AeroViz 0.1.9.1__tar.gz → 0.1.9.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AeroViz might be problematic. Click here for more details.
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/_size_distr.py +5 -1
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/hysplit/hysplit.py +11 -3
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/__init__.py +1 -1
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/config/supported_instruments.py +31 -41
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/core/__init__.py +24 -94
- aeroviz-0.1.9.2/AeroViz/rawDataReader/core/qc.py +184 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/AE33.py +2 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/AE43.py +2 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/Aurora.py +2 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/BC1054.py +3 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/EPA.py +6 -4
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/GRIMM.py +0 -1
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/IGAC.py +3 -1
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/MA350.py +3 -2
- aeroviz-0.1.9.2/AeroViz/rawDataReader/script/Minion.py +214 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/NEPH.py +2 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/TEOM.py +2 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz.egg-info/PKG-INFO +4 -1
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz.egg-info/SOURCES.txt +4 -2
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz.egg-info/requires.txt +3 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/PKG-INFO +4 -1
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/setup.py +18 -8
- aeroviz-0.1.9.2/tests/test_RawDataReader.py +118 -0
- aeroviz-0.1.9.1/test/test_aeroviz_imports.py → aeroviz-0.1.9.2/tests/test_aeroviz_import.py +1 -0
- aeroviz-0.1.9.1/AeroViz/rawDataReader/script/Minion.py +0 -180
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/data/DEFAULT_DATA.csv +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/data/DEFAULT_PNSD_DATA.csv +0 -0
- /aeroviz-0.1.9.1/AeroViz/data/240228_00.txt → /aeroviz-0.1.9.2/AeroViz/data/hysplit_example_data.txt +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/_calculate.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/_isoropia.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/_mass_volume.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/_ocec.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/_partition.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/_teom.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/isrpia.cnf +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Chemistry/isrpia2.exe +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/Angstrom_exponent.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/_IMPROVE.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/_absorption.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/_extinction.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/_mie.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/_mie_sd.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/_scattering.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/Optical/fRH.pkl +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/__merge.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/_merge.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/_merge_v1.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/_merge_v2.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/_merge_v3.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/SizeDistr/_merge_v4.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/VOC/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/VOC/_potential_par.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/VOC/support_voc.json +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/dataProcess/core/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/bar.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/box.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/distribution/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/distribution/distribution.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/hysplit/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/meteorology/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/meteorology/meteorology.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/optical/PyMieScatt_update.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/optical/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/optical/mie_theory.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/optical/optical.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/pie.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/radar.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/regression.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/scatter.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/ammonium_rich.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/contour.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/corr_matrix.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/diurnal_pattern.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/koschmieder.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/templates/metal_heatmap.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/timeseries/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/timeseries/template.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/timeseries/timeseries.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/_color.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/_unit.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/fRH.json +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/plt_utils.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/sklearn_utils.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/utils/units.json +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/plot/violin.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/config/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/APS_3321.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/OCEC.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/SMPS.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/VOC.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/XRF.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/rawDataReader/script/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/tools/__init__.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/tools/database.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/tools/dataclassifier.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/tools/dataprinter.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz/tools/datareader.py +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz.egg-info/dependency_links.txt +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/AeroViz.egg-info/top_level.txt +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/LICENSE +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/MANIFEST.in +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/README.md +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/requirements.txt +0 -0
- {aeroviz-0.1.9.1 → aeroviz-0.1.9.2}/setup.cfg +0 -0
|
@@ -69,7 +69,11 @@ def _basic(df, hybrid, unit, bin_rg, input_type):
|
|
|
69
69
|
|
|
70
70
|
df_oth[f'total_{_tp_nam}_{_md_nam}'], df_oth[f'GMD_{_tp_nam}_{_md_nam}'], df_oth[
|
|
71
71
|
f'GSD_{_tp_nam}_{_md_nam}'] = _geometric_prop(_dia, _dt)
|
|
72
|
-
|
|
72
|
+
|
|
73
|
+
mask = _dt.notna().any(axis=1)
|
|
74
|
+
|
|
75
|
+
df_oth.loc[mask, f'mode_{_tp_nam}_{_md_nam}'] = _dt.loc[mask].idxmax(axis=1)
|
|
76
|
+
df_oth.loc[~mask, f'mode_{_tp_nam}_{_md_nam}'] = n.nan
|
|
73
77
|
|
|
74
78
|
## out
|
|
75
79
|
out_dic['other'] = df_oth
|
|
@@ -7,21 +7,29 @@ import pandas as pd
|
|
|
7
7
|
|
|
8
8
|
from AeroViz.plot.utils import set_figure
|
|
9
9
|
|
|
10
|
-
#
|
|
10
|
+
# Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
__all__ = ['hysplit']
|
|
14
14
|
|
|
15
15
|
# 設置默認文件路徑
|
|
16
|
-
DEFAULT_FILE = Path(__file__).parent.parent.parent / 'data' / '
|
|
16
|
+
DEFAULT_FILE = Path(__file__).parent.parent.parent / 'data' / 'hysplit_example_data.txt'
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
def read_hysplit_data(file: Path):
|
|
20
20
|
data = pd.read_csv(file, skiprows=8, sep=r'\s+', names=range(0, 12), engine='python')
|
|
21
21
|
data = data.reset_index(drop=False)
|
|
22
|
-
data.columns = ['category', 'name', '
|
|
22
|
+
data.columns = ['category', 'name', 'year', 'month', 'day', 'hour', 'minute', 'count', 'backward', 'lat', 'lon',
|
|
23
23
|
'height', 'pressure']
|
|
24
24
|
|
|
25
|
+
time_cols = ['year', 'month', 'day', 'hour', 'minute']
|
|
26
|
+
|
|
27
|
+
data['time'] = pd.to_datetime(data[time_cols].astype(str).agg(''.join, axis=1), format='%y%m%d%H%M')
|
|
28
|
+
|
|
29
|
+
data = data.drop(columns=time_cols)
|
|
30
|
+
|
|
31
|
+
data = data[['time'] + [col for col in data.columns if col != 'time']]
|
|
32
|
+
|
|
25
33
|
return data
|
|
26
34
|
|
|
27
35
|
|
|
@@ -74,7 +74,7 @@ def RawDataReader(instrument_name: str,
|
|
|
74
74
|
if not isinstance(path, Path):
|
|
75
75
|
path = Path(path)
|
|
76
76
|
if not path.exists() or not path.is_dir():
|
|
77
|
-
raise
|
|
77
|
+
raise FileNotFoundError(f"The specified path '{path}' does not exist or is not a directory.")
