
-
$
|
|
149
|
+
$ pip install .
|
|
170
150
|
|
|
171
151
|
Testing
|
|
172
152
|
-------
|
|
@@ -189,7 +169,7 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
|
|
|
189
169
|
|
|
190
170
|
.. code-block:: bash
|
|
191
171
|
|
|
192
|
-
$
|
|
172
|
+
$ pip uninstall DFO-LS
|
|
193
173
|
|
|
194
174
|
If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
|
|
195
175
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: DFO-LS
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.0
|
|
4
4
|
Summary: A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
|
|
5
5
|
Author-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
|
|
6
6
|
Maintainer-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
|
|
@@ -68,7 +68,7 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
|
|
|
68
68
|
|
|
69
69
|
DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
|
|
70
70
|
|
|
71
|
-
|
|
71
|
+
The main algorithm is described in our paper [1] below.
|
|
72
72
|
|
|
73
73
|
If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
|
|
74
74
|
|
|
@@ -78,13 +78,15 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
|
|
|
78
78
|
|
|
79
79
|
Citation
|
|
80
80
|
--------
|
|
81
|
-
|
|
81
|
+
The development of DFO-LS is outlined over several publications:
|
|
82
82
|
|
|
83
|
-
|
|
83
|
+
1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
|
|
84
|
+
2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
|
|
85
|
+
3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
|
|
84
86
|
|
|
85
|
-
If you use DFO-LS
|
|
86
|
-
|
|
87
|
-
|
|
87
|
+
If you use DFO-LS in a paper, please cite [1].
|
|
88
|
+
If your problem has constraints, including bound constraints, please cite [1,2].
|
|
89
|
+
If your problem includes a regularizer, please cite [1,3].
|
|
88
90
|
|
|
89
91
|
Requirements
|
|
90
92
|
------------
|
|
@@ -114,27 +116,13 @@ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
|
|
|
114
116
|
|
|
115
117
|
.. code-block:: bash
|
|
116
118
|
|
|
117
|
-
$
|
|
118
|
-
|
|
119
|
-
or alternatively *easy_install*:
|
|
120
|
-
|
|
121
|
-
.. code-block:: bash
|
|
122
|
-
|
|
123
|
-
$ [sudo] easy_install DFO-LS
|
|
124
|
-
|
|
125
|
-
If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
|
|
126
|
-
|
|
127
|
-
.. code-block:: bash
|
|
128
|
-
|
|
129
|
-
$ pip install --user DFO-LS
|
|
130
|
-
|
|
131
|
-
which will install DFO-LS in your home directory.
|
|
119
|
+
$ pip install DFO-LS
|
|
132
120
|
|
|
133
121
|
Note that if an older install of DFO-LS is present on your system you can use:
|
|
134
122
|
|
|
135
123
|
.. code-block:: bash
|
|
136
124
|
|
|
137
|
-
$
|
|
125
|
+
$ pip install --upgrade DFO-LS
|
|
138
126
|
|
|
139
127
|
to upgrade DFO-LS to the latest version.
|
|
140
128
|
|
|
@@ -151,22 +139,14 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
|
|
|
151
139
|
|
|
152
140
|
.. code-block:: bash
|
|
153
141
|
|
|
154
|
-
$
|
|
155
|
-
|
|
156
|
-
If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
|
|
157
|
-
|
|
158
|
-
.. code-block:: bash
|
|
159
|
-
|
|
160
|
-
$ pip install --user .
|
|
161
|
-
|
|
162
|
-
instead.
|
|
142
|
+
$ pip install .
|
|
163
143
|
|
|
164
144
|
To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
|
|
165
145
|
|
|
166
146
|
.. code-block:: bash
|
|
167
147
|
|
|
168
148
|
$ git pull
|
|
169
|
-
$
|
|
149
|
+
$ pip install .
