AbstractMemory 0.0.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 AbstractMemory Team
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,94 @@
1
+ Metadata-Version: 2.4
2
+ Name: AbstractMemory
3
+ Version: 0.0.1
4
+ Summary: PLACEHOLDER: Memory system for transforming stateless LLMs into stateful LLMs - primarily designed for AbstractLLM integration
5
+ Author-email: AbstractMemory Team <contact@example.com>
6
+ Maintainer-email: AbstractMemory Team <contact@example.com>
7
+ License-Expression: MIT
8
+ Project-URL: Homepage, https://github.com/abstractmemory/abstractmemory
9
+ Project-URL: Documentation, https://github.com/abstractmemory/abstractmemory#readme
10
+ Project-URL: Repository, https://github.com/abstractmemory/abstractmemory
11
+ Project-URL: Bug Reports, https://github.com/abstractmemory/abstractmemory/issues
12
+ Keywords: llm,memory,stateful,ai,placeholder
13
+ Classifier: Development Status :: 1 - Planning
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
23
+ Requires-Python: >=3.8
24
+ Description-Content-Type: text/markdown
25
+ License-File: LICENSE
26
+ Dynamic: license-file
27
+
28
+ # AbstractMemory - PLACEHOLDER PROJECT
29
+
30
+ ⚠️ **WARNING: This is a placeholder package** ⚠️
31
+
32
+ ## Overview
33
+
34
+ AbstractMemory is a placeholder package that reserves the name on PyPI for a future memory system designed to transform stateless LLMs into stateful LLMs.
35
+
36
+ ## Current Status
37
+
38
+ **This package is currently a PLACEHOLDER and should NOT be used in production.**
39
+
40
+ The actual memory system implementation is currently integrated within the AbstractLLM project. This separate package exists to:
41
+
42
+ 1. **Reserve the PyPI name** for future modularization
43
+ 2. **Enable clean separation of concerns** when the code is extracted from AbstractLLM
44
+ 3. **Facilitate better evolution and maintenance** of the memory system as a standalone component
45
+ 4. **Allow reusability** across different LLM frameworks in the future
46
+
47
+ ## Future Vision
48
+
49
+ AbstractMemory will provide:
50
+
51
+ - **Stateful Memory Management**: Transform stateless LLMs into stateful systems
52
+ - **Primary AbstractLLM Integration**: Seamless integration with AbstractLLM
53
+ - **Modular Architecture**: Clean separation from core LLM functionality
54
+ - **Extensible Framework**: Support for various memory strategies and backends
55
+
56
+ ## Installation
57
+
58
+ ```bash
59
+ pip install AbstractMemory
60
+ ```
61
+
62
+ ## Usage
63
+
64
+ Currently, attempting to use any functionality will raise a `PlaceholderError`:
65
+
66
+ ```python
67
+ import abstractmemory
68
+
69
+ # This will raise PlaceholderError
70
+ abstractmemory.placeholder_warning()
71
+ ```
72
+
73
+ ## Development Timeline
74
+
75
+ The actual implementation will be extracted and modularized from AbstractLLM when:
76
+ - The AbstractLLM memory system reaches sufficient maturity
77
+ - Clean interfaces are established
78
+ - Comprehensive testing framework is in place
79
+
80
+ ## Contributing
81
+
82
+ This is a placeholder project. For memory-related contributions, please refer to the AbstractLLM project until the code is modularized.
83
+
84
+ ## License
85
+
86
+ MIT License - See LICENSE file for details.
87
+
88
+ ## Contact
89
+
90
+ For questions about future development plans, please refer to the AbstractLLM project documentation.
91
+
92
+ ---
93
+
94
+ **Remember: This is a placeholder. The real implementation is coming soon!**
@@ -0,0 +1,67 @@
1
+ # AbstractMemory - PLACEHOLDER PROJECT
2
+
3
+ ⚠️ **WARNING: This is a placeholder package** ⚠️
4
+
5
+ ## Overview
6
+
7
+ AbstractMemory is a placeholder package that reserves the name on PyPI for a future memory system designed to transform stateless LLMs into stateful LLMs.