|
|
78
78
|
|
|
79
79
|
# Validate the QC frequency
|
|
80
80
|
if qc_freq is not None:
|
|
@@ -75,6 +75,8 @@ meta = {
|
|
|
75
75
|
"Thermal EC": ["Thermal_EC"],
|
|
76
76
|
"Optical OC": ["Optical_OC"],
|
|
77
77
|
"Optical EC": ["Optical_EC"],
|
|
78
|
+
"Thermal OC & EC": ["Thermal_OC", "Thermal_EC"],
|
|
79
|
+
"Optical OC & EC": ["Optical_OC", "Optical_EC"],
|
|
78
80
|
},
|
|
79
81
|
},
|
|
80
82
|
|
|
@@ -93,53 +95,41 @@ meta = {
|
|
|
93
95
|
"SO42-": ["SO42-"],
|
|
94
96
|
"Main Salt (NH4+, NO3-, SO42-)": ["NO3-", "SO42-", "NH4+"],
|
|
95
97
|
},
|
|
98
|
+
# https://www.yangyao-env.com/web/product/product_in2.jsp?pd_id=PD1640151884502
|
|
99
|
+
|
|
100
|
+
# HF: 0.08, F-: 0.08, PO43-: None is not measured
|
|
101
|
+
"MDL": {
|
|
102
|
+
'HF': None, 'HCl': 0.05, 'HNO2': 0.01, 'HNO3': 0.05, 'G-SO2': 0.05, 'NH3': 0.1,
|
|
103
|
+
'Na+': 0.05, 'NH4+': 0.08, 'K+': 0.08, 'Mg2+': 0.05, 'Ca2+': 0.05,
|
|
104
|
+
'F-': None, 'Cl-': 0.05, 'NO2-': 0.05, 'NO3-': 0.01, 'PO43-': None, 'SO42-': 0.05,
|
|
105
|
+
},
|
|
106
|
+
|
|
107
|
+
"MR": {
|
|
108
|
+
'HF': 200, 'HCl': 200, 'HNO2': 200, 'HNO3': 200, 'G-SO2': 200, 'NH3': 300,
|
|
109
|
+
'Na+': 300, 'NH4+': 300, 'K+': 300, 'Mg2+': 300, 'Ca2+': 300,
|
|
110
|
+
'F-': 300, 'Cl-': 300, 'NO2-': 300, 'NO3-': 300, 'PO43-': None, 'SO42-': 300,
|
|
111
|
+
}
|
|
96
112
|
},
|
|
97
113
|
|
|
98
114
|
"XRF": {
|
|
99
115
|
"pattern": ["*.csv"],
|
|
100
116
|
"freq": "1h",
|
|
101
117
|
"deter_key": {
|
|
102
|
-
"Al": ["Al"],
|
|
103
|
-
|
|
104
|
-
"P": ["P"],
|
|
105
|
-
"S": ["S"],
|
|
106
|
-
"Cl": ["Cl"],
|
|
107
|
-
"K": ["K"],
|
|
108
|
-
"Ca": ["Ca"],
|
|
109
|
-
"Ti": ["Ti"],
|
|
110
|
-
"V": ["V"],
|
|
111
|
-
"Cr": ["Cr"],
|
|
112
|
-
"Mn": ["Mn"],
|
|
113
|
-
"Fe": ["Fe"],
|
|
114
|
-
"Ni": ["Ni"],
|
|
115
|
-
"Cu": ["Cu"],
|
|
116
|
-
"Zn": ["Zn"],
|
|
117
|
-
"As": ["As"],
|
|
118
|
-
"Se": ["Se"],
|
|
119
|
-
"Br": ["Br"],
|
|
120
|
-
"Rb": ["Rb"],
|
|
121
|
-
"Sr": ["Sr"],
|
|
122
|
-
"Y": ["Y"],
|
|
123
|
-
"Zr": ["Zr"],
|
|
124
|
-
"Mo": ["Mo"],
|
|
125
|
-
"Ag": ["Ag"],
|
|
126
|
-
"Cd": ["Cd"],
|
|
127
|
-
"In": ["In"],
|
|
128
|
-
"Sn": ["Sn"],
|
|
129
|
-
"Sb": ["Sb"],
|
|
130
|
-
"Te": ["Te"],
|
|
131
|
-
"Cs": ["Cs"],
|
|
132
|
-
"Ba": ["Ba"],
|
|
133
|
-
"La": ["La"],
|
|
134
|
-
"Ce": ["Ce"],
|
|
135
|
-
"W": ["W"],
|
|
136
|
-
"Pt": ["Pt"],
|
|
137
|
-
"Au": ["Au"],
|
|
138
|
-
"Hg": ["Hg"],
|
|
139
|
-
"Tl": ["Tl"],
|
|
140
|
-
"Pb": ["Pb"],
|
|
141
|
-
"Bi": ["Bi"],
|
|
118
|
+
"Several trace element (Al, Si, Ti, V, Cr, Mn, Fe)": ["Al", "Si", "Ti", "V", "Cr", "Mn", "Fe"],
|
|
119
|
+
|
|
142
120
|
},
|
|
121
|
+
# base on Xact 625i Minimum Decision Limit (MDL) for XRF in ng/m3, 60 min sample time
|
|
122
|
+
"MDL": {
|
|
123
|
+
'Al': 100, 'Si': 18, 'P': 5.2, 'S': 3.2, 'Cl': 1.7,
|
|
124
|
+
'K': 1.2, 'Ca': 0.3, 'Ti': 1.6, 'V': 0.12, 'Cr': 0.12,
|
|
125
|
+
'Mn': 0.14, 'Fe': 0.17, 'Co': 0.14, 'Ni': 0.096, 'Cu': 0.079,
|
|
126
|
+
'Zn': 0.067, 'Ga': 0.059, 'Ge': 0.056, 'As': 0.063, 'Se': 0.081,
|
|
127
|
+
'Br': 0.1, 'Rb': 0.19, 'Sr': 0.22, 'Y': 0.28, 'Zr': 0.33,
|
|
128
|
+
'Nb': 0.41, 'Mo': 0.48, 'Pd': 2.2, 'Ag': 1.9, 'Cd': 2.5,
|
|
129
|
+
'In': 3.1, 'Sn': 4.1, 'Sb': 5.2, 'Te': 0.6, 'Cs': 0.37,
|
|
130
|
+
'Ba': 0.39, 'La': 0.36, 'Ce': 0.3, 'W': 0.0001, 'Pt': 0.12,
|
|
131
|
+
'Au': 0.1, 'Hg': 0.12, 'Tl': 0.12, 'Pb': 0.13, 'Bi': 0.13
|
|
132
|
+
}
|
|
143
133
|
},
|
|
144
134
|
|
|
145
135
|
"VOC": {
|
|
@@ -174,7 +164,7 @@ meta = {
|
|
|
174
164
|
"freq": "1h",
|
|
175
165
