DFO-LS 1.3.0__tar.gz → 1.6.2__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,183 @@
1
+ Metadata-Version: 2.4
2
+ Name: DFO-LS
3
+ Version: 1.6.2
4
+ Summary: A flexible derivative-free solver for (bound constrained) nonlinear least-squares minimization
5
+ Author-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
6
+ Maintainer-email: Lindon Roberts <lindon.roberts@sydney.edu.au>
7
+ License: GPL-3.0-or-later
8
+ Project-URL: Homepage, https://github.com/numericalalgorithmsgroup/dfols
9
+ Project-URL: Download, https://github.com/numericalalgorithmsgroup/dfols/releases/
10
+ Project-URL: Bug Tracker, https://github.com/numericalalgorithmsgroup/dfols/issues/
11
+ Project-URL: Documentation, https://numericalalgorithmsgroup.github.io/dfols/
12
+ Project-URL: Source Code, https://github.com/numericalalgorithmsgroup/dfols
13
+ Keywords: mathematics,optimization,least squares,derivative free optimization,nonlinear least squares
14
+ Classifier: Development Status :: 5 - Production/Stable
15
+ Classifier: Environment :: Console
16
+ Classifier: Framework :: IPython
17
+ Classifier: Framework :: Jupyter
18
+ Classifier: Intended Audience :: Science/Research
19
+ Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
20
+ Classifier: Operating System :: MacOS
21
+ Classifier: Operating System :: Microsoft :: Windows
22
+ Classifier: Operating System :: Unix
23
+ Classifier: Programming Language :: Python
24
+ Classifier: Programming Language :: Python :: 3
25
+ Classifier: Programming Language :: Python :: 3.9
26
+ Classifier: Programming Language :: Python :: 3.10
27
+ Classifier: Programming Language :: Python :: 3.11
28
+ Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Topic :: Scientific/Engineering
30
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
31
+ Requires-Python: >=3.9
32
+ Description-Content-Type: text/x-rst
33
+ License-File: LICENSE.txt
34
+ Requires-Dist: setuptools
35
+ Requires-Dist: numpy
36
+ Requires-Dist: scipy>=1.11
37
+ Requires-Dist: pandas
38
+ Provides-Extra: dev
39
+ Requires-Dist: pytest; extra == "dev"
40
+ Requires-Dist: Sphinx; extra == "dev"
41
+ Requires-Dist: sphinx-rtd-theme; extra == "dev"
42
+ Provides-Extra: trustregion
43
+ Requires-Dist: trustregion>=1.1; extra == "trustregion"
44
+ Dynamic: license-file
45
+
46
+ ===================================================
47
+ DFO-LS: Derivative-Free Optimizer for Least-Squares
48
+ ===================================================
49
+
50
+ .. image:: https://github.com/numericalalgorithmsgroup/dfols/actions/workflows/python_testing.yml/badge.svg
51
+ :target: https://github.com/numericalalgorithmsgroup/dfols/actions
52
+ :alt: Build Status
53
+
54
+ .. image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg
55
+ :target: https://www.gnu.org/licenses/gpl-3.0
56
+ :alt: GNU GPL v3 License
57
+
58
+ .. image:: https://img.shields.io/pypi/v/DFO-LS.svg
59
+ :target: https://pypi.python.org/pypi/DFO-LS
60
+ :alt: Latest PyPI version
61
+
62
+ .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2630426.svg
63
+ :target: https://doi.org/10.5281/zenodo.2630426
64
+ :alt: DOI:10.5281/zenodo.2630426
65
+
66
+ .. image:: https://static.pepy.tech/personalized-badge/dfo-ls?period=total&units=international_system&left_color=black&right_color=green&left_text=Downloads
67
+ :target: https://pepy.tech/project/dfo-ls
68
+ :alt: Total downloads
69
+
70
+ DFO-LS is a flexible package for solving nonlinear least-squares minimization, without requiring derivatives of the objective. It is particularly useful when evaluations of the objective function are expensive and/or noisy. DFO-LS is more flexible version of `DFO-GN <https://github.com/numericalalgorithmsgroup/dfogn>`_.
71
+
72
+ The main algorithm is described in our paper [1] below.
73
+
74
+ If you are interested in solving general optimization problems (without a least-squares structure), you may wish to try `Py-BOBYQA <https://github.com/numericalalgorithmsgroup/pybobyqa>`_, which has many of the same features as DFO-LS.
75
+
76
+ Documentation
77
+ -------------
78
+ See manual.pdf or `here <https://numericalalgorithmsgroup.github.io/dfols/>`_.
79
+
80
+ Citation
81
+ --------
82
+ The development of DFO-LS is outlined over several publications:
83
+
84
+ 1. C Cartis, J Fiala, B Marteau and L Roberts, `Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization Solvers <https://doi.org/10.1145/3338517>`_, *ACM Transactions on Mathematical Software*, 45:3 (2019), pp. 32:1-32:41 [`preprint arXiv 1804.00154 <https://arxiv.org/abs/1804.00154>`_] .
85
+ 2. M Hough and L Roberts, `Model-Based Derivative-Free Methods for Convex-Constrained Optimization <https://doi.org/10.1137/21M1460971>`_, *SIAM Journal on Optimization*, 21:4 (2022), pp. 2552-2579 [`preprint arXiv 2111.05443 <https://arxiv.org/abs/2111.05443>`_].
86
+ 3. Y Liu, K H Lam and L Roberts, `Regularized black-box optimization algorithms for least-squares problems <https://doi.org/10.1093/imanum/draf093>`_, *IMA Journal of Numerical Analysis*, 2025 [`preprint arXiv 2407.14915 <https://arxiv.org/abs/2407.14915>`_].