8
+
9
+ ## Current Status
10
+
11
+ **This package is currently a PLACEHOLDER and should NOT be used in production.**
12
+
13
+ The actual memory system implementation is currently integrated within the AbstractLLM project. This separate package exists to:
14
+
15
+ 1. **Reserve the PyPI name** for future modularization
16
+ 2. **Enable clean separation of concerns** when the code is extracted from AbstractLLM
17
+ 3. **Facilitate better evolution and maintenance** of the memory system as a standalone component
18
+ 4. **Allow reusability** across different LLM frameworks in the future
19
+
20
+ ## Future Vision
21
+
22
+ AbstractMemory will provide:
23
+
24
+ - **Stateful Memory Management**: Transform stateless LLMs into stateful systems
25
+ - **Primary AbstractLLM Integration**: Seamless integration with AbstractLLM
26
+ - **Modular Architecture**: Clean separation from core LLM functionality
27
+ - **Extensible Framework**: Support for various memory strategies and backends
28
+
29
+ ## Installation
30
+
31
+ ```bash
32
+ pip install AbstractMemory
33
+ ```
34
+
35
+ ## Usage
36
+
37
+ Currently, attempting to use any functionality will raise a `PlaceholderError`:
38
+
39
+ ```python
40
+ import abstractmemory
41
+
42
+ # This will raise PlaceholderError
43
+ abstractmemory.placeholder_warning()
44
+ ```
45
+
46
+ ## Development Timeline
47
+
48
+ The actual implementation will be extracted and modularized from AbstractLLM when:
49
+ - The AbstractLLM memory system reaches sufficient maturity
50
+ - Clean interfaces are established
51
+ - Comprehensive testing framework is in place
52
+
53
+ ## Contributing
54
+
55
+ This is a placeholder project. For memory-related contributions, please refer to the AbstractLLM project until the code is modularized.
56
+
57
+ ## License
58
+
59
+ MIT License - See LICENSE file for details.
60
+
61
+ ## Contact
62
+
63
+ For questions about future development plans, please refer to the AbstractLLM project documentation.
64
+
65
+ ---
66
+
67
+ **Remember: This is a placeholder. The real implementation is coming soon!**
@@ -0,0 +1,42 @@
1
+ [build-system]
2
+ requires = ["setuptools>=61.0", "wheel"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "AbstractMemory"
7
+ version = "0.0.1"
8
+ description = "PLACEHOLDER: Memory system for transforming stateless LLMs into stateful LLMs - primarily designed for AbstractLLM integration"
9
+ readme = "README.md"
10
+ license = "MIT"
11
+ authors = [
12
+ {name = "AbstractMemory Team", email = "contact@example.com"}
13
+ ]
14
+ maintainers = [
15
+ {name = "AbstractMemory Team", email = "contact@example.com"}
16
+ ]
17
+ keywords = ["llm", "memory", "stateful", "ai", "placeholder"]
18
+ classifiers = [
19
+ "Development Status :: 1 - Planning",
20
+ "Intended Audience :: Developers",
21
+ "Programming Language :: Python :: 3",
22
+ "Programming Language :: Python :: 3.8",
23
+ "Programming Language :: Python :: 3.9",
24
+ "Programming Language :: Python :: 3.10",
25
+ "Programming Language :: Python :: 3.11",
26
+ "Programming Language :: Python :: 3.12",
27
+ "Topic :: Scientific/Engineering :: Artificial Intelligence",
28
+ "Topic :: Software Development :: Libraries :: Python Modules",
29
+ ]
30
+ requires-python = ">=3.8"
31
+
32
+ [project.urls]
33
+ Homepage = "https://github.com/abstractmemory/abstractmemory"
34
+ Documentation = "https://github.com/abstractmemory/abstractmemory#readme"
35
+ Repository = "https://github.com/abstractmemory/abstractmemory"
36
+ "Bug Reports" = "https://github.com/abstractmemory/abstractmemory/issues"
37
+
38
+ [tool.setuptools.packages.find]
39
+ where = ["src"]
40
+
41
+ [tool.setuptools.package-dir]
42
+ "" = "src"
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,94 @@
1
+ Metadata-Version: 2.4
2
+ Name: AbstractMemory
3
+ Version: 0.0.1
4
+ Summary: PLACEHOLDER: Memory system for transforming stateless LLMs into stateful LLMs - primarily designed for AbstractLLM integration
5
+ Author-email: AbstractMemory Team <contact@example.com>
6
+ Maintainer-email: AbstractMemory Team <contact@example.com>
7
+ License-Expression: MIT
8
+ Project-URL: Homepage, https://github.com/abstractmemory/abstractmemory
9
+ Project-URL: Documentation, https://github.com/abstractmemory/abstractmemory#readme
10
+ Project-URL: Repository, https://github.com/abstractmemory/abstractmemory
11
+ Project-URL: Bug Reports, https://github.com/abstractmemory/abstractmemory/issues
12
+ Keywords: llm,memory,stateful,ai,placeholder
13
+ Classifier: Development Status :: 1 - Planning
14
+ Classifier: Intended Audience :: Developers
15
+ Classifier: Programming Language :: Python :: 3
16
+ Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
20
+ Classifier: Programming Language :: Python :: 3.12
21
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
23
+ Requires-Python: >=3.8
24
+ Description-Content-Type: text/markdown
25
+ License-File: LICENSE
26
+ Dynamic: license-file
27
+
28
+ # AbstractMemory - PLACEHOLDER PROJECT
29
+
30
+ ⚠️ **WARNING: This is a placeholder package** ⚠️
31
+
32
+ ## Overview
33
+
34
+ AbstractMemory is a placeholder package that reserves the name on PyPI for a future memory system designed to transform stateless LLMs into stateful LLMs.
