AMR 2.1.1.9095__tar.gz → 2.1.1.9099__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,14 +8,31 @@ from rpy2 import robjects
8
8
  from rpy2.robjects import pandas2ri
9
9
  from rpy2.robjects.packages import importr, isinstalled
10
10
  import pandas as pd
11
+ # import importlib.metadata as metadata
11
12
 
12
- # Check if the R package is installed
13
+ # Check if AMR package is installed in R
13
14
  if not isinstalled('AMR'):
14
15
  utils = importr('utils')
15
- utils.install_packages('AMR')
16
+ utils.install_packages('AMR', repos='https://msberends.r-universe.dev')
17
+
18
+ # Python package version of AMR
19
+ python_amr_version = metadata.version('AMR')
20
+ # R package version of AMR
21
+ # r_amr_version = robjects.r('packageVersion("AMR")')[0]
22
+
23
+ # Compare R and Python package versions
24
+ # if r_amr_version != python_amr_version:
25
+ # print(f"{BLUE}AMR:{RESET} Version mismatch detected. Updating AMR R package version to {python_amr_version}...", flush=True)
26
+ # try:
27
+ # # Re-install the specific version of AMR in R
28
+ # utils = importr('utils')
29
+ # utils.install_packages('AMR', repos='https://msberends.r-universe.dev')
30
+ # except Exception as e:
31
+ # print(f"{BLUE}AMR:{RESET} Could not update: {e}{RESET}", flush=True)
16
32
 
17
33
  # Activate the automatic conversion between R and pandas DataFrames
18
34
  pandas2ri.activate()
35
+
19
36
  # example_isolates
20
37
  example_isolates = pandas2ri.rpy2py(robjects.r('''
21
38
  df <- AMR::example_isolates
@@ -26,6 +43,7 @@ df[] <- lapply(df, function(x) {
26
43
  x
27
44
  }
28
45
  })
46
+ df <- df[, !sapply(df, is.list)]
29
47
  df
30
48
  '''))
31
49
  example_isolates['date'] = pd.to_datetime(example_isolates['date'])
@@ -33,6 +51,6 @@ example_isolates['date'] = pd.to_datetime(example_isolates['date'])
33
51
  # microorganisms
34
52
  microorganisms = pandas2ri.rpy2py(robjects.r('AMR::microorganisms[, !sapply(AMR::microorganisms, is.list)]'))
35
53
  antibiotics = pandas2ri.rpy2py(robjects.r('AMR::antibiotics[, !sapply(AMR::antibiotics, is.list)]'))
36
- clinical_breakpoints = pandas2ri.rpy2py(robjects.r('AMR::clinical_breakpoints'))
54
+ clinical_breakpoints = pandas2ri.rpy2py(robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]'))
37
55
 
38
56
  print(f"{BLUE}AMR:{RESET} {GREEN}Done.{RESET}", flush=True)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: AMR
3
- Version: 2.1.1.9095
3
+ Version: 2.1.1.9099
4
4
  Summary: A Python wrapper for the AMR R package
5
5
  Home-page: https://github.com/msberends/AMR
6
6
  Author: Dr. Matthijs Berends
@@ -13,43 +13,43 @@ Classifier: Operating System :: OS Independent
13
13
  Requires-Python: >=3.6
14
14
  Description-Content-Type: text/markdown
15
15
 
16
- ---
17
- title: "AMR for Python"
18
- output:
19
- rmarkdown::html_vignette:
20
- toc: true
21
- toc_depth: 3
22
- vignette: >
23
- %\VignetteIndexEntry{AMR for Python}
24
- %\VignetteEncoding{UTF-8}
25
- %\VignetteEngine{knitr::rmarkdown}
26
- editor_options:
27
- chunk_output_type: console
28
- ---
29
-
30
- ```{r setup, include = FALSE, results = 'markup'}
31
- knitr::opts_chunk$set(
32
- warning = FALSE,
33
- collapse = TRUE,
34
- comment = "#>",
35
- fig.width = 7.5,
36
- fig.height = 5
37
- )
38
- ```
39
16
 