|
"deter_key": {
|
|
176
166
|
"Main Salt (Na+, NH4+, Cl-, NO3-, SO42-)": ["Na+", "NH4+", "Cl-", "NO3-", "SO42-"],
|
|
177
|
-
"
|
|
167
|
+
"Several trace element (Al, Ti, V, Cr, Mn, Fe)": ["Al", "Ti", "V", "Cr", "Mn", "Fe"],
|
|
178
168
|
},
|
|
179
169
|
},
|
|
180
170
|
}
|
|
@@ -7,11 +7,12 @@ from typing import Optional
|
|
|
7
7
|
|
|
8
8
|
import numpy as np
|
|
9
9
|
import pandas as pd
|
|
10
|
-
from pandas import DataFrame, concat, read_pickle
|
|
10
|
+
from pandas import DataFrame, concat, read_pickle, to_numeric
|
|
11
11
|
from rich.console import Console
|
|
12
12
|
from rich.progress import Progress, TextColumn, BarColumn, TimeRemainingColumn, TaskProgressColumn
|
|
13
13
|
|
|
14
14
|
from AeroViz.rawDataReader.config.supported_instruments import meta
|
|
15
|
+
from AeroViz.rawDataReader.core.qc import DataQualityControl
|
|
15
16
|
|
|
16
17
|
__all__ = ['AbstractReader']
|
|
17
18
|
|
|
@@ -75,18 +76,20 @@ class AbstractReader(ABC):
|
|
|
75
76
|
|
|
76
77
|
@abstractmethod
|
|
77
78
|
def _QC(self, df: DataFrame) -> DataFrame:
|
|
78
|
-
return
|
|
79
|
+
return df
|
|
79
80
|
|
|
80
81
|
def _setup_logger(self) -> logging.Logger:
|
|
81
82
|
logger = logging.getLogger(self.nam)
|
|
82
83
|
logger.setLevel(logging.INFO)
|
|
83
84
|
|
|
84
85
|
for handler in logger.handlers[:]:
|
|
86
|
+
handler.close()
|
|
85
87
|
logger.removeHandler(handler)
|
|
86
88
|
|
|
87
89
|
handler = logging.FileHandler(self.path / f'{self.nam}.log')
|
|
88
90
|
handler.setFormatter(logging.Formatter('%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S'))
|
|
89
91
|
logger.addHandler(handler)
|
|
92
|
+
|
|
90
93
|
return logger
|
|
91
94
|
|
|
92
95
|
def _rate_calculate(self, raw_data, qc_data) -> None:
|
|
@@ -94,15 +97,20 @@ class AbstractReader(ABC):
|
|
|
94
97
|
period_size = len(raw_data.resample('1h').mean().index)
|
|
95
98
|
|
|
96
99
|
for _nam, _key in self.meta['deter_key'].items():
|
|
97
|
-
|
|
100
|
+
_columns_key, _drop_how = (qc_data.keys(), 'all') if _key == ['all'] else (_key, 'any')
|
|
98
101
|
|
|
99
|
-
sample_size = len(raw_data[
|
|
100
|
-
qc_size = len(qc_data[
|
|
102
|
+
sample_size = len(raw_data[_columns_key].resample('1h').mean().copy().dropna(how=_drop_how).index)
|
|
103
|
+
qc_size = len(qc_data[_columns_key].resample('1h').mean().copy().dropna(how=_drop_how).index)
|
|
101
104
|
|
|
102
105
|
# validate rate calculation
|
|
103
|
-
if period_size
|
|
104
|
-
|
|
105
|
-
|
|
106
|
+
if period_size == 0 or sample_size == 0 or qc_size == 0:
|
|
107
|
+
print(f'\t\t\033[91m No data for this period... skipping\033[0m')
|
|
108
|
+
continue
|
|
109
|
+
|
|
110
|
+
if period_size < sample_size or sample_size < qc_size:
|
|
111
|
+
print(
|
|
112
|
+
f'\t\tInvalid size relationship: period={period_size}, sample={sample_size}, QC={qc_size}... skipping')
|
|
113
|
+
continue
|
|
106
114
|
|
|
107
115
|
else:
|
|
108
116
|
_acq_rate = round((sample_size / period_size) * 100, 1)
|
|
@@ -116,8 +124,8 @@ class AbstractReader(ABC):
|
|
|
116
124
|
self.logger.info(f"{'=' * 60}")
|
|
117
125
|
|
|
118
126
|
print(f'\n\t{_nam} : ')
|
|
119
|
-
print(f'\t\tacquisition rate | yield rate -> OEE rate :'
|
|
120
|
-
f'
|
|
127
|
+
print(f'\t\tacquisition rate | yield rate -> OEE rate : '
|
|
128
|
+
f'\033[91m{_acq_rate}% | {_yid_rate}% -> {_OEE_rate}%\033[0m')
|
|
121
129
|
|
|
122
130
|
if self.meta['deter_key'] is not None:
|
|
123
131
|
# use qc_freq to calculate each period rate
|
|
@@ -165,9 +173,7 @@ class AbstractReader(ABC):
