AMQuantME 0.0.4__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- amquantme-0.0.4/LICENSE.txt +19 -0
- amquantme-0.0.4/PKG-INFO +15 -0
- amquantme-0.0.4/README.md +1 -0
- amquantme-0.0.4/pyproject.toml +23 -0
- amquantme-0.0.4/src/AMQuantME/__init__.py +5 -0
- amquantme-0.0.4/src/AMQuantME/augcal.py +73 -0
- amquantme-0.0.4/src/AMQuantME/express_visual.py +186 -0
- amquantme-0.0.4/src/AMQuantME/fetchpv.py +23 -0
- amquantme-0.0.4/src/AMQuantME/normdf.py +20 -0
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
Copyright (c) 2018 The Python Packaging Authority
|
|
2
|
+
|
|
3
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
4
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
5
|
+
in the Software without restriction, including without limitation the rights
|
|
6
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
7
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
8
|
+
furnished to do so, subject to the following conditions:
|
|
9
|
+
|
|
10
|
+
The above copyright notice and this permission notice shall be included in all
|
|
11
|
+
copies or substantial portions of the Software.
|
|
12
|
+
|
|
13
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
15
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
16
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
17
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
18
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
19
|
+
SOFTWARE.
|
amquantme-0.0.4/PKG-INFO
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: AMQuantME
|
|
3
|
+
Version: 0.0.4
|
|
4
|
+
Summary: A Stringer Divinator Series Product
|
|
5
|
+
Project-URL: Homepage, https://github.com/pypa/sampleproject
|
|
6
|
+
Project-URL: Issues, https://github.com/pypa/sampleproject/issues
|
|
7
|
+
Author-email: Future Jiang <futurestringer@sina.com>
|
|
8
|
+
License-Expression: MIT
|
|
9
|
+
License-File: LICENSE.txt
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Requires-Python: >=3.9
|
|
13
|
+
Description-Content-Type: text/markdown
|
|
14
|
+
|
|
15
|
+
$E = m * C ** 2$
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
$E = m * C ** 2$
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
[build-system]
|
|
2
|
+
requires = ["hatchling >= 1.26"]
|
|
3
|
+
build-backend = "hatchling.build"
|
|
4
|
+
|
|
5
|
+
[project]
|
|
6
|
+
name = "AMQuantME"
|
|
7
|
+
version = "0.0.4"
|
|
8
|
+
authors = [
|
|
9
|
+
{ name="Future Jiang", email="futurestringer@sina.com", maintainers="Future Jiang" },
|
|
10
|
+
]
|
|
11
|
+
description = "A Stringer Divinator Series Product"
|
|
12
|
+
readme = "README.md"
|
|
13
|
+
requires-python = ">=3.9"
|
|
14
|
+
classifiers = [
|
|
15
|
+
"Programming Language :: Python :: 3",
|
|
16
|
+
"Operating System :: OS Independent",
|
|
17
|
+
]
|
|
18
|
+
license = "MIT"
|
|
19
|
+
license-files = ["LICEN[CS]E*"]
|
|
20
|
+
|
|
21
|
+
[project.urls]
|
|
22
|
+
Homepage = "https://github.com/pypa/sampleproject"
|
|
23
|
+
Issues = "https://github.com/pypa/sampleproject/issues"
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import pandas_ta as ta
|
|
3
|
+
|
|
4
|
+
from AMQuantME import fetchpv as ftpv
|
|
5
|
+
from AMQuantME import normdf as nd
|
|
6
|
+
|
|
7
|
+
import datetime as dt
|
|
8
|
+
todaydate = dt.date.today()
|
|
9
|
+
todaystr = f"{todaydate.year}-{todaydate.month}-{todaydate.day}"
|
|
10
|
+
print(f"Today is {todaystr}.")