40
- # Introduction
17
+ The `AMR` package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the [`AMR` Python Package Index](https://pypi.org/project/AMR/).
18
+
19
+ This Python package is a wrapper round the `AMR` R package. It uses the `rpy2` package internally. Despite the need to have R installed, Python users can now easily work with AMR data directly through Python code.
20
+
21
+ # Install
41
22
 
42
- The `AMR` package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the `AMR` Python package, which uses `rpy2` internally. This package allows Python users to access all the functions from the R `AMR` package without the need to set up `rpy2` themselves. Since this Python package is not a true 'port' (which would require all R functions to be rewritten into Python), R and the AMR R package are still required to be installed. Yet, Python users can now easily work with AMR data directly through Python code.
23
+ 1. First make sure you have R installed. There is **no need to install the `AMR` R package**, as it will be installed automatically.
43
24
 
44
- In this document, we explain how this works and provide simple examples of using the `AMR` Python package.
25
+ For Linux:
45
26
 
46
- ## How It Works
27
+ ```bash
28
+ # Ubuntu / Debian
29
+ sudo apt install r-base
30
+ # Fedora:
31
+ sudo dnf install R
32
+ # CentOS/RHEL
33
+ sudo yum install R
34
+ ```
35
+
36
+ For macOS (using [Homebrew](https://brew.sh)):
37
+
38
+ ```bash
39
+ brew install r
40
+ ```
41
+
42
+ For Windows, visit the [CRAN download page](https://cran.r-project.org) to download and install R.
47
43
 
48
- The `AMR` Python package acts as a wrapper around the functions in the `AMR` R package. The package simplifies the process of calling R functions in Python, eliminating the need to manually manage the `rpy2` setup, which Python uses internally to be able to work with the R package. By just using `import AMR`, Python users can directly use the functions from the `AMR` R package as if they were native Python functions.
44
+ 2. Since the Python package is available on the official [Python Package Index](https://pypi.org/project/AMR/), you can just run:
49
45
 
50
- Internally, `rpy2` is still being used, but all complexity is hidden from the user. This approach keeps the Python code clean and Pythonic, while still leveraging the full power of the R `AMR` package.
46
+ ```bash
47
+ pip install AMR
48
+ ```
51
49
 
52
- ## Example of Usage
50
+ # Examples of Usage
51
+
52
+ ## Cleaning Taxonomy
53
53
 
54
54
  Here’s an example that demonstrates how to clean microorganism and drug names using the `AMR` Python package:
55
55
 
@@ -85,7 +85,8 @@ print(df)
85
85
 
86
86
  * **ab_name**: Similarly, this function standardises antimicrobial names. The different representations of ciprofloxacin (e.g., "Cipro", "CIP", "J01MA02", and "Ciproxin") are all converted to the standard name, "Ciprofloxacin".
87
87
 
88
- ### Taxonomic Data Sets Now in Python!
88
+
89
+ ## Taxonomic Data Sets Now in Python!
89
90
 
90
91
  As a Python user, you might like that the most important data sets of the `AMR` R package, `microorganisms`, `antibiotics`, `clinical_breakpoints`, and `example_isolates`, are now available as regular Python data frames:
91
92
 
@@ -126,42 +127,7 @@ AMR.antibiotics
126
127
  | ZFD | NaN | Zoliflodacin | None | NaN | None | NaN | None |
127
128
 
128
129
 
129
- # Installation
130
-
131
- To be able to use the `AMR` Python package, it is required to install both R and the `AMR` R package.
132
-
133
- ### Preparation: Install R and `AMR` R package
134
-
135
- For Linux and macOS, this is just:
136
-
137
- ```bash
138
- # Ubuntu / Debian
139
- sudo apt install r-base && Rscript -e 'install.packages("AMR")'
140
- # Fedora:
141
- sudo dnf install R && Rscript -e 'install.packages("AMR")'
142
- # CentOS/RHEL
143
- sudo yum install R && Rscript -e 'install.packages("AMR")'
144
- # Arch Linux
145
- sudo pacman -S r && Rscript -e 'install.packages("AMR")'
146
- # macOS
147
- brew install r && Rscript -e 'install.packages("AMR")'
148
- ```
149
-
150
- For Windows, visit the [CRAN download page](https://cran.r-project.org) in install R, then afterwards install the 'AMR' package manually.
151
-
152
- ### Install `AMR` Python Package
153
-
154
- Since the Python package is available on the official [Python Package Index](https://pypi.org/project/AMR/), you can just run:
155
-
156
- ```bash
157
- pip install AMR
158
- ```
159
-
160
- # Working with `AMR` in Python
161
-
162
- Now that we have everything set up, let’s walk through some practical examples of using the `AMR` package within Python.
163
-
164
- ## Example 1: Calculating AMR
130
+ ## Calculating AMR
165
131
 