|
|
|
165
173
|
new_index = pd.date_range(user_start or df_start, user_end or df_end, freq=freq, name='time')
|
|
166
174
|
|
|
167
175
|
# Process data: convert to numeric, resample, and reindex
|
|
168
|
-
return
|
|
169
|
-
.resample(freq).mean()
|
|
170
|
-
.reindex(new_index))
|
|
176
|
+
return _df.reindex(new_index)
|
|
171
177
|
|
|
172
178
|
def _outlier_process(self, _df):
|
|
173
179
|
outlier_file = self.path / 'outlier.json'
|
|
@@ -237,8 +243,8 @@ class AbstractReader(ABC):
|
|
|
237
243
|
|
|
238
244
|
raw_data = concat(df_list, axis=0).groupby(level=0).first()
|
|
239
245
|
|
|
240
|
-
raw_data = self._timeIndex_process(raw_data)
|
|
241
|
-
qc_data = self._QC(raw_data)
|
|
246
|
+
raw_data = self._timeIndex_process(raw_data).apply(to_numeric, errors='coerce').copy(deep=True)
|
|
247
|
+
qc_data = self._QC(raw_data).apply(to_numeric, errors='coerce').copy(deep=True)
|
|
242
248
|
|
|
243
249
|
return raw_data, qc_data
|
|
244
250
|
|
|
@@ -281,6 +287,8 @@ class AbstractReader(ABC):
|
|
|
281
287
|
self.logger.info(f"{'-' * 60}")
|
|
282
288
|
|
|
283
289
|
if self.rate:
|
|
290
|
+
_f_raw = _f_raw.apply(to_numeric, errors='coerce')
|
|
291
|
+
_f_qc = _f_qc.apply(to_numeric, errors='coerce')
|
|
284
292
|
self._rate_calculate(_f_raw, _f_qc)
|
|
285
293
|
|
|
286
294
|
return _f_qc if self.qc else _f_raw
|
|
@@ -299,84 +307,6 @@ class AbstractReader(ABC):
|
|
|
299
307
|
|
|
300
308
|
return df[new_order]
|
|
301
309
|
|
|
302
|
-
@staticmethod
|
|
303
|
-
def n_sigma_QC(df: pd.DataFrame, std_range: int = 5) -> pd.DataFrame:
|
|
304
|
-
# 確保輸入是DataFrame
|
|
305
|
-
df = df.to_frame() if isinstance(df, pd.Series) else df
|
|
306
|
-
|
|
307
|
-
df_ave = df.mean()
|
|
308
|
-
df_std = df.std()
|
|
309
|
-
|
|
310
|
-
lower_bound = df < (df_ave - df_std * std_range)
|
|
311
|
-
upper_bound = df > (df_ave + df_std * std_range)
|
|
312
|
-
|
|
313
|
-
return df.mask(lower_bound | upper_bound)
|
|
314
|
-
|
|
315
|
-
@staticmethod
|
|
316
|
-
def IQR_QC(df: pd.DataFrame, log_dist=False) -> pd.DataFrame:
|
|
317
|
-
# 確保輸入是DataFrame
|
|
318
|
-
df = df.to_frame() if isinstance(df, pd.Series) else df
|
|
319
|
-
|
|
320
|
-
df_transformed = np.log10(df) if log_dist else df
|
|
321
|
-
|
|
322
|
-
_df_q1 = df_transformed.quantile(0.25)
|
|
323
|
-
_df_q3 = df_transformed.quantile(0.75)
|
|
324
|
-
|
|
325
|
-
_df_iqr = _df_q3 - _df_q1
|
|
326
|
-
|
|
327
|
-
# Calculate lower and upper bounds
|
|
328
|
-
lower_bound = df_transformed < (_df_q1 - 1.5 * _df_iqr)
|
|
329
|
-
upper_bound = df_transformed > (_df_q3 + 1.5 * _df_iqr)
|
|
330
|
-
|
|
331
|
-
# Apply the filter to the original dataframe
|
|
332
|
-
return df.mask(lower_bound | upper_bound)
|
|
333
|
-
|
|
334
|
-
@staticmethod
|
|
335
|
-
def rolling_IQR_QC(df: pd.DataFrame, window_size=24, log_dist=False) -> pd.DataFrame:
|
|
336
|
-
df = df.to_frame() if isinstance(df, pd.Series) else df
|
|
337
|
-
df_transformed = np.log10(df) if log_dist else df
|
|
338
|
-
|
|
339
|
-
def iqr_filter(x):
|
|
340
|
-
q1, q3 = x.quantile(0.25), x.quantile(0.75)
|
|
341
|
-
iqr = q3 - q1
|
|
342
|
-
lower, upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr
|
|
343
|
-
return (x >= lower) & (x <= upper)
|
|
344
|
-
|
|
345
|
-
mask = df_transformed.rolling(window=window_size, center=True, min_periods=1).apply(iqr_filter)
|
|
346
|
-
return df.where(mask, np.nan)
|
|
347
|
-
|
|
348
310
|
@staticmethod
|
|
349
311
|
def time_aware_IQR_QC(df: pd.DataFrame, time_window='1D', log_dist=False) -> pd.DataFrame:
|
|
350
|
-
|
|
351
|
-
df_transformed = np.log10(df) if log_dist else df
|
|
352
|
-
|
|
353
|
-
def iqr_filter(group):
|
|
354
|
-
q1, q3 = group.quantile(0.25), group.quantile(0.75)
|
|
355
|
-
iqr = q3 - q1
|
|
356
|
-
lower, upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr
|
|
357
|
-
return (group >= lower) & (group <= upper)
|
|
358
|
-
|
|
359
|
-
mask = df_transformed.groupby(pd.Grouper(freq=time_window)).transform(iqr_filter)
|
|
360
|
-
return df.where(mask, np.nan)
|
|
361
|
-
|
|
362
|
-
@staticmethod
|
|
363
|
-
def mad_iqr_hybrid_QC(df: pd.DataFrame, mad_threshold=3.5, log_dist=False) -> pd.DataFrame:
|
|
364
|
-
df = df.to_frame() if isinstance(df, pd.Series) else df
|
|
365
|
-
df_transformed = np.log10(df) if log_dist else df
|
|
366
|
-
|
|
367
|
-
# IQR 方法
|
|
368
|
-
q1, q3 = df_transformed.quantile(0.25), df_transformed.quantile(0.75)
|
|
369
|
-
iqr = q3 - q1
|
|
370
|
-
iqr_lower, iqr_upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr
|
|
371
|
-
|
|
372
|
-
# MAD 方法
|
|
373
|
-
median = df_transformed.median()
|
|
374
|
-
mad = (df_transformed - median).abs().median()
|
|
375
|
-
mad_lower, mad_upper = median - mad_threshold * mad, median + mad_threshold * mad
|
|
376
|
-
|
|
377
|
-
# 结合两种方法
|
|
378
|
-
lower = np.maximum(iqr_lower, mad_lower)
|
|
379
|
-
upper = np.minimum(iqr_upper, mad_upper)
|
|
380
|
-
|
|
381
|
-
mask = (df_transformed >= lower) & (df_transformed <= upper)
|
|
382
|
-
return df.where(mask, np.nan)
|
|
312
|
+
return DataQualityControl().time_aware_iqr(df, time_window=time_window, log_dist=log_dist)
|
|
@@ -0,0 +1,184 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class DataQualityControl:
|
|
6
|
+
"""A class providing various methods for data quality control and outlier detection"""
|
|
7
|
+
|
|
8
|
+
@staticmethod
|
|
9
|
+
def _ensure_dataframe(df: pd.DataFrame | pd.Series) -> pd.DataFrame:
|
|
10
|
+
"""Ensure input data is in DataFrame format"""
|
|
11
|
+
return df.to_frame() if isinstance(df, pd.Series) else df
|
|
12
|
+
|
|
13
|
+
@staticmethod
|
|
14
|
+
def _transform_if_log(df: pd.DataFrame, log_dist: bool) -> pd.DataFrame:
|
|
15
|
+
"""Transform data to log scale if required"""
|
|
16
|
+
return np.log10(df) if log_dist else df
|
|
17
|
+
|
|
18
|
+
@classmethod
|
|
19
|
+
def n_sigma(cls, df: pd.DataFrame, std_range: int = 5) -> pd.DataFrame:
|
|
20
|
+
"""
|
|
21
|
+
Detect outliers using n-sigma method
|
|
22
|
+
|
|
23
|
+
Parameters
|
|
24
|
+
----------
|
|
25
|
+
df : pd.DataFrame
|
|
26
|
+
Input data
|
|
27
|
+
std_range : int, default=5
|
|
28
|
+
Number of standard deviations to use as threshold
|
|
29
|
+
|
|
30
|
+
Returns
|
|
31
|
+
-------
|
|
32
|
+
pd.DataFrame
|
|
33
|
+
Cleaned DataFrame with outliers masked as NaN
|
|
34
|
+
"""
|
|
35
|
+
df = cls._ensure_dataframe(df)
|
|
36
|
+
df_ave = df.mean()
|
|
37
|
+
df_std = df.std()
|
|
38
|
+
|
|
39
|
+
lower_bound = df < (df_ave - df_std * std_range)
|
|
40
|
+
upper_bound = df > (df_ave + df_std * std_range)
|
|
41
|
+
|
|
42
|
+
return df.mask(lower_bound | upper_bound)
|
|
43
|
+
|
|
44
|
+
@classmethod
|
|
45
|
+
def iqr(cls, df: pd.DataFrame, log_dist: bool = False) -> pd.DataFrame:
|
|
46
|
+
"""
|
|
47
|
+
Detect outliers using Interquartile Range (IQR) method
|
|
48
|
+
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
df : pd.DataFrame
|
|
52
|
+
Input data
|
|
53
|
+
log_dist : bool, default=False
|
|
54
|
+
Whether to apply log transformation to data
|
|
55
|
+
|
|
56