|
|
11
|
+
|
|
12
|
+
# Fetch raw price-volume data of the target index
|
|
13
|
+
exsymb_SSEC = "sh.000001"
|
|
14
|
+
print(f"Fetching {exsymb_SSEC}")
|
|
15
|
+
pv_SSEC = ftpv.bsindexpv(exsymb = exsymb_SSEC, enddate = todaystr)
|
|
16
|
+
|
|
17
|
+
exsymb_CNIA = "sz.399317"
|
|
18
|
+
print(f"Fetching {exsymb_CNIA}")
|
|
19
|
+
pv_CNIA = ftpv.bsindexpv(exsymb = exsymb_CNIA, enddate = todaystr)
|
|
20
|
+
|
|
21
|
+
print(f"Data have been updated to {pv_SSEC['date'][len(pv_SSEC) - 1]}")
|
|
22
|
+
|
|
23
|
+
# Format the DataFrames
|
|
24
|
+
pv_SSEC_norm = nd.normdftype(pv_SSEC)
|
|
25
|
+
pv_CNIA_norm = nd.normdftype(pv_CNIA)
|
|
26
|
+
|
|
27
|
+
# Record the historical max of the indices
|
|
28
|
+
SSEC_hs_max = pv_SSEC_norm.CLOSE.max()
|
|
29
|
+
CNIA_hs_max = pv_CNIA_norm.CLOSE.max()
|
|
30
|
+
|
|
31
|
+
# Truncate interested timeframe and reset the index
|
|
32
|
+
pv_SSEC_timeframe = pv_SSEC_norm[pv_SSEC_norm["DATE"] >= "2024-09-23"]
|
|
33
|
+
pv_SSEC_timeframe.reset_index(drop = True, inplace = True)
|
|
34
|
+
|
|
35
|
+
pv_CNIA_timeframe = pv_CNIA_norm[pv_CNIA_norm["DATE"] >= "2024-09-23"]
|
|
36
|
+
pv_CNIA_timeframe.reset_index(drop = True, inplace = True)
|
|
37
|
+
|
|
38
|
+
# Enhance the original DataFrame with calculated daily Return and other interested items
|
|
39
|
+
SSEC_Daily_df = pv_SSEC_timeframe.copy(deep = True)
|
|
40
|
+
|
|
41
|
+
SSEC_Daily_df["Return"] = SSEC_Daily_df["CLOSE"].pct_change()
|
|
42
|
+
# Compress VOLUME into millions and AMOUNT into billions
|
|
43
|
+
SSEC_Daily_df["Volume_mln"] = SSEC_Daily_df["VOLUME"]/(10**6)
|
|
44
|
+
SSEC_Daily_df = SSEC_Daily_df.drop("VOLUME", axis=1)
|
|
45
|
+
|
|
46
|
+
SSEC_Daily_df["Amount_bln"] = SSEC_Daily_df["AMOUNT"]/(10**9)
|
|
47
|
+
SSEC_Daily_df = SSEC_Daily_df.drop("AMOUNT", axis=1)
|
|
48
|
+
|
|
49
|
+
# Calculate daily volume percent change of SSEC to illustrate price-volume relationship
|
|
50
|
+
SSEC_Daily_df["Vol_chg"] = SSEC_Daily_df["Volume_mln"].pct_change()
|
|
51
|
+
SSEC_Daily_df["Amt_chg"] = SSEC_Daily_df["Amount_bln"].pct_change()
|
|
52
|
+
|
|
53
|
+
# Calculate normalized VARation
|
|
54
|
+
SSEC_Daily_df["PurchasePower"] = SSEC_Daily_df["Volume_mln"] / SSEC_Daily_df["Amount_bln"]
|
|
55
|
+
SSEC_Daily_df["VARatio_norm"] = SSEC_Daily_df["PurchasePower"] / SSEC_Daily_df["PurchasePower"][0]
|
|
56
|
+
|
|
57
|
+
# Do the same to the auxiliary index
|
|
58
|
+
CNIA_Daily_df = pv_CNIA_timeframe.copy(deep = True)
|
|
59
|
+
CNIA_Daily_df["Return"] = CNIA_Daily_df["CLOSE"].pct_change()
|
|
60
|
+
