DFO-LS 1.4.0__tar.gz → 1.5.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of DFO-LS might be problematic. Click here for more details.

@@ -1,32 +1,46 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DFO-LS
3
- Version: 1.4.0
3
+ Version: 1.5.0
4
4
  Summary: A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
5
- Home-page: https://github.com/numericalalgorithmsgroup/dfols/
6
- Author: Lindon Roberts
7
- Author-email: lindon.roberts@anu.edu.au
8
- License: GNU GPL
9
- Download-URL: https://github.com/numericalalgorithmsgroup/dfols/archive/v1.4.0.tar.gz
10
- Keywords: mathematics derivative free optimization nonlinear least squares
11
- Platform: UNKNOWN
5
+ Author-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
6
+ Maintainer-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
7
+ License: GPL-3.0-or-later
8
+ Project-URL: Homepage, https://github.com/numericalalgorithmsgroup/dfols
9
+ Project-URL: Download, https://github.com/numericalalgorithmsgroup/dfols/releases/
10
+ Project-URL: Bug Tracker, https://github.com/numericalalgorithmsgroup/dfols/issues/
11
+ Project-URL: Documentation, https://numericalalgorithmsgroup.github.io/dfols/
12
+ Project-URL: Source Code, https://github.com/numericalalgorithmsgroup/dfols
13
+ Keywords: mathematics,optimization,least squares,derivative free optimization,nonlinear least squares
12
14
  Classifier: Development Status :: 5 - Production/Stable
13
15
  Classifier: Environment :: Console
14
16
  Classifier: Framework :: IPython
15
17
  Classifier: Framework :: Jupyter
16
- Classifier: Intended Audience :: Financial and Insurance Industry
17
18
  Classifier: Intended Audience :: Science/Research
18
- Classifier: License :: OSI Approved :: GNU General Public License (GPL)
19
+ Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
19
20
  Classifier: Operating System :: MacOS
20
21
  Classifier: Operating System :: Microsoft :: Windows
21
- Classifier: Operating System :: POSIX
22
22
  Classifier: Operating System :: Unix
23
23
  Classifier: Programming Language :: Python
24
- Classifier: Programming Language :: Python :: 2
25
24
  Classifier: Programming Language :: Python :: 3
25
+ Classifier: Programming Language :: Python :: 3.9
26
+ Classifier: Programming Language :: Python :: 3.10
27
+ Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Programming Language :: Python :: 3.12
26
29
  Classifier: Topic :: Scientific/Engineering
27
30
  Classifier: Topic :: Scientific/Engineering :: Mathematics
28
- Provides-Extra: trustregion
31
+ Requires-Python: >=3.9
32
+ Description-Content-Type: text/x-rst
29
33
  License-File: LICENSE.txt
34
+ Requires-Dist: setuptools
35
+ Requires-Dist: numpy
36
+ Requires-Dist: scipy>=1.11
37
+ Requires-Dist: pandas
38
+ Provides-Extra: dev
39
+ Requires-Dist: pytest; extra == "dev"
40
+ Requires-Dist: Sphinx; extra == "dev"
41
+ Requires-Dist: sphinx-rtd-theme; extra == "dev"
42
+ Provides-Extra: trustregion
43
+ Requires-Dist: trustregion>=1.1; extra == "trustregion"
30
44
 
31
45
  ===================================================
32
46
  DFO-LS: Derivative-Free Optimizer for Least-Squares
@@ -54,7 +68,7 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
54
68
 
55
69
  DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
56
70
 
57
- This is an implementation of the algorithm from our paper: C. Cartis, J. Fiala, B. Marteau and L. Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_]. For reproducibility of all figures in this paper, please feel free to contact the authors.
71
+ The main algorithm is described in our paper [1] below.
58
72
 
59
73
  If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
60
74
 
@@ -64,25 +78,27 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
64
78
 
65
79
  Citation
66
80
  --------
67
- If you use DFO-LS in a paper, please cite:
68
-
69
- Cartis, C., Fiala, J., Marteau, B. and Roberts, L., `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41.
81
+ The development of DFO-LS is outlined over several publications:
70
82
 
71
- If you use DFO-LS for problems with constraints, including bound constraints, please also cite:
83
+ 1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
84
+ 2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
85
+ 3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
72
86
 
73
- Hough, M. and Roberts, L., `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://arxiv.org/abs/2111.05443>`_, *arXiv preprint arXiv:2111.05443*, (2021).
87
+ If you use DFO-LS in a paper, please cite [1].
88
+ If your problem has constraints, including bound constraints, please cite [1,2].
89
+ If your problem includes a regularizer, please cite [1,3].
74
90
 