|
+
Returns
|
|
57
|
+
-------
|
|
58
|
+
pd.DataFrame
|
|
59
|
+
Cleaned DataFrame with outliers masked as NaN
|
|
60
|
+
"""
|
|
61
|
+
df = cls._ensure_dataframe(df)
|
|
62
|
+
df_transformed = cls._transform_if_log(df, log_dist)
|
|
63
|
+
|
|
64
|
+
q1 = df_transformed.quantile(0.25)
|
|
65
|
+
q3 = df_transformed.quantile(0.75)
|
|
66
|
+
iqr = q3 - q1
|
|
67
|
+
|
|
68
|
+
lower_bound = df_transformed < (q1 - 1.5 * iqr)
|
|
69
|
+
upper_bound = df_transformed > (q3 + 1.5 * iqr)
|
|
70
|
+
|
|
71
|
+
return df.mask(lower_bound | upper_bound)
|
|
72
|
+
|
|
73
|
+
@classmethod
|
|
74
|
+
def rolling_iqr(cls, df: pd.DataFrame, window_size: int = 24,
|
|
75
|
+
log_dist: bool = False) -> pd.DataFrame:
|
|
76
|
+
"""
|
|
77
|
+
Detect outliers using rolling window IQR method
|
|
78
|
+
|
|
79
|
+
Parameters
|
|
80
|
+
----------
|
|
81
|
+
df : pd.DataFrame
|
|
82
|
+
Input data
|
|
83
|
+
window_size : int, default=24
|
|
84
|
+
Size of the rolling window
|
|
85
|
+
log_dist : bool, default=False
|
|
86
|
+
Whether to apply log transformation to data
|
|
87
|
+
|
|
88
|
+
Returns
|
|
89
|
+
-------
|
|
90
|
+
pd.DataFrame
|
|
91
|
+
Cleaned DataFrame with outliers masked as NaN
|
|
92
|
+
"""
|
|
93
|
+
df = cls._ensure_dataframe(df)
|
|
94
|
+
df_transformed = cls._transform_if_log(df, log_dist)
|
|
95
|
+
|
|
96
|
+
def iqr_filter(x):
|
|
97
|
+
q1, q3 = x.quantile(0.25), x.quantile(0.75)
|
|
98
|
+
iqr = q3 - q1
|
|
99
|
+
lower, upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr
|
|
100
|
+
return (x >= lower) & (x <= upper)
|
|
101
|
+
|
|
102
|
+
mask = df_transformed.rolling(
|
|
103
|
+
window=window_size,
|
|
104
|
+
center=True,
|
|
105
|
+
min_periods=1
|
|
106
|
+
).apply(iqr_filter)
|
|
107
|
+
|
|
108
|
+
return df.where(mask, np.nan)
|
|
109
|
+
|
|
110
|
+
@classmethod
|
|
111
|
+
def time_aware_iqr(cls, df: pd.DataFrame, time_window: str = '1D',
|
|
112
|
+
log_dist: bool = False) -> pd.DataFrame:
|
|
113
|
+
"""
|
|
114
|
+
Detect outliers using time-aware IQR method
|
|
115
|
+
|
|
116
|
+
Parameters
|
|
117
|
+
----------
|
|
118
|
+
df : pd.DataFrame
|
|
119
|
+
Input data
|
|
120
|
+
time_window : str, default='1D'
|
|
121
|
+
Time window size (e.g., '1D' for one day)
|
|
122
|
+
log_dist : bool, default=False
|
|
123
|
+
Whether to apply log transformation to data
|
|
124
|
+
|
|
125
|
+
Returns
|
|
126
|
+
-------
|
|
127
|
+
pd.DataFrame
|
|
128
|
+
Cleaned DataFrame with outliers masked as NaN
|
|
129
|
+
"""
|
|
130
|
+
df = cls._ensure_dataframe(df)
|
|
131
|
+
df_transformed = cls._transform_if_log(df, log_dist)
|
|
132
|
+
|
|
133
|
+
def iqr_filter(group):
|
|
134
|
+
q1, q3 = group.quantile(0.25), group.quantile(0.75)
|
|
135
|
+
iqr = q3 - q1
|
|
136
|
+
lower, upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr
|
|
137
|
+
return (group >= lower) & (group <= upper)
|
|
138
|
+
|
|
139
|
+
mask = df_transformed.groupby(
|
|
140
|
+
pd.Grouper(freq=time_window)
|
|
141
|
+
).transform(iqr_filter)
|
|
142
|
+
|
|
143
|
+
return df.where(mask, np.nan)
|
|
144
|
+
|
|
145
|
+
@classmethod
|
|
146
|
+
def mad_iqr_hybrid(cls, df: pd.DataFrame, mad_threshold: float = 3.5,
|
|
147
|
+
log_dist: bool = False) -> pd.DataFrame:
|
|
148
|
+
"""
|
|
149
|
+
Detect outliers using a hybrid of MAD and IQR methods
|
|
150
|
+
|
|
151
|
+
Parameters
|
|
152
|
+
----------
|
|
153
|
+
df : pd.DataFrame
|
|
154
|
+
Input data
|
|
155
|
+
mad_threshold : float, default=3.5
|
|
156
|
+
Threshold for MAD method
|
|
157
|
+