CNIA_Daily_df["Volume_mln"] = CNIA_Daily_df["VOLUME"]/(10**6)
|
|
61
|
+
CNIA_Daily_df = CNIA_Daily_df.drop("VOLUME", axis=1)
|
|
62
|
+
CNIA_Daily_df["Amount_bln"] = CNIA_Daily_df["AMOUNT"]/(10**9)
|
|
63
|
+
CNIA_Daily_df = CNIA_Daily_df.drop("AMOUNT", axis=1)
|
|
64
|
+
CNIA_Daily_df["Vol_chg"] = CNIA_Daily_df["Volume_mln"].pct_change()
|
|
65
|
+
CNIA_Daily_df["PurchasePower"] = CNIA_Daily_df["Volume_mln"] / CNIA_Daily_df["Amount_bln"]
|
|
66
|
+
CNIA_Daily_df["VARatio_norm"] = CNIA_Daily_df["PurchasePower"] / CNIA_Daily_df["PurchasePower"][0]
|
|
67
|
+
|
|
68
|
+
# Calculate employed technical indicators
|
|
69
|
+
rstd = ta.stdev(SSEC_Daily_df["Return"], 5)
|
|
70
|
+
pmacd = ta.macd(SSEC_Daily_df.CLOSE, fast = 5, slow = 10, signal = 7)
|
|
71
|
+
amt_chg_sma = ta.sma(SSEC_Daily_df["Amt_chg"], 10)
|
|
72
|
+
obv = ta.obv(SSEC_Daily_df.CLOSE, SSEC_Daily_df.Volume_mln)
|
|
73
|
+
pvmfi = ta.mfi(SSEC_Daily_df.HIGH, SSEC_Daily_df.LOW, SSEC_Daily_df.CLOSE, SSEC_Daily_df.Volume_mln, length = 10)
|
|
@@ -0,0 +1,186 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
|
|
6
|
+
import matplotlib.dates as mdates
|
|
7
|
+
from matplotlib import font_manager
|
|
8
|
+
my_font = font_manager.FontProperties(fname="C:/WINDOWS/Fonts/STSONG.TTF")
|
|
9
|
+
|
|
10
|
+
from AMQuantME import augcal as ac
|
|
11
|
+
|
|
12
|
+
'''
|
|
13
|
+
Visualize CLOSE, Volumes, Amount, and their changes of the target index during the whole timeframe
|
|
14
|
+
and employ some technical indicators to illustrate the movement of the index.
|
|
15
|
+
'''
|
|
16
|
+
|
|
17
|
+
# Record the first, second, and last time points with in the interested timeframe for calculation and illustration
|
|
18
|
+
date_index = ac.SSEC_Daily_df["DATE"]
|
|
19
|
+
fst_date = f"{date_index[0].year}-{date_index[0].month}-{date_index[0].day}"
|
|
20
|
+
sec_date = f"{date_index[1].year}-{date_index[1].month}-{date_index[1].day}"
|
|
21
|
+
lst_date = f"{date_index[len(date_index)-1].year}-{date_index[len(date_index)-1].month}-{date_index[len(date_index)-1].day}"
|
|
22
|
+
|
|
23
|
+
def express_pict(df = ac.SSEC_Daily_df, aux_df = ac.CNIA_Daily_df):
|
|
24
|
+
fig, axs = plt.subplots(4, 1, figsize = (18, 24), constrained_layout=True)
|
|
25
|
+
date_index = pd.to_datetime(df["DATE"]).dt.to_period("D")
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
# Subplot 1
|
|
29
|
+
'''Price behavior'''
|
|
30
|
+
# Plot daily CLOSE of the main index (x1) on the left axis
|
|
31
|
+
x1 = df["CLOSE"]
|
|
32
|
+
last_x_ind, last_x_val = len(x1) - 1, x1.iloc[-1]
|
|
33
|
+
axs[0].plot(range(len(x1)), np.where(np.isnan(x1), None, x1),