75
91
  Requirements
76
92
  ------------
77
93
  DFO-LS requires the following software to be installed:
78
94
 
79
- * Python 2.7 or Python 3 (http://www.python.org/)
95
+ * Python 3.9 or higher (http://www.python.org/)
80
96
 
81
97
  Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):
82
98
 
83
- * NumPy 1.11 or higher (http://www.numpy.org/)
84
- * SciPy 1.11 or higher (http://www.scipy.org/)
85
- * Pandas 0.17 or higher (http://pandas.pydata.org/)
99
+ * NumPy (http://www.numpy.org/)
100
+ * SciPy version 1.11 or higher (http://www.scipy.org/)
101
+ * Pandas (http://pandas.pydata.org/)
86
102
 
87
103
  **Optional package:** DFO-LS versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for DFO-LS to work, and it is not installed by default.
88
104
 
@@ -100,27 +116,13 @@ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
100
116
 
101
117
  .. code-block:: bash
102
118
 
103
- $ [sudo] pip install DFO-LS
104
-
105
- or alternatively *easy_install*:
106
-
107
- .. code-block:: bash
108
-
109
- $ [sudo] easy_install DFO-LS
110
-
111
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
112
-
113
- .. code-block:: bash
114
-
115
- $ pip install --user DFO-LS
116
-
117
- which will install DFO-LS in your home directory.
119
+ $ pip install DFO-LS
118
120
 
119
121
  Note that if an older install of DFO-LS is present on your system you can use:
120
122
 
121
123
  .. code-block:: bash
122
124
 
123
- $ [sudo] pip install --upgrade DFO-LS
125
+ $ pip install --upgrade DFO-LS
124
126
 
125
127
  to upgrade DFO-LS to the latest version.
126
128
 
@@ -137,30 +139,23 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
137
139
 
138
140
  .. code-block:: bash
139
141
 
140
- $ [sudo] pip install .
142
+ $ pip install .
141
143
 
142
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
143
-
144
- .. code-block:: bash
145
-
146
- $ pip install --user .
147
-
148
- instead.
149
-
150
- To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above:
144
+ To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
151
145
 
152
146
  .. code-block:: bash
153
147
 
154
148
  $ git pull
155
- $ [sudo] pip install . # with admin privileges
149
+ $ pip install .
156
150
 
157
151
  Testing
158
152
  -------
159
- If you installed DFO-LS manually, you can test your installation by running:
153
+ If you installed DFO-LS manually, you can test your installation using the pytest package:
160
154
 
161
155
  .. code-block:: bash
162
156
 
163
- $ python setup.py test
157
+ $ pip install pytest
158
+ $ python -m pytest --pyargs dfols
164
159
 
165
160
  Alternatively, the HTML documentation provides some simple examples of how to run DFO-LS.
166
161
 
@@ -174,16 +169,14 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
174
169
 
175
170
  .. code-block:: bash
176
171
 
177
- $ [sudo] pip uninstall DFO-LS
172
+ $ pip uninstall DFO-LS
178
173
 
179
174
  If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
180
175
 
181
176
  Bugs
182
177
  ----
183
- Please report any bugs using GitHub's issue tracker.
178
+ Please report any bugs using `GitHub's issue tracker <https://github.com/numericalalgorithmsgroup/dfols/issues>`_.
184
179
 