log_dist : bool, default=False
|
|
158
|
+
Whether to apply log transformation to data
|
|
159
|
+
|
|
160
|
+
Returns
|
|
161
|
+
-------
|
|
162
|
+
pd.DataFrame
|
|
163
|
+
Cleaned DataFrame with outliers masked as NaN
|
|
164
|
+
"""
|
|
165
|
+
df = cls._ensure_dataframe(df)
|
|
166
|
+
df_transformed = cls._transform_if_log(df, log_dist)
|
|
167
|
+
|
|
168
|
+
# IQR method
|
|
169
|
+
q1, q3 = df_transformed.quantile(0.25), df_transformed.quantile(0.75)
|
|
170
|
+
iqr = q3 - q1
|
|
171
|
+
iqr_lower, iqr_upper = q1 - 1.5 * iqr, q3 + 1.5 * iqr
|
|
172
|
+
|
|
173
|
+
# MAD method
|
|
174
|
+
median = df_transformed.median()
|
|
175
|
+
mad = (df_transformed - median).abs().median()
|
|
176
|
+
mad_lower = median - mad_threshold * mad
|
|
177
|
+
mad_upper = median + mad_threshold * mad
|
|
178
|
+
|
|
179
|
+
# Combine both methods
|
|
180
|
+
lower = np.maximum(iqr_lower, mad_lower)
|
|
181
|
+
upper = np.minimum(iqr_upper, mad_upper)
|
|
182
|
+
|
|
183
|
+
mask = (df_transformed >= lower) & (df_transformed <= upper)
|
|
184
|
+
return df.where(mask, np.nan)
|
|
@@ -11,14 +11,14 @@ class Reader(AbstractReader):
|
|
|
11
11
|
self.logger.info(f'\t {file} may not be a whole daily data. Make sure the file is correct.')
|
|
12
12
|
|
|
13
13
|
_df = read_table(file, parse_dates={'time': [0, 1]}, index_col='time',
|
|
14
|
-
delimiter=r'\s+', skiprows=5, usecols=range(67))
|
|
14
|
+
delimiter=r'\s+', skiprows=5, usecols=range(67))
|
|
15
15
|
_df.columns = _df.columns.str.strip(';')
|
|
16
16
|
|
|
17
17
|
# remove data without Status=0, 128 (Not much filter tape), 256 (Not much filter tape)
|
|
18
18
|
if self.meta.get('error_state', False):
|
|
19
19
|
_df = _df.where(~_df['Status'].isin(self.meta['error_state'])).copy()
|
|
20
20
|
|
|
21
|
-
_df = _df[['BC1', 'BC2', 'BC3', 'BC4', 'BC5', 'BC6', 'BC7']]
|
|
21
|
+
_df = _df[['BC1', 'BC2', 'BC3', 'BC4', 'BC5', 'BC6', 'BC7']].apply(to_numeric, errors='coerce')
|
|
22
22
|
|
|
23
23
|
return _df.loc[~_df.index.duplicated() & _df.index.notna()]
|
|
24
24
|
|
|
@@ -7,7 +7,7 @@ class Reader(AbstractReader):
|
|
|
7
7
|
nam = 'AE43'
|
|
8
8
|
|
|
9
9
|
def _raw_reader(self, file):
|
|
10
|
-
_df = read_csv(file, parse_dates={'time': ['StartTime']}, index_col='time')
|
|
10
|
+
_df = read_csv(file, parse_dates={'time': ['StartTime']}, index_col='time')
|
|
11
11
|
_df_id = _df['SetupID'].iloc[-1]
|
|
12
12
|
|
|
13
13
|
# get last SetupID data
|
|
@@ -18,7 +18,7 @@ class Reader(AbstractReader):
|
|
|
18
18
|
if self.meta.get('error_state', False):
|
|
19
19
|
_df = _df.where(~_df['Status'].isin(self.meta['error_state'])).copy()
|
|
20
20
|
|
|
21
|
-
_df = _df[['BC1', 'BC2', 'BC3', 'BC4', 'BC5', 'BC6', 'BC7']]
|
|
21
|
+
_df = _df[['BC1', 'BC2', 'BC3', 'BC4', 'BC5', 'BC6', 'BC7']].apply(to_numeric, errors='coerce')
|
|
22
22
|
|
|
23
23
|
return _df.loc[~_df.index.duplicated() & _df.index.notna()]
|
|
24
24
|
|
|
@@ -8,7 +8,7 @@ class Reader(AbstractReader):
|
|
|
8
8
|
|
|
9
9
|
def _raw_reader(self, file):
|
|
10
10
|
with file.open('r', encoding='utf-8-sig', errors='ignore') as f:
|
|
11
|
-
_df = read_csv(f, low_memory=False, index_col=0)
|
|
11
|
+
_df = read_csv(f, low_memory=False, index_col=0)
|
|
12
12
|
|
|
13
13
|
_df.index = to_datetime(_df.index, errors='coerce')
|
|
14
14
|
_df.index.name = 'time'
|
|
@@ -24,7 +24,7 @@ class Reader(AbstractReader):
|
|
|
24
24
|
'RH': 'RH'
|
|
25
25
|
})
|
|
26
26
|
|
|
27
|
-
_df = _df[['B', 'G', 'R', 'BB', 'BG', 'BR']]
|
|
27
|
+