|
|
34
|
+
linewidth = 1, color = "b", label = f"SSEC, Close: {fst_date} - {lst_date}")
|
|
35
|
+
|
|
36
|
+
# Plot the latest daily close of x1
|
|
37
|
+
axs[0].plot(last_x_ind, last_x_val, "ro", alpha=0.4)
|
|
38
|
+
axs[0].annotate(f"{lst_date:>16}:\n{last_x_val:>16.2f}",
|
|
39
|
+
xy=(last_x_ind, last_x_val), xytext=(-40, 10), textcoords = "offset points", fontsize=10, color="royalblue")
|
|
40
|
+
|
|
41
|
+
# Plot expending mean and up quartile of x1
|
|
42
|
+
exp_mean1 = x1.expanding().mean()
|
|
43
|
+
exp_qu1 = x1.expanding().quantile(0.75)
|
|
44
|
+
axs[0].plot(range(len(x1)), exp_mean1, linewidth = 1, color = "skyblue",
|
|
45
|
+
label = f"SSEC, Close, Expanding Mean, latest{exp_mean1[len(exp_mean1) - 1]:.0f}")
|
|
46
|
+
axs[0].plot(range(len(x1)), exp_qu1, linewidth = 1, color = (174/255, 11/255, 42/255), label = "SSEC, Close, Expanding Upper Quartile")
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
# axs0_high = x1.mean() + (max(x1) - x1.mean()) * 1.2
|
|
50
|
+
# axs0_low = x1.mean() + (min(x1) - x1.mean()) * 1.2
|
|
51
|
+
axs0_high = 6000
|
|
52
|
+
axs0_low = 2500
|
|
53
|
+
axs[0].set_ylim(axs0_low,axs0_high)
|
|
54
|
+
|
|
55
|
+
# Set sparse display of the date index
|
|
56
|
+
data_locator = MultipleLocator(40)
|
|
57
|
+
axs[0].set_xticks(range(len(x1)), date_index)
|
|
58
|
+
axs[0].xaxis.set_major_locator(data_locator)
|
|
59
|
+
axs[0].legend(loc = 4)
|
|
60
|
+
|
|
61
|
+
# Plot dialy CLOSE of the auxiliary index (x1_1) on the right axis
|
|
62
|
+
axs0_r = axs[0].twinx()
|
|
63
|
+
x1_1 = aux_df["CLOSE"]
|
|
64
|
+
last_x1_1_ind, last_x1_1_val = len(x1_1) - 1, x1_1.iloc[-1]
|
|
65
|
+
axs0_r.plot(range(len(x1_1)), np.where(np.isnan(x1_1), None, x1_1),
|
|
66
|
+
linewidth = 1, color = "orange", label = f"CNIS, Close: {fst_date} - {lst_date}")
|
|
67
|
+
axs0_r.plot(last_x1_1_ind, last_x1_1_val, "ro", alpha=0.5)
|
|
68
|
+
axs0_r.annotate(f"{lst_date:>16}:\n{last_x1_1_val:>16.2f}",
|
|
69
|
+
xy=(last_x1_1_ind, last_x1_1_val), xytext=(-40, 10), textcoords = "offset points", fontsize=10, color="royalblue")
|
|
70
|
+
|
|
71
|
+
# Plot the highest daily close of x1_1 within the timeframe
|
|
72
|
+
max_aux = np.argmax(x1_1)
|
|
73
|
+
max_x1_1_ind, max_x1_1_val = range(len(x1_1))[max_aux], x1_1[max_aux]
|
|
74
|
+
auxmax_date = f"{date_index[max_aux].year}-{date_index[max_aux].month}-{date_index[max_aux].day}"
|
|
75
|
+
axs0_r.plot(max_x1_1_ind, max_x1_1_val, "bo", alpha=0.3)
|
|
76
|
+
axs0_r.annotate(f"{auxmax_date:>16}:\n{max_x1_1_val:>16.2f}",
|
|
77
|