166
132
  ```python
167
133
  import AMR
@@ -176,7 +142,7 @@ print(result)
176
142
  [0.59555556]
177
143
  ```
178
144
 
179
- ## Example 2: Generating Antibiograms
145
+ ## Generating Antibiograms
180
146
 
181
147
  One of the core functions of the `AMR` package is generating an antibiogram, a table that summarises the antimicrobial susceptibility of bacterial isolates. Here’s how you can generate an antibiogram from Python:
182
148
 
@@ -215,6 +181,8 @@ In this example, we generate an antibiogram by selecting various antibiotics.
215
181
 
216
182
  With the `AMR` Python package, Python users can now effortlessly call R functions from the `AMR` R package. This eliminates the need for complex `rpy2` configurations and provides a clean, easy-to-use interface for antimicrobial resistance analysis. The examples provided above demonstrate how this can be applied to typical workflows, such as standardising microorganism and antimicrobial names or calculating resistance.
217
183
 
218
- By using `import AMR`, you can seamlessly integrate the robust features of the R `AMR` package into your Python workflows. Whether you're cleaning data or analysing resistance patterns, the `AMR` Python package makes it easy to work with AMR data in Python.
184
+ By just running `import AMR`, users can seamlessly integrate the robust features of the R `AMR` package into Python workflows.
185
+
186
+ Whether you're cleaning data or analysing resistance patterns, the `AMR` Python package makes it easy to work with AMR data in Python.
219
187
 
220
188
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: AMR
3
- Version: 2.1.1.9095
3
+ Version: 2.1.1.9099
4
4
  Summary: A Python wrapper for the AMR R package
5
5
  Home-page: https://github.com/msberends/AMR
6
6
  Author: Dr. Matthijs Berends
@@ -13,43 +13,43 @@ Classifier: Operating System :: OS Independent
13
13
  Requires-Python: >=3.6
14
14
  Description-Content-Type: text/markdown
15
15
 
16
- ---
17
- title: "AMR for Python"
18
- output:
19
- rmarkdown::html_vignette:
20
- toc: true
21
- toc_depth: 3
22
- vignette: >
23
- %\VignetteIndexEntry{AMR for Python}
24
- %\VignetteEncoding{UTF-8}
25
- %\VignetteEngine{knitr::rmarkdown}
26
- editor_options:
27
- chunk_output_type: console
28
- ---
29
-
30
- ```{r setup, include = FALSE, results = 'markup'}
31
- knitr::opts_chunk$set(
32
- warning = FALSE,
33
- collapse = TRUE,
34
- comment = "#>",
35
- fig.width = 7.5,
36
- fig.height = 5
37
- )
38
- ```
39
16
 
40
- # Introduction
17
+ The `AMR` package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the [`AMR` Python Package Index](https://pypi.org/project/AMR/).
18
+
19
+ This Python package is a wrapper round the `AMR` R package. It uses the `rpy2` package internally. Despite the need to have R installed, Python users can now easily work with AMR data directly through Python code.
20
+
21
+ # Install
41
22
 
42
- The `AMR` package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the `AMR` Python package, which uses `rpy2` internally. This package allows Python users to access all the functions from the R `AMR` package without the need to set up `rpy2` themselves. Since this Python package is not a true 'port' (which would require all R functions to be rewritten into Python), R and the AMR R package are still required to be installed. Yet, Python users can now easily work with AMR data directly through Python code.
23
+ 1. First make sure you have R installed. There is **no need to install the `AMR` R package**, as it will be installed automatically.
43
24
 
44
- In this document, we explain how this works and provide simple examples of using the `AMR` Python package.
25
+ For Linux:
45
26
 