185
180
  License
186
181
  -------
187
182
  This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.
188
-
189
-
@@ -1,13 +1,12 @@
1
1
  LICENSE.txt
2
2
  MANIFEST.in
3
3
  README.rst
4
- setup.py
4
+ pyproject.toml
5
5
  DFO_LS.egg-info/PKG-INFO
6
6
  DFO_LS.egg-info/SOURCES.txt
7
7
  DFO_LS.egg-info/dependency_links.txt
8
8
  DFO_LS.egg-info/requires.txt
9
9
  DFO_LS.egg-info/top_level.txt
10
- DFO_LS.egg-info/zip-safe
11
10
  dfols/__init__.py
12
11
  dfols/controller.py
13
12
  dfols/diagnostic_info.py
@@ -16,5 +15,4 @@ dfols/model.py
16
15
  dfols/params.py
17
16
  dfols/solver.py
18
17
  dfols/trust_region.py
19
- dfols/util.py
20
- dfols/version.py
18
+ dfols/util.py
@@ -0,0 +1,12 @@
1
+ setuptools
2
+ numpy
3
+ scipy>=1.11
4
+ pandas
5
+
6
+ [dev]
7
+ pytest
8
+ Sphinx
9
+ sphinx-rtd-theme
10
+
11
+ [trustregion]
12
+ trustregion>=1.1
@@ -1,32 +1,46 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: DFO-LS
3
- Version: 1.4.0
3
+ Version: 1.5.0
4
4
  Summary: A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
5
- Home-page: https://github.com/numericalalgorithmsgroup/dfols/
6
- Author: Lindon Roberts
7
- Author-email: lindon.roberts@anu.edu.au
8
- License: GNU GPL
9
- Download-URL: https://github.com/numericalalgorithmsgroup/dfols/archive/v1.4.0.tar.gz
10
- Keywords: mathematics derivative free optimization nonlinear least squares
11
- Platform: UNKNOWN
5
+ Author-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
6
+ Maintainer-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
7
+ License: GPL-3.0-or-later
8
+ Project-URL: Homepage, https://github.com/numericalalgorithmsgroup/dfols
9
+ Project-URL: Download, https://github.com/numericalalgorithmsgroup/dfols/releases/
10
+ Project-URL: Bug Tracker, https://github.com/numericalalgorithmsgroup/dfols/issues/
11
+ Project-URL: Documentation, https://numericalalgorithmsgroup.github.io/dfols/
12
+ Project-URL: Source Code, https://github.com/numericalalgorithmsgroup/dfols
13
+ Keywords: mathematics,optimization,least squares,derivative free optimization,nonlinear least squares
12
14
  Classifier: Development Status :: 5 - Production/Stable
13
15
  Classifier: Environment :: Console
14
16
  Classifier: Framework :: IPython
15
17
  Classifier: Framework :: Jupyter
16
- Classifier: Intended Audience :: Financial and Insurance Industry
17
18
  Classifier: Intended Audience :: Science/Research
18
- Classifier: License :: OSI Approved :: GNU General Public License (GPL)
19
+ Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
19
20
  Classifier: Operating System :: MacOS
20
21
  Classifier: Operating System :: Microsoft :: Windows
21
- Classifier: Operating System :: POSIX
22
22
  Classifier: Operating System :: Unix
23
23
  Classifier: Programming Language :: Python
24
- Classifier: Programming Language :: Python :: 2
25
24
  Classifier: Programming Language :: Python :: 3
25
+ Classifier: Programming Language :: Python :: 3.9
26
+ Classifier: Programming Language :: Python :: 3.10
27
+ Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Programming Language :: Python :: 3.12
26
29
  Classifier: Topic :: Scientific/Engineering
27
30
  Classifier: Topic :: Scientific/Engineering :: Mathematics
28
- Provides-Extra: trustregion
31
+ Requires-Python: >=3.9
32
+ Description-Content-Type: text/x-rst
29
33
  License-File: LICENSE.txt
34
+ Requires-Dist: setuptools
35
+ Requires-Dist: numpy
36
+ Requires-Dist: scipy>=1.11
37
+ Requires-Dist: pandas
38
+ Provides-Extra: dev
39
+ Requires-Dist: pytest; extra == "dev"
40
+ Requires-Dist: Sphinx; extra == "dev"
41
+ Requires-Dist: sphinx-rtd-theme; extra == "dev"
42
+ Provides-Extra: trustregion
43
+ Requires-Dist: trustregion>=1.1; extra == "trustregion"
30
44
 
31
45
  ===================================================
32
46
  DFO-LS: Derivative-Free Optimizer for Least-Squares
@@ -54,7 +68,7 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
54
68
 
55
69
  DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
56
70
 
57
- This is an implementation of the algorithm from our paper: C. Cartis, J. Fiala, B. Marteau and L. Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_]. For reproducibility of all figures in this paper, please feel free to contact the authors.
71
+ The main algorithm is described in our paper [1] below.
58
72
 
59
73
  If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
60
74
 
@@ -64,25 +78,27 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
64
78
 
65
79
  Citation
66
80
  --------
67
- If you use DFO-LS in a paper, please cite:
68
-
69
- Cartis, C., Fiala, J., Marteau, B. and Roberts, L., `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41.
81
+ The development of DFO-LS is outlined over several publications:
70
82
 
71
- If you use DFO-LS for problems with constraints, including bound constraints, please also cite:
83
+ 1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
84
+ 2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
85
+ 3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
72
86
 
73
- Hough, M. and Roberts, L., `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://arxiv.org/abs/2111.05443>`_, *arXiv preprint arXiv:2111.05443*, (2021).
87
+ If you use DFO-LS in a paper, please cite [1].
88
+ If your problem has constraints, including bound constraints, please cite [1,2].
89
+ If your problem includes a regularizer, please cite [1,3].
74
90
 