35
+
36
+ ## Current Status
37
+
38
+ **This package is currently a PLACEHOLDER and should NOT be used in production.**
39
+
40
+ The actual memory system implementation is currently integrated within the AbstractLLM project. This separate package exists to:
41
+
42
+ 1. **Reserve the PyPI name** for future modularization
43
+ 2. **Enable clean separation of concerns** when the code is extracted from AbstractLLM
44
+ 3. **Facilitate better evolution and maintenance** of the memory system as a standalone component
45
+ 4. **Allow reusability** across different LLM frameworks in the future
46
+
47
+ ## Future Vision
48
+
49
+ AbstractMemory will provide:
50
+
51
+ - **Stateful Memory Management**: Transform stateless LLMs into stateful systems
52
+ - **Primary AbstractLLM Integration**: Seamless integration with AbstractLLM
53
+ - **Modular Architecture**: Clean separation from core LLM functionality
54
+ - **Extensible Framework**: Support for various memory strategies and backends
55
+
56
+ ## Installation
57
+
58
+ ```bash
59
+ pip install AbstractMemory
60
+ ```
61
+
62
+ ## Usage
63
+
64
+ Currently, attempting to use any functionality will raise a `PlaceholderError`:
65
+
66
+ ```python
67
+ import abstractmemory
68
+
69
+ # This will raise PlaceholderError
70
+ abstractmemory.placeholder_warning()
71
+ ```
72
+
73
+ ## Development Timeline
74
+
75
+ The actual implementation will be extracted and modularized from AbstractLLM when:
76
+ - The AbstractLLM memory system reaches sufficient maturity
77
+ - Clean interfaces are established
78
+ - Comprehensive testing framework is in place
79
+
80
+ ## Contributing
81
+
82
+ This is a placeholder project. For memory-related contributions, please refer to the AbstractLLM project until the code is modularized.
83
+
84
+ ## License
85
+
86
+ MIT License - See LICENSE file for details.
87
+
88
+ ## Contact
89
+
90
+ For questions about future development plans, please refer to the AbstractLLM project documentation.
91
+
92
+ ---
93
+
94
+ **Remember: This is a placeholder. The real implementation is coming soon!**
@@ -0,0 +1,8 @@
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ src/AbstractMemory.egg-info/PKG-INFO
5
+ src/AbstractMemory.egg-info/SOURCES.txt
6
+ src/AbstractMemory.egg-info/dependency_links.txt
7
+ src/AbstractMemory.egg-info/top_level.txt
8
+ src/abstractmemory/__init__.py
@@ -0,0 +1 @@
1
+ abstractmemory
@@ -0,0 +1,41 @@
1
+ """
2
+ AbstractMemory - PLACEHOLDER PROJECT
3
+
4
+ This is a placeholder package to reserve the 'AbstractMemory' name on PyPI.
5
+
6
+ AbstractMemory will be a memory system designed to transform stateless LLMs
7
+ into stateful LLMs, with primary integration planned for AbstractLLM.
8
+
9
+ The actual implementation is currently part of AbstractLLM and will be
10
+ modularized into this separate package in the future to enable:
11
+ - Cleaner separation of concerns
12
+ - Better evolution and maintenance over time
13
+ - Reusability across different LLM frameworks
14
+
15
+ WARNING: This is a placeholder. Do not use in production.
16
+ """
17
+
18
+ __version__ = "0.0.1"
19
+ __author__ = "AbstractMemory Team"
20
+ __email__ = "contact@example.com"
21
+
22
+ # Placeholder exception to prevent accidental usage
23
+ class PlaceholderError(Exception):
24
+ """Raised when attempting to use placeholder functionality."""
25
+ pass
26
+
27
+ def placeholder_warning():
28
+ """
29
+ Warn users that this is a placeholder package.
30
+
31
+ Raises:
32
+ PlaceholderError: Always raised to prevent usage
33
+ """
34
+ raise PlaceholderError(
35
+ "AbstractMemory is currently a placeholder package. "
36
+ "The actual memory system implementation is part of AbstractLLM. "
37
+ "This package reserves the name for future modularization."
38
+ )
39
+
40
+ # Make it clear this is a placeholder
41
+ __all__ = ["placeholder_warning", "PlaceholderError", "__version__"]