46
- ## How It Works
27
+ ```bash
28
+ # Ubuntu / Debian
29
+ sudo apt install r-base
30
+ # Fedora:
31
+ sudo dnf install R
32
+ # CentOS/RHEL
33
+ sudo yum install R
34
+ ```
35
+
36
+ For macOS (using [Homebrew](https://brew.sh)):
37
+
38
+ ```bash
39
+ brew install r
40
+ ```
41
+
42
+ For Windows, visit the [CRAN download page](https://cran.r-project.org) to download and install R.
47
43
 
48
- The `AMR` Python package acts as a wrapper around the functions in the `AMR` R package. The package simplifies the process of calling R functions in Python, eliminating the need to manually manage the `rpy2` setup, which Python uses internally to be able to work with the R package. By just using `import AMR`, Python users can directly use the functions from the `AMR` R package as if they were native Python functions.
44
+ 2. Since the Python package is available on the official [Python Package Index](https://pypi.org/project/AMR/), you can just run:
49
45
 
50
- Internally, `rpy2` is still being used, but all complexity is hidden from the user. This approach keeps the Python code clean and Pythonic, while still leveraging the full power of the R `AMR` package.
46
+ ```bash
47
+ pip install AMR
48
+ ```
51
49
 
52
- ## Example of Usage
50
+ # Examples of Usage
51
+
52
+ ## Cleaning Taxonomy
53
53
 
54
54
  Here’s an example that demonstrates how to clean microorganism and drug names using the `AMR` Python package:
55
55
 
@@ -85,7 +85,8 @@ print(df)
85
85
 
86
86
  * **ab_name**: Similarly, this function standardises antimicrobial names. The different representations of ciprofloxacin (e.g., "Cipro", "CIP", "J01MA02", and "Ciproxin") are all converted to the standard name, "Ciprofloxacin".
87
87
 
88
- ### Taxonomic Data Sets Now in Python!
88
+
89
+ ## Taxonomic Data Sets Now in Python!
89
90
 
90
91
  As a Python user, you might like that the most important data sets of the `AMR` R package, `microorganisms`, `antibiotics`, `clinical_breakpoints`, and `example_isolates`, are now available as regular Python data frames:
91
92
 
@@ -126,42 +127,7 @@ AMR.antibiotics
126
127
  | ZFD | NaN | Zoliflodacin | None | NaN | None | NaN | None |
127
128
 
128
129
 
129
- # Installation
130
-
131
- To be able to use the `AMR` Python package, it is required to install both R and the `AMR` R package.
132
-
133
- ### Preparation: Install R and `AMR` R package
134
-
135
- For Linux and macOS, this is just:
136
-
137
- ```bash
138
- # Ubuntu / Debian
139
- sudo apt install r-base && Rscript -e 'install.packages("AMR")'
140
- # Fedora:
141
- sudo dnf install R && Rscript -e 'install.packages("AMR")'
142
- # CentOS/RHEL
143
- sudo yum install R && Rscript -e 'install.packages("AMR")'
144
- # Arch Linux
145
- sudo pacman -S r && Rscript -e 'install.packages("AMR")'
146
- # macOS
147
- brew install r && Rscript -e 'install.packages("AMR")'
148
- ```
149
-
150
- For Windows, visit the [CRAN download page](https://cran.r-project.org) in install R, then afterwards install the 'AMR' package manually.
151
-
152
- ### Install `AMR` Python Package
153
-
154
- Since the Python package is available on the official [Python Package Index](https://pypi.org/project/AMR/), you can just run:
155
-
156
- ```bash
157
- pip install AMR
158
- ```
159
-
160
- # Working with `AMR` in Python
161
-
162
- Now that we have everything set up, let’s walk through some practical examples of using the `AMR` package within Python.
163
-
164
- ## Example 1: Calculating AMR
130
+ ## Calculating AMR
165
131
 
166
132
  ```python
167
133
  import AMR
@@ -176,7 +142,7 @@ print(result)
176
142
  [0.59555556]
177
143
  ```
178
144
 
179
- ## Example 2: Generating Antibiograms
145
+ ## Generating Antibiograms
180
146
 
181
147
  One of the core functions of the `AMR` package is generating an antibiogram, a table that summarises the antimicrobial susceptibility of bacterial isolates. Here’s how you can generate an antibiogram from Python:
182
148
 