75
91
  Requirements
76
92
  ------------
77
93
  DFO-LS requires the following software to be installed:
78
94
 
79
- * Python 2.7 or Python 3 (http://www.python.org/)
95
+ * Python 3.9 or higher (http://www.python.org/)
80
96
 
81
97
  Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):
82
98
 
83
- * NumPy 1.11 or higher (http://www.numpy.org/)
84
- * SciPy 1.11 or higher (http://www.scipy.org/)
85
- * Pandas 0.17 or higher (http://pandas.pydata.org/)
99
+ * NumPy (http://www.numpy.org/)
100
+ * SciPy version 1.11 or higher (http://www.scipy.org/)
101
+ * Pandas (http://pandas.pydata.org/)
86
102
 
87
103
  **Optional package:** DFO-LS versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for DFO-LS to work, and it is not installed by default.
88
104
 
@@ -100,27 +116,13 @@ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
100
116
 
101
117
  .. code-block:: bash
102
118
 
103
- $ [sudo] pip install DFO-LS
104
-
105
- or alternatively *easy_install*:
106
-
107
- .. code-block:: bash
108
-
109
- $ [sudo] easy_install DFO-LS
110
-
111
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
112
-
113
- .. code-block:: bash
114
-
115
- $ pip install --user DFO-LS
116
-
117
- which will install DFO-LS in your home directory.
119
+ $ pip install DFO-LS
118
120
 
119
121
  Note that if an older install of DFO-LS is present on your system you can use:
120
122
 
121
123
  .. code-block:: bash
122
124
 
123
- $ [sudo] pip install --upgrade DFO-LS
125
+ $ pip install --upgrade DFO-LS
124
126
 
125
127
  to upgrade DFO-LS to the latest version.
126
128
 
@@ -137,30 +139,23 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
137
139
 
138
140
  .. code-block:: bash
139
141
 
140
- $ [sudo] pip install .
142
+ $ pip install .
141
143
 
142
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
143
-
144
- .. code-block:: bash
145
-
146
- $ pip install --user .
147
-
148
- instead.
149
-
150
- To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above:
144
+ To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
151
145
 
152
146
  .. code-block:: bash
153
147
 
154
148
  $ git pull
155
- $ [sudo] pip install . # with admin privileges
149
+ $ pip install .
156
150
 
157
151
  Testing
158
152
  -------
159
- If you installed DFO-LS manually, you can test your installation by running:
153
+ If you installed DFO-LS manually, you can test your installation using the pytest package:
160
154
 
161
155
  .. code-block:: bash
162
156
 
163
- $ python setup.py test
157
+ $ pip install pytest
158
+ $ python -m pytest --pyargs dfols
164
159
 
165
160
  Alternatively, the HTML documentation provides some simple examples of how to run DFO-LS.
166
161
 
@@ -174,16 +169,14 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
174
169
 
175
170
  .. code-block:: bash
176
171
 
177
- $ [sudo] pip uninstall DFO-LS
172
+ $ pip uninstall DFO-LS
178
173
 
179
174
  If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
180
175
 
181
176
  Bugs
182
177
  ----
183
- Please report any bugs using GitHub's issue tracker.
178
+ Please report any bugs using `GitHub's issue tracker <https://github.com/numericalalgorithmsgroup/dfols/issues>`_.
184
179
 
185
180
  License
186
181
  -------
187
182
  This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.
188
-
189
-
@@ -24,7 +24,7 @@ DFO-LS: Derivative-Free Optimizer for Least-Squares
24
24
 
25
25
  DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
26
26
 
27
- This is an implementation of the algorithm from our paper: C. Cartis, J. Fiala, B. Marteau and L. Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint <https://arxiv.org/abs/1804.00154>`_]. For reproducibility of all figures in this paper, please feel free to contact the authors.
27
+ The main algorithm is described in our paper [1] below.
28
28
 
29
29
  If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
30
30
 
@@ -34,25 +34,27 @@ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
34
34
 
35
35
  Citation
36
36
  --------
37
- If you use DFO-LS in a paper, please cite:
37
+ The development of DFO-LS is outlined over several publications:
38
38
 
39
- Cartis, C., Fiala, J., Marteau, B. and Roberts, L., `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41.
39
+ 1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
40
+ 2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
41
+ 3. Y Liu, K H Lam and L Roberts, `Black-box Optimization Algorithms for Regularized Least-squares Problems <http://arxiv.org/abs/2407.14915>`_, *arXiv preprint arXiv:arXiv:2407.14915*, 2024.
40
42
 