_df = _df[['B', 'G', 'R', 'BB', 'BG', 'BR']].apply(to_numeric, errors='coerce')
|
|
28
28
|
|
|
29
29
|
return _df.loc[~_df.index.duplicated() & _df.index.notna()]
|
|
30
30
|
|
|
@@ -8,7 +8,7 @@ class Reader(AbstractReader):
|
|
|
8
8
|
|
|
9
9
|
def _raw_reader(self, file):
|
|
10
10
|
with open(file, 'r', encoding='utf-8', errors='ignore') as f:
|
|
11
|
-
_df = read_csv(f, parse_dates=True, index_col=0)
|
|
11
|
+
_df = read_csv(f, parse_dates=True, index_col=0)
|
|
12
12
|
|
|
13
13
|
_df.columns = _df.columns.str.replace(' ', '')
|
|
14
14
|
|
|
@@ -29,7 +29,8 @@ class Reader(AbstractReader):
|
|
|
29
29
|
if self.meta.get('error_state', False):
|
|
30
30
|
_df = _df[~_df['Status'].isin(self.meta.get('error_state'))]
|
|
31
31
|
|
|
32
|
-
_df = _df[['BC1', 'BC2', 'BC3', 'BC4', 'BC5', 'BC6', 'BC7', 'BC8', 'BC9', 'BC10']]
|
|
32
|
+
_df = _df[['BC1', 'BC2', 'BC3', 'BC4', 'BC5', 'BC6', 'BC7', 'BC8', 'BC9', 'BC10']].apply(to_numeric,
|
|
33
|
+
errors='coerce')
|
|
33
34
|
|
|
34
35
|
return _df.loc[~_df.index.duplicated() & _df.index.notna()]
|
|
35
36
|
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import numpy as np
|
|
1
2
|
from pandas import read_csv, to_numeric
|
|
2
3
|
|
|
3
4
|
from AeroViz.rawDataReader.core import AbstractReader
|
|
@@ -14,7 +15,7 @@ class Reader(AbstractReader):
|
|
|
14
15
|
def _raw_reader(self, file):
|
|
15
16
|
# 查詢小時值(測項).csv & 查詢小時值(直式).csv (有、無輸出有效值都可以)
|
|
16
17
|
df = read_csv(file, encoding='big5', encoding_errors='ignore', index_col=0, parse_dates=True,
|
|
17
|
-
on_bad_lines='skip')
|
|
18
|
+
on_bad_lines='skip')
|
|
18
19
|
|
|
19
20
|
if len(df.groupby('測站')) > 1:
|
|
20
21
|
raise ValueError(f'Multiple stations found in the file: {df['測站'].unique()}')
|
|
@@ -29,11 +30,12 @@ class Reader(AbstractReader):
|
|
|
29
30
|
df.index.name = 'Time'
|
|
30
31
|
|
|
31
32
|
# 如果沒有將無效值拿掉就輸出 請將包含 #、L 的字串替換成 # 或 _
|
|
32
|
-
df = df.replace(to_replace=r'\d*[#]\b', value='#', regex=True)
|
|
33
|
-
df = df.replace(to_replace=r'\d*[L]\b', value='_', regex=True)
|
|
33
|
+
df = df.replace(to_replace=r'\d*\.?\d*[#]\b', value='#', regex=True)
|
|
34
|
+
df = df.replace(to_replace=r'\d*\.?\d*[L]\b', value='_', regex=True)
|
|
34
35
|
|
|
35
36
|
# 欄位排序
|
|
36
|
-
return self.reorder_dataframe_columns(df, [desired_order1])
|
|
37
|
+
return self.reorder_dataframe_columns(df, [desired_order1]).apply(to_numeric, errors='coerce')
|
|
37
38
|
|
|
38
39
|
def _QC(self, _df):
|
|
40
|
+
_df = _df.mask(_df < 0, np.nan)
|
|
39
41
|
return _df
|
|
@@ -7,7 +7,6 @@ class Reader(AbstractReader):
|
|
|
7
7
|
nam = 'GRIMM'
|
|
8
8
|
|
|
9
9
|
def _raw_reader(self, file):
|
|
10
|
-
|
|
11
10
|
_df = read_csv(file, header=233, delimiter='\t', index_col=0, parse_dates=[0], encoding='ISO-8859-1',
|
|
12
11
|
dayfirst=True).rename_axis("Time")
|
|
13
12
|
_df.index = to_datetime(_df.index, format="%d/%m/%Y %H:%M:%S", dayfirst=True)
|
|
@@ -12,11 +12,13 @@ class Reader(AbstractReader):
|
|
|
12
12
|
def _raw_reader(self, file):
|
|
13
13
|
|
|
14
14
|
with file.open('r', encoding='utf-8-sig', errors='ignore') as f:
|
|
15
|
-
_df = read_csv(f, parse_dates=True, index_col=0, na_values='-')
|
|
15
|
+
_df = read_csv(f, parse_dates=True, index_col=0, na_values='-')
|
|
16
16
|
|
|
17
17
|
_df.columns = _df.keys().str.strip(' ')
|
|
18
18
|
_df.index.name = 'time'
|
|
19
19
|
|
|
20
|
+
_df = _df.apply(to_numeric, errors='coerce')
|
|
21
|
+
|
|
20
22
|
return _df.loc[~_df.index.duplicated() & _df.index.notna()]
|
|
21
23
|
|
|
22
24
|
def _QC(self, _df):
|