+
xy=(max_x1_1_ind, max_x1_1_val), xytext=(-60, 5), textcoords = "offset points", fontsize=10, color="royalblue")
|
|
78
|
+
|
|
79
|
+
# Plot the historical highest daily close of x1_1
|
|
80
|
+
aux_hs_max = ac.CNIA_hs_max
|
|
81
|
+
axs0_r.axhline(y = aux_hs_max,
|
|
82
|
+
color="magenta", linestyle="--", linewidth=1,
|
|
83
|
+
label=f"CNIA Historical Max: {aux_hs_max:.0f} = {aux_hs_max / max_x1_1_val:.2f} * {max_x1_1_val:.0f}")
|
|
84
|
+
|
|
85
|
+
# axs0_r_high = x1_1.mean() + (max(x1_1) - x1_1.mean()) * 1.2
|
|
86
|
+
# axs0_r_low = x1_1.mean() + (min(x1_1) - x1_1.mean()) * 1.2
|
|
87
|
+
axs0_r_high = 8000
|
|
88
|
+
axs0_r_low = 3500
|
|
89
|
+
axs0_r.set_ylim(axs0_r_low,axs0_r_high)
|
|
90
|
+
axs0_r.legend(loc = 2)
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
# Subplot 2
|
|
94
|
+
'''Volume behavior'''
|
|
95
|
+
x2 = df["Volume_mln"]/(10**3)
|
|
96
|
+
x2_mean = x2.mean()
|
|
97
|
+
last_x2 = x2.iloc[-1]
|
|
98
|
+
x2_1 = aux_df["Volume_mln"]/(10**3)
|
|
99
|
+
|
|
100
|
+
axs[1].bar(range(len(x2_1)), np.nan_to_num(x2_1),
|
|
101
|
+
width = 1, color = "Orange", alpha = 0.6, label = f"CNIA, Volume in bln shares: {fst_date} - {lst_date}")
|
|
102
|
+
axs[1].bar(range(len(x2)), np.nan_to_num(x2),
|
|
103
|
+
width = 1, color = "Royalblue", alpha = 0.8, label = f"SSEC, Volume in bln shares: {fst_date} - {lst_date}")
|
|
104
|
+
|
|
105
|
+
axs[1].annotate(f"{lst_date:>16}:\n{last_x2:>16.2f}",
|
|
106
|
+
xy=(last_x_ind, last_x2), xytext=(-40, 20), textcoords = "offset points", fontsize=10, color="royalblue")
|
|
107
|
+
|
|
108
|
+
# Plot mean of daily Volume of SSEC during the whole time span
|
|
109
|
+
axs[1].axhline(y = x2_mean,
|
|
110
|
+
color="navy", linestyle="--", linewidth=1, label=f"Volume_mean: {x2_mean:.2f}")
|
|
111
|
+
|
|
112
|
+
varatio_norm_aux = aux_df["VARatio_norm"] * 100
|
|
113
|
+
axs[1].plot(range(len(x2_1)), varatio_norm_aux, linewidth = 2, color = "yellow", alpha = 0.8, label = "CNIA, VARatio_norm*100")
|
|
114
|
+
|
|
115
|
+
varatio_norm = df["VARatio_norm"] * 100
|
|
116
|
+
axs[1].plot(range(len(x2)), varatio_norm, linewidth = 2, color = "magenta", alpha = 0.8, label = f"SSEC, VARatio_norm*100: {round(varatio_norm[len(x2) - 1],2)}")
|
|
117
|
+
|
|
118
|
+
axs1_high = max(x2.mean() + (max(x2) - x2.mean()) * 1.2, x2_1.mean() + (max(x2_1) - x2_1.mean()) * 1.2, 0)
|
|
119
|
+
axs1_low = min(x2.mean() + (min(x2) - x2.mean()) * 1.2, x2_1.mean() + (max(x2_1) - x2_1.mean()) * 1.2, 0)
|
|
120
|
+
axs[1].set_ylim(axs1_low,axs1_high)
|
|
121
|
+
axs[1].set_xticks(range(len(x1)), date_index)