|
|
170
150
|
|
|
171
151
|
Testing
|
|
172
152
|
-------
|
|
@@ -189,7 +169,7 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
|
|
|
189
169
|
|
|
190
170
|
.. code-block:: bash
|
|
191
171
|
|
|
192
|
-
$
|
|
172
|
+
$ pip uninstall DFO-LS
|
|
193
173
|
|
|
194
174
|
If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
|
|
195
175
|
|
|
@@ -24,7 +24,7 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
|
|
|
24
24
|
|
|
25
25
|
DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
|
|
26
26
|
|
|
27
|
-
|
|
27
|
+
The main algorithm is described in our paper [1] below.
|
|
28
28
|
|
|
29
29
|
If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
|
|
30
30
|
|
|
@@ -34,13 +34,15 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
|
|
|
34
34
|
|
|
35
35
|
Citation
|
|
36
36
|
--------
|
|
37
|
-
|
|
37
|
+
The development of DFO-LS is outlined over several publications:
|
|
38
38
|
|
|
39
|
-
|
|
39
|
+
1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
|
|
40
|
+
2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
|
|
41
|
+
3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
|
|
40
42
|
|
|
41
|
-
If you use DFO-LS
|
|
42
|
-
|
|
43
|
-
|
|
43
|
+
If you use DFO-LS in a paper, please cite [1].
|
|
44
|
+
If your problem has constraints, including bound constraints, please cite [1,2].
|
|
45
|
+
If your problem includes a regularizer, please cite [1,3].
|
|
44
46
|
|
|
45
47
|
Requirements
|
|
46
48
|
------------
|
|
@@ -70,27 +72,13 @@ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
|
|
|
70
72
|
|
|
71
73
|
.. code-block:: bash
|
|
72
74
|
|
|
73
|
-
$
|
|
74
|
-
|
|
75
|
-
or alternatively *easy_install*:
|
|
76
|
-
|
|
77
|
-
.. code-block:: bash
|
|
78
|
-
|
|
79
|
-
$ [sudo] easy_install DFO-LS
|
|
80
|
-
|
|
81
|
-
If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
|
|
82
|
-
|
|
83
|
-
.. code-block:: bash
|
|
84
|
-
|
|
85
|
-
$ pip install --user DFO-LS
|
|
86
|
-
|
|
87
|
-
which will install DFO-LS in your home directory.
|
|
75
|
+
$ pip install DFO-LS
|
|
88
76
|
|
|
89
77
|
Note that if an older install of DFO-LS is present on your system you can use:
|
|
90
78
|
|
|
91
79
|
.. code-block:: bash
|
|
92
80
|
|
|
93
|
-
$
|
|
81
|
+
$ pip install --upgrade DFO-LS
|
|
94
82
|
|
|
95
83
|
to upgrade DFO-LS to the latest version.
|
|
96
84
|
|
|
@@ -107,22 +95,14 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
|
|
|
107
95
|
|
|
108
96
|
.. code-block:: bash
|
|
109
97
|
|
|
110
|
-
$
|
|
111
|
-
|
|
112
|
-
If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
|
|
113
|
-
|
|
114
|
-
.. code-block:: bash
|
|
115
|
-
|
|
116
|
-
$ pip install --user .
|
|
117
|
-
|
|
118
|
-
instead.
|
|
98
|
+
$ pip install .
|
|
119
99
|
|
|
120
100
|
To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
|
|
121
101
|
|
|
122
102
|
.. code-block:: bash
|
|
123
103
|
|
|
124
104
|
$ git pull
|
|
125
|
-
$
|
|
105
|
+
$ pip install .
|
|
126
106
|
|
|
127
107
|
Testing
|
|
128
108
|
-------
|
|
@@ -145,7 +125,7 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
|
|
|
145
125
|
|
|
146
126
|
.. code-block:: bash
|
|
147
127
|
|
|
148
|
-
$
|
|
128
|
+
$ pip uninstall DFO-LS
|
|
149
129
|
|
|
150
130
|
If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
|
|
151
131
|
|