41
- If you use DFO-LS for problems with constraints, including bound constraints, please also cite:
42
-
43
- Hough, M. and Roberts, L., `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://arxiv.org/abs/2111.05443>`_, *arXiv preprint arXiv:2111.05443*, (2021).
43
+ If you use DFO-LS in a paper, please cite [1].
44
+ If your problem has constraints, including bound constraints, please cite [1,2].
45
+ If your problem includes a regularizer, please cite [1,3].
44
46
 
45
47
  Requirements
46
48
  ------------
47
49
  DFO-LS requires the following software to be installed:
48
50
 
49
- * Python 2.7 or Python 3 (http://www.python.org/)
51
+ * Python 3.9 or higher (http://www.python.org/)
50
52
 
51
53
  Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):
52
54
 
53
- * NumPy 1.11 or higher (http://www.numpy.org/)
54
- * SciPy 1.11 or higher (http://www.scipy.org/)
55
- * Pandas 0.17 or higher (http://pandas.pydata.org/)
55
+ * NumPy (http://www.numpy.org/)
56
+ * SciPy version 1.11 or higher (http://www.scipy.org/)
57
+ * Pandas (http://pandas.pydata.org/)
56
58
 
57
59
  **Optional package:** DFO-LS versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for DFO-LS to work, and it is not installed by default.
58
60
 
@@ -70,27 +72,13 @@ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
70
72
 
71
73
  .. code-block:: bash
72
74
 
73
- $ [sudo] pip install DFO-LS
74
-
75
- or alternatively *easy_install*:
76
-
77
- .. code-block:: bash
78
-
79
- $ [sudo] easy_install DFO-LS
80
-
81
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
82
-
83
- .. code-block:: bash
84
-
85
- $ pip install --user DFO-LS
86
-
87
- which will install DFO-LS in your home directory.
75
+ $ pip install DFO-LS
88
76
 
89
77
  Note that if an older install of DFO-LS is present on your system you can use:
90
78
 
91
79
  .. code-block:: bash
92
80
 
93
- $ [sudo] pip install --upgrade DFO-LS
81
+ $ pip install --upgrade DFO-LS
94
82
 
95
83
  to upgrade DFO-LS to the latest version.
96
84
 
@@ -107,30 +95,23 @@ DFO-LS is written in pure Python and requires no compilation. It can be installe
107
95
 
108
96
  .. code-block:: bash
109
97
 
110
- $ [sudo] pip install .
111
-
112
- If you do not have root privileges or you want to install DFO-LS for your private use, you can use:
113
-
114
- .. code-block:: bash
115
-
116
- $ pip install --user .
117
-
118
- instead.
98
+ $ pip install .
119
99
 
120
- To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`setup.py`) and rerun the installation using :code:`pip`, as above:
100
+ To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
121
101
 
122
102
  .. code-block:: bash
123
103
 
124
104
  $ git pull
125
- $ [sudo] pip install . # with admin privileges
105
+ $ pip install .
126
106
 
127
107
  Testing
128
108
  -------
129
- If you installed DFO-LS manually, you can test your installation by running:
109
+ If you installed DFO-LS manually, you can test your installation using the pytest package:
130
110
 
131
111
  .. code-block:: bash
132
112
 
133
- $ python setup.py test
113
+ $ pip install pytest
114
+ $ python -m pytest --pyargs dfols
134
115
 
135
116
  Alternatively, the HTML documentation provides some simple examples of how to run DFO-LS.
136
117
 
@@ -144,13 +125,13 @@ If DFO-LS was installed using *pip* you can uninstall as follows:
144
125
 
145
126
  .. code-block:: bash
146
127
 
147
- $ [sudo] pip uninstall DFO-LS
128
+ $ pip uninstall DFO-LS
148
129
 
149
130
  If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
150
131
 
151
132
  Bugs
152
133
  ----
153
- Please report any bugs using GitHub's issue tracker.
134
+ Please report any bugs using `GitHub's issue tracker <https://github.com/numericalalgorithmsgroup/dfols/issues>`_.
154
135
 
155
136
  License
156
137
  -------
@@ -38,10 +38,10 @@ alternative licensing.
38
38
  # Ensure compatibility with Python 2
39
39
  from __future__ import absolute_import, division, print_function, unicode_literals
40
40
 
41
- from .version import __version__
42
- __all__ = ['__version__']
41
+ # DFO-LS version
42
+ __version__ = '1.5.0'
43
43
 
44
44
  # Main solver & exit flags
45
45
  from .solver import *
46
- __all__ += ['solve']
46
+ __all__ = ['solve']
47
47