|
|
122
|
+
axs[1].xaxis.set_major_locator(data_locator)
|
|
123
|
+
axs[1].legend(loc = 9)
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
# Subplot 3
|
|
127
|
+
'''Return behavior'''
|
|
128
|
+
x3 = df["Return"]
|
|
129
|
+
x3_mean = x3.mean()
|
|
130
|
+
axs[2].bar(range(len(x3)), np.nan_to_num(x3), width = 0.5, color = "b", label = f"SSEC, Daily return: {sec_date} - {lst_date}")
|
|
131
|
+
axs[2].axhline(y=x3_mean,
|
|
132
|
+
color="navy", linestyle="--", linewidth=0.5, label=f"return_mean: {x3_mean:.4f}")
|
|
133
|
+
|
|
134
|
+
exp_std3 = x3.expanding().std()
|
|
135
|
+
axs[2].plot(range(len(x3)), exp_std3, linewidth = 1.5, color = "violet", label = "SSEC, Daily return, Expanding Standard Deviation")
|
|
136
|
+
|
|
137
|
+
x3_2 = ac.pmacd.MACDh_5_10_7 / 200
|
|
138
|
+
axs[2].bar(range(len(x3_2)), np.nan_to_num(x3_2), width = 0.5, color = "c", alpha = 0.6, label = "SSEC, CLOSE, MACD_5_10_7")
|
|
139
|
+
|
|
140
|
+
x3_3 = ac.rstd
|
|
141
|
+
axs[2].plot(range(len(x3_3)), x3_3, linewidth = 1.5, color = "orange", label = "SSEC, Daily return, Rolling Std_5")
|
|
142
|
+
|
|
143
|
+
axs[2].set_xticks(range(len(x3)), date_index)
|
|
144
|
+
axs[2].xaxis.set_major_locator(data_locator)
|
|
145
|
+
axs[2].legend(loc = 4)
|
|
146
|
+
|
|
147
|
+
# Subplot 4
|
|
148
|
+
'''Amount behavior'''
|
|
149
|
+
x4 = df["Amt_chg"]
|
|
150
|
+
x4_mean = x4.mean()
|
|
151
|
+
axs[3].plot(range(len(x4)), np.where(np.isnan(x4), None, x4),
|
|
152
|
+
linewidth = 1, color = "b", label = f"SSEC, Amount Percentage Change: {sec_date} - {lst_date}")
|
|
153
|
+
axs[3].axhline(y = x4_mean,
|
|
154
|
+
color="navy", linestyle="--", linewidth=0.5, label=f"Amount Percentage Change_mean: {x4_mean:.4f}")
|
|
155
|
+
|
|
156
|
+
sma4 = ac.amt_chg_sma
|
|
157
|
+
axs[3].plot(range(len(x4)), sma4, linewidth = 2, color = (174/255, 11/255, 42/255), label = "SSEC, Amount Pct. Change, SMA_10")
|
|
158
|
+
|
|
159
|
+
x4_2 = ac.obv / (10 ** 7)
|
|
160
|
+
axs[3].bar(range(len(x4_2)), np.nan_to_num(x4_2),
|
|
161
|
+
width = 0.5, color = "skyblue", alpha = 0.6, label = "SSEC, OBV")
|
|
162
|
+
|
|
163
|
+
max_x4_2 = np.argmax(x4_2)
|
|
164
|
+
max_x4_2_ind, max_x4_2_val = range(len(x4_2))[max_x4_2], x4_2[max_x4_2]
|
|
165
|
+
max_x4_2date = f"{date_index[max_x4_2].year}-{date_index[max_x4_2].month}-{date_index[max_x4_2].day}"
|
|
166
|
+
|
|
167
|
+
axs[3].plot(max_x4_2_ind, max_x4_2_val, "ro", alpha=0.5)
|
|
168
|
+
axs[3].annotate(f"{max_x4_2date:>16}",
|
|
169
|
+
xy=(max_x4_2_ind, max_x4_2_val), xytext=(-50, 10), textcoords = "offset points", fontsize=10, color="royalblue")