87
+
88
+ If you use DFO-LS in a paper, please cite [1].
89
+ If your problem has constraints, including bound constraints, please cite [1,2].
90
+ If your problem includes a regularizer, please cite [1,3].
91
+
92
+ Requirements
93
+ ------------
94
+ DFO-LS requires the following software to be installed:
95
+
96
+ * Python 3.9 or higher (http://www.python.org/)
97
+
98
+ Additionally, the following python packages should be installed (these will be installed automatically if using *pip*, see `Installation using pip`_):
99
+
100
+ * NumPy (http://www.numpy.org/)
101
+ * SciPy version 1.11 or higher (http://www.scipy.org/)
102
+ * Pandas (http://pandas.pydata.org/)
103
+
104
+ **Optional package:** DFO-LS versions 1.2 and higher also support the `trustregion <https://github.com/lindonroberts/trust-region>`_ package for fast trust-region subproblem solutions. To install this, make sure you have a Fortran compiler (e.g. `gfortran <https://gcc.gnu.org/wiki/GFortran>`_) and NumPy installed, then run :code:`pip install trustregion`. You do not have to have trustregion installed for DFO-LS to work, and it is not installed by default.
105
+
106
+ Installation using conda
107
+ ------------------------
108
+ DFO-LS can be directly installed in Anaconda environments using `conda-forge <https://anaconda.org/conda-forge/dfo-ls>`_:
109
+
110
+ .. code-block:: bash
111
+
112
+ $ conda install -c conda-forge dfo-ls
113
+
114
+ Installation using pip
115
+ ----------------------
116
+ For easy installation, use `pip <http://www.pip-installer.org/>`_ as root:
117
+
118
+ .. code-block:: bash
119
+
120
+ $ pip install DFO-LS
121
+
122
+ Note that if an older install of DFO-LS is present on your system you can use:
123
+
124
+ .. code-block:: bash
125
+
126
+ $ pip install --upgrade DFO-LS
127
+
128
+ to upgrade DFO-LS to the latest version.
129
+
130
+ Manual installation
131
+ -------------------
132
+ Alternatively, you can download the source code from `Github <https://github.com/numericalalgorithmsgroup/dfols>`_ and unpack as follows:
133
+
134
+ .. code-block:: bash
135
+
136
+ $ git clone https://github.com/numericalalgorithmsgroup/dfols
137
+ $ cd dfols
138
+
139
+ DFO-LS is written in pure Python and requires no compilation. It can be installed using:
140
+
141
+ .. code-block:: bash
142
+
143
+ $ pip install .
144
+
145
+ To upgrade DFO-LS to the latest version, navigate to the top-level directory (i.e. the one containing :code:`pyproject.toml`) and rerun the installation using :code:`pip`, as above:
146
+
147
+ .. code-block:: bash
148
+
149
+ $ git pull
150
+ $ pip install .
151
+
152
+ Testing
153
+ -------
154
+ If you installed DFO-LS manually, you can test your installation using the pytest package:
155
+
156
+ .. code-block:: bash
157
+
158
+ $ pip install pytest
159
+ $ python -m pytest --pyargs dfols
160
+
161
+ Alternatively, the HTML documentation provides some simple examples of how to run DFO-LS.
162
+
163
+ Examples
164
+ --------
165
+ Examples of how to run DFO-LS are given in the `documentation <https://numericalalgorithmsgroup.github.io/dfols/>`_, and the `examples <https://github.com/numericalalgorithmsgroup/dfols/tree/master/examples>`_ directory in Github.
166
+
167
+ Uninstallation
168
+ --------------
169
+ If DFO-LS was installed using *pip* you can uninstall as follows:
170
+
171
+ .. code-block:: bash
172
+
173
+ $ pip uninstall DFO-LS
174
+
175
+ If DFO-LS was installed manually you have to remove the installed files by hand (located in your python site-packages directory).
176
+
177
+ Bugs
178
+ ----
179
+ Please report any bugs using `GitHub's issue tracker <https://github.com/numericalalgorithmsgroup/dfols/issues>`_.
180
+
181
+ License
182
+ -------
183
+ This algorithm is released under the GNU GPL license. Please `contact NAG <http://www.nag.com/content/worldwide-contact-information>`_ for alternative licensing.
@@ -1,18 +1,19 @@
1
+ LICENSE.txt
2
+ MANIFEST.in
1
3
  README.rst
2
- setup.py
4
+ pyproject.toml
3
5
  DFO_LS.egg-info/PKG-INFO
4
6
  DFO_LS.egg-info/SOURCES.txt
5
7
  DFO_LS.egg-info/dependency_links.txt
6
8
  DFO_LS.egg-info/requires.txt
7
9
  DFO_LS.egg-info/top_level.txt
8
- DFO_LS.egg-info/zip-safe
9
10
  dfols/__init__.py
10
11
  dfols/controller.py
11
12
  dfols/diagnostic_info.py
13
+ dfols/evaluations_database.py
12
14
  dfols/hessian.py
13
15
  dfols/model.py
14
16
  dfols/params.py
15
17
  dfols/solver.py
16
18
  dfols/trust_region.py
17
- dfols/util.py
18
- dfols/version.py
19
+ dfols/util.py
@@ -0,0 +1,12 @@
1
+ setuptools
2
+ numpy
3
+ scipy>=1.11
4
+ pandas
5
+
6
+ [dev]
7
+ pytest
8
+ Sphinx
9
+ sphinx-rtd-theme
10
+
11
+ [trustregion]
12
+ trustregion>=1.1