@@ -215,6 +181,8 @@ In this example, we generate an antibiogram by selecting various antibiotics.
215
181
 
216
182
  With the `AMR` Python package, Python users can now effortlessly call R functions from the `AMR` R package. This eliminates the need for complex `rpy2` configurations and provides a clean, easy-to-use interface for antimicrobial resistance analysis. The examples provided above demonstrate how this can be applied to typical workflows, such as standardising microorganism and antimicrobial names or calculating resistance.
217
183
 
218
- By using `import AMR`, you can seamlessly integrate the robust features of the R `AMR` package into your Python workflows. Whether you're cleaning data or analysing resistance patterns, the `AMR` Python package makes it easy to work with AMR data in Python.
184
+ By just running `import AMR`, users can seamlessly integrate the robust features of the R `AMR` package into Python workflows.
185
+
186
+ Whether you're cleaning data or analysing resistance patterns, the `AMR` Python package makes it easy to work with AMR data in Python.
219
187
 
220
188
 
@@ -1,40 +1,40 @@
1
- ---
2
- title: "AMR for Python"
3
- output:
4
- rmarkdown::html_vignette:
5
- toc: true
6
- toc_depth: 3
7
- vignette: >
8
- %\VignetteIndexEntry{AMR for Python}
9
- %\VignetteEncoding{UTF-8}
10
- %\VignetteEngine{knitr::rmarkdown}
11
- editor_options:
12
- chunk_output_type: console
13
- ---
14
-
15
- ```{r setup, include = FALSE, results = 'markup'}
16
- knitr::opts_chunk$set(
17
- warning = FALSE,
18
- collapse = TRUE,
19
- comment = "#>",
20
- fig.width = 7.5,
21
- fig.height = 5
22
- )
23
- ```
24
1
 
25
- # Introduction
2
+ The `AMR` package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the [`AMR` Python Package Index](https://pypi.org/project/AMR/).
3
+
4
+ This Python package is a wrapper round the `AMR` R package. It uses the `rpy2` package internally. Despite the need to have R installed, Python users can now easily work with AMR data directly through Python code.
5
+
6
+ # Install
26
7
 
27
- The `AMR` package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the `AMR` Python package, which uses `rpy2` internally. This package allows Python users to access all the functions from the R `AMR` package without the need to set up `rpy2` themselves. Since this Python package is not a true 'port' (which would require all R functions to be rewritten into Python), R and the AMR R package are still required to be installed. Yet, Python users can now easily work with AMR data directly through Python code.
8
+ 1. First make sure you have R installed. There is **no need to install the `AMR` R package**, as it will be installed automatically.
28
9
 
29
- In this document, we explain how this works and provide simple examples of using the `AMR` Python package.
10
+ For Linux:
30
11
 
31
- ## How It Works
12
+ ```bash
13
+ # Ubuntu / Debian
14
+ sudo apt install r-base
15
+ # Fedora:
16
+ sudo dnf install R
17
+ # CentOS/RHEL
18
+ sudo yum install R
19
+ ```
20
+
21
+ For macOS (using [Homebrew](https://brew.sh)):
22
+
23
+ ```bash
24
+ brew install r
25
+ ```
26
+
27
+ For Windows, visit the [CRAN download page](https://cran.r-project.org) to download and install R.
32
28
 
33
- The `AMR` Python package acts as a wrapper around the functions in the `AMR` R package. The package simplifies the process of calling R functions in Python, eliminating the need to manually manage the `rpy2` setup, which Python uses internally to be able to work with the R package. By just using `import AMR`, Python users can directly use the functions from the `AMR` R package as if they were native Python functions.
29
+ 2. Since the Python package is available on the official [Python Package Index](https://pypi.org/project/AMR/), you can just run:
34
30
 
35
- Internally, `rpy2` is still being used, but all complexity is hidden from the user. This approach keeps the Python code clean and Pythonic, while still leveraging the full power of the R `AMR` package.
31
+ ```bash
32
+ pip install AMR
33
+ ```
36
34
 
37
- ## Example of Usage
35
+ # Examples of Usage
36
+
37
+ ## Cleaning Taxonomy
38
38
 