|
|
170
|
+
|
|
171
|
+
axs[3].plot(range(len(x4)), ac.pvmfi / 100, linewidth = 1.5, alpha = 0.8, linestyle = "--", color = "red", label = "SSEC, MFI_10")
|
|
172
|
+
|
|
173
|
+
axs[3].set_xticks(range(len(x4)), date_index)
|
|
174
|
+
axs[3].xaxis.set_major_locator(data_locator)
|
|
175
|
+
axs[3].legend(loc = 9)
|
|
176
|
+
|
|
177
|
+
fig.suptitle(
|
|
178
|
+
("Chinese SSEC Index Daily Close, Volume, Amount and Their Daily Percentage Changes: "
|
|
179
|
+
) + (f"{fst_date} - {lst_date}")
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
plt.savefig("Chinese SSEC Daily Closes Volumes Amounts and Changes_beta002.png")
|
|
183
|
+
plt.show()
|
|
184
|
+
print("For technical indicator explanation, please refer to https://mp.weixin.qq.com/s/PU70IyS-ByyIen5iTnuwfQ")
|
|
185
|
+
|
|
186
|
+
return
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import baostock as bs
|
|
3
|
+
|
|
4
|
+
def bsindexpv(exsymb, enddate):
|
|
5
|
+
'''
|
|
6
|
+
As instance code, taking CSI A Shares("sz.399317")
|
|
7
|
+
end_date form: '2026-01-27'
|
|
8
|
+
adjustflag: "1" for hfq, "2" for qfq, "3" for bfq
|
|
9
|
+
tradestatus: 1 for in trading, 0 for out of trading
|
|
10
|
+
Indices has no adjustflag
|
|
11
|
+
'''
|
|
12
|
+
lg = bs.login()
|
|
13
|
+
pv_bs = bs.query_history_k_data_plus(exsymb,
|
|
14
|
+
"date,code,open,high,low,close,volume,amount",
|
|
15
|
+
start_date = '1900-01-01', end_date = enddate,
|
|
16
|
+
frequency = "d")
|
|
17
|
+
_result_list = []
|
|
18
|
+
while (pv_bs.error_code == '0') & pv_bs.next():
|
|
19
|
+
_result_list.append(pv_bs.get_row_data())
|
|
20
|
+
_result = pd.DataFrame(_result_list, columns = pv_bs.fields)
|
|
21
|
+
bs.logout()
|
|
22
|
+
|
|
23
|
+
return _result
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
|
|
3
|
+
def normdftype(pvdf):
|
|
4
|
+
# Change data type of fields
|
|
5
|
+
df = pvdf.copy()
|
|
6
|
+
df["date"] = pd.to_datetime(df["date"])
|
|
7
|
+
|
|
8
|
+
for field in ["open", "high", "low", "close", "volume", "amount"]:
|
|
9
|
+
df[field] = df[field].astype(float)
|
|
10
|
+
|
|
11
|
+
# Keep appropriate decimal
|
|
12
|
+
df.round({"open":4, "high":4, "low":4, "close":4, "volume":4, "amount":4})
|
|
13
|
+
|
|
14
|
+
# Rename the original fields
|
|
15
|
+
original_rename_dict = {"date":"DATE", "code":"CODE",
|
|
16
|
+
"open":"OPEN", "high":"HIGH", "low":"LOW", "close":"CLOSE",
|
|
17
|
+
"volume":"VOLUME", "amount":"AMOUNT"}
|
|
18
|
+
df.rename(columns = original_rename_dict, inplace = True)
|
|
19
|
+
|
|
20
|
+
return df
|