39
39
  Here’s an example that demonstrates how to clean microorganism and drug names using the `AMR` Python package:
40
40
 
@@ -70,7 +70,8 @@ print(df)
70
70
 
71
71
  * **ab_name**: Similarly, this function standardises antimicrobial names. The different representations of ciprofloxacin (e.g., "Cipro", "CIP", "J01MA02", and "Ciproxin") are all converted to the standard name, "Ciprofloxacin".
72
72
 
73
- ### Taxonomic Data Sets Now in Python!
73
+
74
+ ## Taxonomic Data Sets Now in Python!
74
75
 
75
76
  As a Python user, you might like that the most important data sets of the `AMR` R package, `microorganisms`, `antibiotics`, `clinical_breakpoints`, and `example_isolates`, are now available as regular Python data frames:
76
77
 
@@ -111,42 +112,7 @@ AMR.antibiotics
111
112
  | ZFD | NaN | Zoliflodacin | None | NaN | None | NaN | None |
112
113
 
113
114
 
114
- # Installation
115
-
116
- To be able to use the `AMR` Python package, it is required to install both R and the `AMR` R package.
117
-
118
- ### Preparation: Install R and `AMR` R package
119
-
120
- For Linux and macOS, this is just:
121
-
122
- ```bash
123
- # Ubuntu / Debian
124
- sudo apt install r-base && Rscript -e 'install.packages("AMR")'
125
- # Fedora:
126
- sudo dnf install R && Rscript -e 'install.packages("AMR")'
127
- # CentOS/RHEL
128
- sudo yum install R && Rscript -e 'install.packages("AMR")'
129
- # Arch Linux
130
- sudo pacman -S r && Rscript -e 'install.packages("AMR")'
131
- # macOS
132
- brew install r && Rscript -e 'install.packages("AMR")'
133
- ```
134
-
135
- For Windows, visit the [CRAN download page](https://cran.r-project.org) in install R, then afterwards install the 'AMR' package manually.
136
-
137
- ### Install `AMR` Python Package
138
-
139
- Since the Python package is available on the official [Python Package Index](https://pypi.org/project/AMR/), you can just run:
140
-
141
- ```bash
142
- pip install AMR
143
- ```
144
-
145
- # Working with `AMR` in Python
146
-
147
- Now that we have everything set up, let’s walk through some practical examples of using the `AMR` package within Python.
148
-
149
- ## Example 1: Calculating AMR
115
+ ## Calculating AMR
150
116
 
151
117
  ```python
152
118
  import AMR
@@ -161,7 +127,7 @@ print(result)
161
127
  [0.59555556]
162
128
  ```
163
129
 
164
- ## Example 2: Generating Antibiograms
130
+ ## Generating Antibiograms
165
131
 
166
132
  One of the core functions of the `AMR` package is generating an antibiogram, a table that summarises the antimicrobial susceptibility of bacterial isolates. Here’s how you can generate an antibiogram from Python:
167
133
 
@@ -200,4 +166,6 @@ In this example, we generate an antibiogram by selecting various antibiotics.
200
166
 
201
167
  With the `AMR` Python package, Python users can now effortlessly call R functions from the `AMR` R package. This eliminates the need for complex `rpy2` configurations and provides a clean, easy-to-use interface for antimicrobial resistance analysis. The examples provided above demonstrate how this can be applied to typical workflows, such as standardising microorganism and antimicrobial names or calculating resistance.
202
168
 
203
- By using `import AMR`, you can seamlessly integrate the robust features of the R `AMR` package into your Python workflows. Whether you're cleaning data or analysing resistance patterns, the `AMR` Python package makes it easy to work with AMR data in Python.
169
+ By just running `import AMR`, users can seamlessly integrate the robust features of the R `AMR` package into Python workflows.
170
+
171
+ Whether you're cleaning data or analysing resistance patterns, the `AMR` Python package makes it easy to work with AMR data in Python.
@@ -2,7 +2,7 @@ from setuptools import setup, find_packages
2
2
 
3
3
  setup(
4
4
  name='AMR',
5
- version='2.1.1.9095',
5
+ version='2.1.1.9099',
6
6
  packages=find_packages(),
7
7
  install_requires=[
8
8
  'rpy2',
File without changes
File without changes
File without changes